О ЯДРОВЫХ И КРАТЧАЙШИХ КОМПЛЕКСАХ ГРАНЕЙ В ЕДИНИЧНОМ КУБЕ

И.П. Чухров

Аннотация. На основе исследования экстремальных ядровых комплексов граней заданной размерности получены нижние оценки числа кратчайших комплексов граней в единичном n-мерном кубе. Показано, что число кратчайших комплексов k-мерных граней совпадает по порядку логарифма с числом комплексов, состоящих из не более 2^{n-1} различных граней размерности k, при $1 \le k \le c \cdot n$ и c < 0.5. Отсюда вытекают аналогичные нижние оценки для максимальных значений длины ядровых и числа кратчайших д.н.ф. булевых функций.

Ключевые слова: грань, интервал, ядровая грань, комплекс граней в *п*-мерном единичном кубе, булева функция, кратчайшее покрытие.

Введение

Задача минимизации булевых функций в классе дизъюнктивных нормальных форм (д.н.ф.) [3,6,11] обычно рассматривается в двух эквивалентных моделях — аналитической и геометрической [14, с. 307]. Множество всех вершин куба B^n , которое совпадает с k-мерной гранью куба B^n , эквивалентно множеству вершин, на которых некоторая импликанта ранга n-k обращается в единицу. Множество вершин грани также может быть представлено в виде $\left\{\widetilde{x}\in B^n\mid \widetilde{\alpha}\leqslant \widetilde{x}\leqslant \widetilde{\beta}\right\}$, где $\widetilde{\alpha}$ и $\widetilde{\beta}$ — минимальная и максимальная вершины грани, при этом расстояние Хэмминга $\rho(\widetilde{\alpha},\widetilde{\beta})$ равно k. В таком представлении множество вершин грани называется k-мерным интервалом в единичном кубе B^n .

Для произвольных вершин $\widetilde{\alpha}, \widetilde{\beta} \in B^n$ через $I(\widetilde{\alpha}, \widetilde{\beta})$ будем обозначать наименьший интервал в B^n , содержащий одновременно вершины $\widetilde{\alpha}$ и $\widetilde{\beta}$. Отметим, что интервал $I(\widetilde{\alpha}, \widetilde{\beta})$ совпадает с множеством вершин $\widetilde{x} \in B^n$, для которых выполняется условие $\rho(\widetilde{\alpha}, \widetilde{x}) + \rho(\widetilde{x}, \widetilde{\beta}) \leqslant \rho(\widetilde{\alpha}, \widetilde{\beta})$.

Комплекс граней $M=\{I_r,\ r=1,\dots,l\}$ покрывает множество вершин $N_M=\bigcup_{r=1}^l I_r\subseteq B^n.$ Комплексу граней M однозначно соответствует

^{© 2011} Чухров И. П.

функция $f \in P_n$, для которой $N_f = N_M$, и д.н.ф., состоящая из импликант, однозначно определяемых гранями из M. Два комплекса граней называются эквивалентными, если они покрывают одно и то же подмножество вершин единичного куба B^n .

Комплекс граней M называется nenpusodumum, если после удаления из него любой грани получается комплекс граней, не эквивалентный M, т. е. $N_M \neq N_{M\setminus\{I\}}$ для любой грани $I\in M$. В неприводимом комплексе M каждая грань $I\in M$ содержит хотя бы одну вершину $\widetilde{\alpha}$, которая не покрывается другими гранями из M. Такая вершина $\widetilde{\alpha}$ называется cobcmsehinoù вершиной грани I в комплексе M. Будем обозначать через C_M подмножество собственных вершин неприводимого комплекса M, которое содержит по одной произвольной (если их несколько) собственной вершине для каждой грани из M. Таким образом, в неприводимом комплексе M число граней равно $|C_M|$.

