О ГРАФАХ С ЗАДАННЫМИ ДИАМЕТРОМ, ЧИСЛОМ ВЕРШИН И ЛОКАЛЬНЫМ РАЗНООБРАЗИЕМ ШАРОВ $^{*)}$

Т. И. Федоряева

Аннотация. В связи с задачей характеризации векторов разнообразия шаров обыкновенных связных графов изучаются n-вершинные графы диаметра d с локальным t-разнообразием шаров, т. е. графы, имеющие n различных шаров радиуса i для любого $i \leqslant t$. Для таких графов справедлива нижняя оценка для числа вершин, определяемая через параметры d и t. В статье с точностью до изоморфизма явно описываются все графы диаметра d с локальным t-разнообразием шаров (полным разнообразием шаров), имеющие наименьший возможный порядок. Кроме того, для каждого такого графа вычисляется его вектор разнообразия шаров.

Ключевые слова: граф, диаметр графа, метрический шар, радиус шара, число шаров, вектор разнообразия шаров.

Пусть $\tau_i(G)$ — число всех различных шаров радиуса i в метрическом пространстве обыкновенного связного графа G с обычным расстоянием между вершинами (т. е. длиной кратчайшей цепи, соединяющей эти вершины). Вектор $\tau(G) = (\tau_0(G), \tau_1(G), \ldots, \tau_i(G), \ldots, \tau_d(G))$, составленный из этих чисел, где d = d(G) — диаметр графа G, называется вектором разнообразия шаров графа G [5, 6]. Векторы такого вида впервые рассмотрены в [1], где предложено изучать строение графов как дискретных метрических пространств через разнообразие и пересекаемость метрических шаров, содержащихся в графе (см. также [2]). При таком подходе естественно формулируется задача характеризации векторов разнообразия шаров графов и возникает класс графов, обладающих локальным t-разнообразием шаров.

Определение 1 [1]. Граф G обладает локальным t-разнообразием шаров, если $|V(G)|= au_0(G)= au_1(G)=\ldots= au_t(G),\ 0\leqslant t< d(G)$. Граф G с локальным t-разнообразием шаров при t=d(G)-1 называется графом полного разнообразия шаров.

 $^{^{*)}}$ Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект 08–01–00671).

Нетрудно видеть, что для произвольного графа G диаметра d выполняется система неравенств

$$\tau_0(G) = |V(G)| \geqslant \ldots \geqslant \tau_i(G) \geqslant \tau_{i+1}(G) \geqslant \ldots \geqslant 1 = \tau_d(G) = \tau_{d+1}(G) = \ldots$$

Поэтому одна из идей определения графа G с вектором разнообразия шаров $\tau(G)$, совпадающим с наперёд заданным целочисленным вектором $\overline{\tau} = (\tau_0, \dots, \tau_i, \dots, \tau_d)$ с убывающими компонентами, состоит в пошаговом построении требуемого графа путём какого-либо «наращивания» на каждом шаге k уже построенного τ_{d-k} -вершинного графа с локальным (d-k)-разнообразием шаров до au_{d-k-1} -вершинного графа с локальным (d-k-1)-разнообразием шаров, при этом в качестве базисного графа при k=1 должен использоваться τ_{d-1} -вершинный граф с полным разнообразием шаров. Таким образом, графы с локальным и полным разнообразием шаров могут быть использованы при характеризации векторов разнообразия шаров для графов. Такое построение графа G реализовано в [4] при дополнительных ограничениях на исходный вектор $\overline{\tau}$. В связи с этим возникают вопросы: всегда ли существуют *п*-вершинные графы диаметра d с локальным t-разнообразием шаров (или даже полным разнообразием шаров), как они устроены и какой вид имеет их вектор разнообразия шаров?

В [7,8] исследован вопрос существования графа с локальным t-разнообразием шаров (полным разнообразием шаров) в классе $\Gamma_{n,d}$ всех n-вершинных обыкновенных связных графов диаметра d. Автором описаны все такие возможные значения параметров n,d и t, а именно доказана следующая

Теорема 1 [8]. Класс $\Gamma_{n,d}$ содержит граф с локальным t-разнообразием шаров тогда и только тогда, когда выполняется одно из следующих условий:

- (i) $0 \le t \le |d/2|, n \ge d+1 \ge 2$;
- (ii) $|d/2| < t < d, n \ge d + 1 + t$.

Следствие 1. В классе $\Gamma_{n,d}$ существует граф с полным разнообразием шаров тогда и только тогда, когда $n \ge 2d > 0$ или n = d + 1 = 3.

В теореме 1 найден наименьший порядок графов диаметра d с локальным t-разнообразием шаров (полным разнообразием шаров), а в настоящей работе мы явно описываем с точностью до изоморфизма все такие графы наименьшего порядка и вычисляем их векторы разнообразия шаров.

При решении этой задачи возникают два случая, указанные в теореме 1. В [6] вычислен вектор разнообразия шаров простой цепи длины d,

эта цепь обладает локальным $\lfloor d/2 \rfloor$ -разнообразием шаров. Поэтому в случае (i) при n=d+1 цепь длины d (цепь длины d=1,2) — единственный с точностью до изоморфизма граф с локальным t-разнообразием шаров (полным разнообразием шаров) диаметра d. Случай (ii) рассматривается в теореме 2 (следствии 2), где в этом случае явно описываются с точностью до изоморфизма графы наименьшего порядка диаметра d с локальным t-разнообразием шаров (полным разнообразием шаров) и вычисляются их векторы разнообразия шаров.

В статье рассматриваются конечные обыкновенные связные графы и используются общепринятые понятия и обозначения теории графов [3]. Для графа G обозначим через n(G) число вершин, через $\rho_G(x,y)$ — обычное расстояние между вершинами x и y, через $B_i^G(x)$ — шар радиуса i с центром в вершине $x \in V(G)$ относительно метрики ρ_G .

Множество всех вершин графа G, лежащих на всех кратчайших цепях, соединяющих вершины x и y, называется интервалом $[x,y]_G$. Естественным образом определяются полуоткрытый интервал $[x,y)_G$ и открытый интервал $(x,y)_G$. Для простой цепи P графа G, содержащей вершины x и y, через P[x,y) и P(x,y) будем обозначать полуоткрытый интервал $[x,y)_P$ и открытый интервал $(x,y)_P$ соответственно. В приведённых обозначениях будем опускать индекс G, если понятно, о каком графе G идёт речь, и вместо $x \in V(G)$ будем писать $x \in G$.

Граф G содержит кратчайшую цепь $(v_1, v_2, ..., v_n)$, если существует кратчайшая цепь P графа G с концами v_1, v_n такая, что

$$v_1, v_2, \dots, v_n \in V(P), \quad \sum_{i=1}^{n-1} \rho_G(v_i, v_{i+1}) = \rho_G(v_1, v_n)$$

(причём не обязательно, чтобы $v_i \neq v_{i+1}$). В таком случае пишем $P = (v_1, v_2, \ldots, v_n)$. Для произвольной кратчайшей цепи P, содержащей v_1, v_2, \ldots, v_n с указанными выше условиями, через $P[v_1, v_2, \ldots, v_n]$ будем обозначать её часть, ограниченную вершинами v_1, v_n .

Нам потребуется в случае $n \leq 2d$ модификация графов $H_{n,d,t} \in \Gamma_{n,d}$, обладающих локальным t-разнообразием шаров и построенных в [8] для всех допустимых значений параметров n,d и t, указанных в теореме 1.