Функционал, определённый на множестве всех комплексов граней (д.н.ф.), является мерой сложности, если он удовлетворяет аксиомам неотрицательности, монотонности относительно умножения, выпуклости относительно сложения и инвариантности относительно изоморфизма [14, с. 298]. Мера сложности, равная числу граней в комплексе M, называется длиной и обозначается через $l\left(M\right)$. Кратчайшим называется комплекс, имеющий минимальное число граней среди всех эквивалентных комплексов граней. Мера сложности, равная сумме рангов граней в комплексе M, называется сложностью и обозначается через $L\left(M\right)$. Минимальным называется комплекс, имеющий минимальную сумму рангов граней среди всех эквивалентных комплексов.

Используемые, но не определяемые в этой статье понятия и определения можно найти в [3,6,14]. Через $\lfloor x \rfloor$ (соответственно $\lceil x \rceil$) обозначим целую часть (соответственно верхнюю целую часть) числа x. Под log всюду понимается логарифм по основанию 2. Константа c_{ε} всюду есть сколь угодно малая положительная константа. Через o(1) обозначается величина, стремящаяся к нулю при $n \to \infty$.

Обозначим через \mathcal{M}_l^n множество кратчайших комплексов граней, через $\mathcal{M}_l^{n,k}$ — множество кратчайших комплексов k-мерных граней и через $\mathcal{M}_l^{n,k,m}$ — множество кратчайших комплексов k-мерных граней длины m в единичном кубе B^n . Мощности этих множеств обозначим через $M_l(n) = |\mathcal{M}_l^n|, \ M_l(n,k) = |\mathcal{M}_l^{n,k}|$ и $M_l(n,k,m) = |\mathcal{M}_l^{n,k,m}|$. Для функции $f \in P_n$ через $\mu_l(f)$ будем обозначать число кратчайших д.н.ф. функции f и через $\mu_l(n)$ — максимальное значение этого параметра по множеству функций P_n . В утверждениях, справедливых одновременно

для кратчайших и минимальных д.н.ф., будем использовать обозначения без указания меры сложности, например, $\mu(n)$.

Верхняя оценка $\mu(n) \leqslant (2^{2^n})^{c \cdot n \cdot (1+o(1))}$ при $n \to \infty$, где $c = \log \frac{3}{2}$, получается из простых соображений, что длина неприводимого комплекса граней не превосходит 2^n , а число граней в кубе B^n равно 3^n [3, с. 125].

Нижние оценки $\mu(n)$ последовательно улучшались рядом авторов. Первый результат $\mu(n) \geqslant (n-1)! = 2^{n \cdot \log n \cdot (1-o(1))}$ получен С. В. Яблонским [3, с. 123], т. е. показано, что $\mu(n)$ растёт при $n \to \infty$ значительно быстрее, чем 2^n . Ю. И. Журавлёвым [5] получена оценка $\mu(n) \geqslant (2^{2^n})^c$, где 0 < c < 1. В [2] Ю. Л. Васильевым впервые показано, что значение $\mu(n)$ может превосходить число функций от n переменных:

$$\mu\left(n\right)\geqslant\left(2^{2^{n}}\right)^{c\cdot\log n\cdot\left(1-o\left(1\right)\right)}$$

или $\log \mu(n) \gtrsim c \cdot \log n \cdot 2^n$, где c = 1/6, при $n \to \infty$.

Для числа минимальных д.н.ф. у почти всех функций известна только верхняя оценка

$$\log \mu\left(f\right) \lesssim \log \binom{s\left(f\right)}{l\left(f\right)} \sim l\left(f\right) \log \frac{s\left(f\right)}{l\left(f\right)} \sim c_n \cdot 2^n$$
 при $n \to \infty$,

которая является следствием оценок длин $s(f) = 2^n n^{\log \log n(1-o(1))}$ сокращённой д.н.ф. и $l(f) \sim c_n \cdot 2^n/\log n \log \log n$ кратчайшей д.н.ф. для почти всех функций [4,7,8,10]. Известно, что $1 \leqslant c_n$ [9] и $c_n \leqslant 1.5$ [1] или $c_n \leqslant h(n)$, где h(n) колеблется в зависимости от n между $1.38826\dots$ и $1.54169\dots$ [15]. Неизвестно никакой нетривиальной нижней оценки $\mu(f)$ для почти всех функций.