Пусть n=d+1+t и $0\leqslant t< d$. Для любого $i=0,1,\ldots,\lfloor (d-t-1)/2\rfloor$ определим граф $H^i_{n,d,t}$ следующим образом. Если t>0, то к простой цепи P с концами a,b длины d добавим новые вершины v_1,\ldots,v_t и рёбра так, что в полученном графе образуется кратчайшая цепь $(a',v_1,v_2,\ldots,v_{t-1},v_t,b')$ длины t+1, где $a'\in P,\ \rho_P(a,a')=i$ и $b'\in P[a',b],\ \rho_P(a',b')=t+1$ (вершины a',b' определены корректно, так как $i+t+1\leqslant d$). В слу-

чае t=0 к P ничего не добавляем. Полученный граф обозначим через $H^i_{n,\,d,\,t}$ (рис. 1).

$$H^i_{n,\,d,\,t} \qquad \qquad \rho(a,a')=i$$

$$i=0,1,\dots,\lfloor(d-t-1)/2\rfloor \qquad \qquad v_2 \quad \dots \quad v_{t-1}$$

$$v_1 \qquad \qquad v_t \qquad \qquad v_t$$

$$a \quad a' \qquad b' \quad b$$
 Pig. 1

Лемма 1. Пусть n = d + 1 + t, $0 \leqslant t < d$ и $i \leqslant \lfloor (d - t - 1)/2 \rfloor$. Тогда

- (i) $H_{n,d,t}^i \in \Gamma_{n,d}$;
- (ii) $H_{n,d,t}^i$ обладает локальным t-разнообразием шаров;
- (iii) $\tau(H_{n,d,t}^i) = (n, \dots, n, \Delta_{t+1}^d, \Delta_{t+2}^d, \dots, \Delta_d^d)$, где

$$\Delta_j^d = \left\{ \begin{array}{ll} d+1 & \text{при } 0 \leqslant j \leqslant \lfloor d/2 \rfloor \,, \\ 2(d-j)+1 & \text{при } \lfloor d/2 \rfloor < j < d, \\ 1 & \text{при } j \geqslant d. \end{array} \right.$$

Доказательство. Непосредственно из определения вытекает (i). В [8] замечено, что если для различных вершин x,y графа G выполняется неравенство $e_G(x,y)\geqslant j+1$, то $B_j^G(x)\neq B_j^G(y)$, где $e_G(x,y)$ — наибольшая длина кратчайшей цепи графа G с концом x, содержащей вершину y. С помощью этого свойства нетрудно показать, что $\tau_t(H_{n,d,t}^i)=n$. Так как $\tau_j(H_{n,d,t}^i)\geqslant \tau_{j+1}(H_{n,d,t}^i)$, получаем (ii). Далее, для любого $k\leqslant t$ очевидно выполняется равенство $B_{t+1}(v_k)=B_{t+1}(v_k')$, где $v_k'\in P[a',b']$ и $\rho(a',v_k')=k$. Кроме того, в [6] показано, что $\tau(P)=\left(\Delta_0^d,\Delta_1^d,\ldots,\Delta_d^d\right)$. Причём если $x,y\in P, x\neq y$ и $B_j^P(x)=B_j^P(y)$, то $B_j^P(x)=P$, а следовательно, $B_j^{H_{n,d,t}^i}(x)=H_{n,d,t}^i$ при j>t. Поэтому $\tau_j(H_{n,d,t}^i)=\tau_j(P)=\Delta_j^d$ при j>t. Лемма 1 доказана.

Введём следующие обозначения. Через $\delta(x,y)$ обозначим предикат неравенства, т. е.

$$\delta(x,y) = \begin{cases} 1 & \text{при } x \neq y, \\ 0 & \text{в противном случае.} \end{cases}$$

Для любых вершин x, x', y', y произвольного графа G через $G_{x, x', y', y}$ обозначим подграф графа G, состоящий из всех вершин z, удовлетворяющих одному из следующих двух условий:

- 1) $z \in [x, x']_G \cup [y, y']_G$;
- 2) для некоторой вершины $z' \in [x', y']_G$ существует кратчайшая цепь (z, z', x) или (z, z', y).

Утверждение 1. Пусть в графе G существуют кратчайшие цепи (x,x',y') и (y,y',x'). Тогда выполняется в точности одно из следующих условий:

- (i) в графе G существует кратчайшая цепь (x, x', y', y);
- (ii) $n(G) \geqslant n(G_{x,x',y',y}) + \rho(x',y') \delta(x',y')$ и существует кратчайшая цепь C с концами x'',y'' такая, что $x'' \in [x,x']_G$, $y'' \in [y,y']_G$ (рис. 2),

$$C(x'', y'') \cap G_{x, x', y', y} = \varnothing, \tag{1}$$

$$\rho(x', y') \leqslant \rho(x'', y'') < \rho(x'', x') + \rho(x', y') + \rho(y', y''). \tag{2}$$

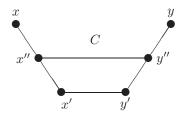


Рис. 2

Доказательство. В графе G существуют некоторые кратчайшие цепи $C_x = (x, x', y')$ и $C_y = (y, y', x')$. Рассмотрим два возможных случая.

Случай 1. Существует кратчайшая цепь C'=(x,z,y) с концами x и y, содержащая некоторую вершину $z\in [x',y']_G$. Тогда в G есть кратчайшая цепь (x',z,y') и по условию имеем кратчайшие цепи C_x , C_y . Следовательно, в графе G есть кратчайшие цепи $C_x'=(x,x',z,y')$ и $C_y'=(y,y',z,x')$. Используя кратчайшие цепи C',C_x' , C_y' , получаем существование кратчайшей цепи (x,x',z,y',y) в графе G, т. е. выполняется условие (i).

Случай 2. Пусть не выполняется случай 1. Рассмотрим произвольную кратчайшую цепь C с концами x и y. Обозначим через x'' последнюю вершину из $C \cap [x,x']_G, \ y''$ — первую вершину из $C[x'',y] \cap [y,y']_G$ при переходе от x к y по цепи C. Тогда

$$C(x'', y'') \cap ([x, x']_G \cup [y, y']_G) = \varnothing, \tag{3}$$

и в графе G имеются кратчайшие цепи (x, x'', x', y'), (y, y'', y', x') (см. рис. 2) ввиду наличия кратчайших цепей C_x, C_y . В силу неравенства

треугольника имеем

$$\rho(x', x'') + \rho(x'', y'') \geqslant \rho(x', y'') = \rho(x', y') + \rho(y', y''),$$

$$\rho(y', y'') + \rho(x'', y'') \geqslant \rho(y', x'') = \rho(x', y') + \rho(x', x'').$$

Почленно суммируя эти неравенства, получаем $\rho(x',y') \leqslant \rho(x'',y'')$. Далее, по неравенству треугольника имеем

$$\rho(x'', y'') \le \rho(x'', x') + \rho(x', y') + \rho(y', y''),$$

причём если в этом неравенстве достигается равенство, то в графе G существует кратчайшая цепь (x,x'',x',y',y'',y) (так как C=(x,x'',y'',y)); противоречие условию случая 2. Таким образом, доказали справедливость (2).

Предположим, что существует вершина $z \in C(x'',y'') \cap G_{x,x',y',y}$. В силу (3) и определения $G_{x,x',y',y}$ существуют вершина $z' \in [x',y']_G$ и кратчайшая цепь (z,z',x) или (z,z',y). Пусть, например, в графе G есть кратчайшая цепь C' = (z,z',x). Тогда $C'[x,z',z] \cup C[z,y'',y]$ — кратчайшая цепь с концами x и y, проходящая через вершину z'. Пришли к противоречию с условием случая 2, т. е. (1) доказано.

В силу (1) и (2) получаем

$$n(G) \ge n(G_{x,x',y',y}) + n(C(x'',y'')) = n(G_{x,x',y',y}) + \rho(x'',y'') - \delta(x'',y'')$$

$$\ge n(G_{x,x',y',y}) + \rho(x',y') - \delta(x',y'),$$

т. е. выполняется условие (ii).

Остаётся заметить, что если условие (ii) выполнено, то

$$\rho(x,y) \leqslant \rho(x,x'') + \rho(x'',y'') + \rho(y'',y) < \rho(x,x') + \rho(x',y') + \rho(y',y)$$

и, следовательно, не выполняется условие (і). Утверждение 1 доказано.

Замечание 1. В условии (ii) утверждения 1 в качестве цепи C[x'',y''] выбирается часть произвольной кратчайшей цепи C=(x,x'',y'',y) с концами x и y, ограниченная подходящими вершинами $x'' \in C \cap [x,x']_G$ и $y'' \in C \cap [y,y']_G$.

Замечание 2. Пусть выполнены условия утверждения 1 и $x' \neq y'$. Тогда $[x, x']_G \cap [y, y']_G = \emptyset$.

Действительно, иначе существуют вершина $z \in [x, x']_G \cap [y, y']_G$ и кратчайшие цепи (x, z, x', y') и (y, z, y', x') в графе G. Поэтому

$$\rho(z,y')=\rho(z,x')+\rho(x',y'),\quad \rho(z,x')=\rho(z,y')+\rho(y',x').$$

Следовательно, $\rho(x', y') = 0$; противоречие условию $x' \neq y'$.

Теорема 2. Пусть $\lfloor d/2 \rfloor < t < d$. Тогда n-вершинные графы $H^i_{n,d,t}$, где n=d+1+t и $i=0,1,\ldots,\lfloor (d-t-1)/2 \rfloor$ (см. рис. 1), — все с точностью до изоморфизма графы диаметра d с локальным t-разнообразием шаров наименьшего возможного порядка, причём

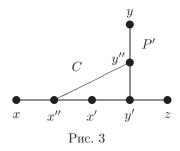
$$\tau(H_{n,d,t}^i) = (n, \dots, n, \Delta_{t+1}^d, \Delta_{t+2}^d, \dots, \Delta_d^d).$$

Доказательство. Пусть граф $G \in \Gamma_{n,d}$ обладает локальным t-разнообразием шаров и имеет наименьший порядок. Тогда n=d+1+t по теореме 1. Рассмотрим произвольную диаметральную цепь P графа G, её концы a,b и вершины $a',b'\in P$ такие, что $\rho(a,a')=\rho(b,b')=t$. Так как $t>\lfloor d/2\rfloor$, то P=(a,b',a',b) и вершины a',b' различные. Поэтому $B_t(a')\neq G$ или $B_t(b')\neq G$ в силу локального t-разнообразия шаров графа G. Следовательно, существуют вершины x,x',y',y,z и кратчайшая цепь P' графа G (рис. 3) такие, что

$$x' \in \{a', b'\}, \quad \rho(x', y) > t,$$
 (4)

$$P' = (x', y', y), P'(y', y] \cap P = \emptyset, \quad y' \in P[x', z], x, z \in \{a, b\}, x \neq z.$$
 (5)

Здесь y' — последняя вершина из $P' \cap P$ при переходе от x' к y по цепи P'.



Учитывая, что $t > \lfloor d/2 \rfloor$, P = (x, x', y', z) — диаметральная цепь и справедливо (4), получаем

$$\rho(x, x') = t > d - t = \rho(x', z)$$
 или $\rho(x', z) = t > d - t = \rho(x', x)$ (6)

и $\rho(x,x')+\rho(x',y)>\rho(x,x')+t\geqslant \rho(x,x')+\rho(x',z)=d.$ Поэтому в графе G нет кратчайшей цепи (x,x',y',y) и, значит,

$$C \cap P[x', z] = \varnothing, \tag{7}$$

где C — произвольная фиксированная кратчайшая цепь с концами x,y. В графе G имеем кратчайшие цепи P[x,x',y'] и P'[x',y',y], причём нетрудно доказать, что $P \cup P' \subseteq G_{x,x',y',y}$, где $G_{x,x',y',y}$, — подграф, определённый в утверждении 1. В силу (4), (5), утверждения 1 и замечания 1 для некоторых вершин x'',y'' таких, что

$$x'' \in C \cap [x, x']_G, \quad y'' \in C[x'', y] \cap [y, y']_G,$$
 (8)

при выполнении соотношений (1) и (2) получаем

$$n(G) \geqslant n(G_{x,x',y',y}) + n(C(x'',y'')) = n(G_{x,x',y',y}) + \rho(x'',y'') - \delta(x'',y'')$$

$$\geqslant n(P \cup P') + \rho(x'',y'') - \delta(x'',y'') \geqslant n(P \cup P') + \rho(x',y') - \delta(x',y')$$

$$\geqslant d + 1 + \rho(y',y) + \rho(x',y') - \delta(x',y') = d + 1 + \rho(x',y) - \delta(x',y')$$

$$\geqslant d + 1 + t + 1 - \delta(x',y') = n + 1 - \delta(x',y') \geqslant n.$$

Поэтому в каждом из вышеуказанных неравенств достигается равенство. Следовательно, учитывая (1), (2) и (5), имеем

$$\rho(x', y) = t + 1, \quad \rho(x'', y'') = \rho(x', y') > 0, \tag{9}$$

$$V(G) = V(P) \cup V(P'(y', y]) \cup V(C(x'', y'')).$$
(10)

В силу (7)–(9) и замечания 2 $y'' \in [y,y']_G \setminus ([x,x']_G \cup P[x',z])$, а учитывая (10), заключаем $y'' \in P'[y,y')$. Аналогично $x'' \in P[x,x')$ (см. рис. 3). Далее, P,P' — кратчайшие цепи, поэтому

$$\rho(x', x'') + \rho(x', y') \le \rho(x'', y'') + \rho(y', y'')$$

И

$$\rho(x', y') + \rho(y', y'') \leqslant \rho(x', x'') + \rho(x'', y'').$$

Следовательно, учитывая (9), получаем

$$\rho(x', x'') = \rho(y', y'') > 0 \tag{11}$$

и $P'' = C[x'', y''] \cup P'[y'', y']$ — кратчайшая цепь графа G.

Из (6) имеем либо $\rho(x,x')=t$, либо $\rho(x',z)=t$. Рассмотрим различные вершины $w_1,w_2\in P''$, существующие в силу (9) и (11), такие, что $\rho(x'',w_1)=\rho(x'',w_2)+1=\rho(x'',x')$ в случае $\rho(x',x)=t$ и $\rho(y',w_1)=\rho(y',w_2)+1=\rho(y',x')$ в случае $\rho(x',z)=t$.

Предположим, что $y'' \neq y$. Так как P' = (x', y', y'', y) и выполняются соотношения (9), (11), то диаметр простого цикла $P[x'', y'] \cup P''[x'', y']$

не превосходит t. Теперь, используя (6), (9)–(11), нетрудно доказать, что $B_t(w_1) = B_t(w_2) = G$; противоречие с локальным t-разнообразием шаров графа G.

Итак, y'' = y. Тогда $\rho(x'', y') = t + 1$ и $i \leq \lfloor (d - t - 1)/2 \rfloor$ в силу (9), (11), где $i = \min\{\rho(x, x''), \rho(y', z)\}$.

Покажем, что граф G изоморфен графу $H_{n,d,t}^i$ (см. рис. 1). Так как P и P'' — кратчайшие цепи, в силу (10) остаётся заметить, что в графе G нет рёбер с концами $u_1, u_2,$ где $u_1 \in P(x'', y')$ и $u_2 \in P''(x'', y')$. Предположим, что это не так. Тогда граф G имеет вид, изображённый на рис. 4 (здесь в цикле также могут быть хорды, отличные от u_1u_2).

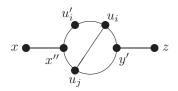


Рис. 4

Так как $\lfloor d/2 \rfloor < t < d$, то $t \geqslant 2$. Если t=2, то n=2d=6 и $x=x'', \ y'=z$. Следовательно, $B_t(u_1)=B_t(u_2)$; противоречие локальному t-разнообразию шаров графа G. Значит, $t\geqslant 3$. Поскольку P и P'' — кратчайшие цепи, получаем

$$|\rho(u_1, x'') - \rho(u_2, x'')| \le 1, \quad |\rho(u_1, y') - \rho(u_2, y')| \le 1,$$
 (12)
 $\rho(u_i, x'') + \rho(u_i, y') = t + 1 \ge 4, \quad i = 1, 2.$

Для некоторых различных i,j имеем $\rho(u_i,x'')\geqslant \rho(u_j,x'')$. В силу (12) получаем $\rho(u_j,y')\geqslant \rho(u_i,y')$ и либо $\rho(u_j,x'')\geqslant 2$, либо $\rho(u_i,y')\geqslant 2$ (иначе $t\leqslant 2$). Пусть, например, $\rho(u_j,x'')\geqslant 2$ (случай $\rho(u_i,y')\geqslant 2$ симметричен). Выберем вершину u_i' на кратчайшей цепи с концами x'', u_i (см. рис. 4) такую, что

$$\rho(u_i', x'') = \rho(u_j, x'') \geqslant 2. \tag{13}$$

Отсюда в силу того, что P, P'' — кратчайшие цепи, имеем $\rho(u_i', v) = \rho(u_j, v)$ для любой вершины $v \in P[x, x''] \cup P[y', z]$. Кроме того, используя (12) и (13), нетрудно доказать, что $P(x'', y') \cup P''(x'', y') \subseteq B_t(u_i') \cap B_t(u_j)$. Следовательно, $B_t(u_i') = B_t(u_j)$; противоречие с локальным t-разнообразием шаров графа G.

Таким образом, G изоморфен графу $H_{n,d,t}^i$. При n=d+1+t и для любого $i\leqslant \lfloor (d-t-1)/2\rfloor$ по лемме 1 граф $H_{n,d,t}^i$ обладает локальным

t-разнообразием шаров и вектор разнообразия шаров $\tau(H_{n,d,t}^i)$ имеет требуемый вид. Очевидно, что графы $H_{n,d,t}^i$ попарно не изоморфны при $i=0,1,\ldots,\lfloor (d-t-1)/2 \rfloor$. Теорема 2 доказана.

Непосредственно из следствия 1 и теоремы 2 получаем

Следствие 2. Для любого d>0 существует единственный с точностью до изоморфизма граф диаметра d с полным разнообразием шаров наименьшего возможного порядка, а именно 2d-вершинный цикл при d>2, и цепь длины d при $d\leqslant 2$.

ЛИТЕРАТУРА

- **1. Евдокимов А. А.** Локально изометрические вложения графов и свойство продолжения метрики // Сиб. журн. исслед. операций. 1994. Т. 1, N 1. С. 5–12.
- **2. Евдокимов А. А.** Вложения в классе параметрических отображений ограниченного искажения // Уч. зап. Казанск. гос. ун-та. 2009. Т. 151, № 2. С. 72–79.
- **3.** Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1990. 383 с.
- **4.** Рычков К. Л. О достаточных условиях существования графа с заданным разнообразием шаров // Дискрет. анализ и исслед. операций. Сер. 1.-2006.- Т. 13, № 1.- С. 99-108.
- **5. Федоряева Т. И.** О разнообразии метрических шаров в графах // Проблемы теоретической кибернетики. Тез. докл. XIV Междунар. конф. (Пенза, 23–28 мая 2005 г.). М.: Изд-во мех.-мат. ф-та МГУ, 2005. С. 159.
- **6. Федоряева Т. И.** Разнообразие шаров в метрических пространствах деревьев // Дискрет. анализ и исслед. операций. Сер. 1. 2005. Т. 12, N 3. С. 74–84.
- 7. Федоряева Т. И. Векторы разнообразия шаров и свойства их компонент // Тр. VII Междунар. конф. «Дискретные модели в теории управляющих систем» (Москва, 4–6 марта 2006 г.). М.: Изд-во МГУ, 2006. С. 374–378.
- **8. Федоряева Т. И.** Векторы разнообразия шаров для графов и оценки их компонент // Дискрет. анализ и исслед. операций. Сер. 1. 2007. Т. 14, N 2. С. 47–67.

Федоряева Татьяна Ивановна, e-mail: stdd@academ.org Статья поступила 16 июня 2009 г.

Переработанный вариант — 8 ноября 2009 г.