Ю. Л. Васильевым [3, с. 126] получена нижняя оценка вида

$$\log \mu(n) \gtrsim c \cdot \sqrt{n} \cdot 2^n,$$

где $c=1/\sqrt{32\pi}$, при $n\to\infty$. Функция, на которой достигается эта оценка, построена с использованием симметрической функции в подкубе $B^{n-2}\subset B^n$ и одномерных ядровых граней.

Исследование симметрических функций [3, с. 110] объяснялось существованием гипотезы о достижимости значения μ (n) на классе симметрических функций $S^n \subset P_n$. В [12] показано, что при $n \to \infty$

$$\log \mu\left(n\right) \geqslant \log \max_{f \in S^{n}} \mu\left(f\right) \sim n \cdot \binom{n}{\lfloor n/2 \rfloor} \sim \sqrt{2/\pi} \cdot \sqrt{n} \cdot 2^{n}.$$

Существенного улучшения нижней оценки μ (n) удалось добиться после отказа от построения и исследования свойств конкретных функций и

переходу к построению множеств минимальных д.н.ф. n переменных. В единичном кубе B^n общее число минимальных комплексов граней и максимальное число минимальных комплексов граней, покрывающих определённое подмножество вершин куба, по порядку логарифма асимптотически равны. Действительно, пусть $M\left(n\right) = \sum_{f \in P_n} \mu\left(f\right)$ — число мини-

мальных (кратчайших) комплексов граней в B^n или д.н.ф. n переменных. Из имеющейся нижней оценки $\mu\left(n\right)$ вытекает, что $2^n=o\left(\log\mu\left(n\right)\right)$ при $n\to\infty$. Поэтому из очевидного соотношения

$$\mu(n) \leqslant M(n) \leqslant \mu(n) 2^{2^n}$$

следует, что $\log \mu(n) \sim \log M(n)$ при $n \to \infty$.

В [13] предложен метод построения множества минимальных д.н.ф. относительно класса мер сложности, удовлетворяющих усиленной аксиоме инвариантности относительно изоморфизма. Для мер сложности из этого класса, в том числе для максимального числа кратчайших и минимальных д.н.ф. получена оценка вида

$$\log \mu(n) \sim \log M(n) \gtrsim c \cdot n \cdot 2^n$$
,

где $c=\left(\sqrt{2}-1\right)^2/\left(8e\right)>0.2524\cdot 2^{-5},$ при $n\to\infty.$ Таким образом, получен порядок роста $\log\,\mu\left(n\right)\asymp n\cdot 2^n.$

Получение высокой нижней оценки для числа кратчайших (минимальных) комплексов граней в единичном кубе связано с решением двух проблем.

Во-первых, очевидно, что мощность подмножества неприводимых комплексов граней в кубе B^n не превосходит $2^{o(n2^n)}$ при условии, что либо размерность всех граней есть o(n), либо число граней в комплексе есть $o(2^n)$. Поэтому необходимым условием для возможности нижней оценки числа кратчайших комплексов граней, по порядку логарифма, равной $n \cdot 2^n$, является существование кратчайшего комплекса граней, в котором $c_1 2^n$ граней имеют размерность не менее $c_2 n$, где c_1 , c_2 — положительные константы.

Во-вторых, отсутствуют локальные критерии для обоснования минимальности комплекса граней. В случае тупиковых д.н.ф. свойство импликанты входить или не входить в тупиковую д.н.ф. однозначно определяется окрестностью второго порядка импликанты в д.н.ф., но не существует локальных алгоритмов построения д.н.ф. типа «сумма минимальных д.н.ф.» [6, с. 95]. Единственная известная ситуация, когда в общем

случае по локальным критериям можно обосновать вхождение импликанты в минимальную д.н.ф., связана с понятием ядровых импликант функции.

Для множества вершин $Q\subseteq B^n$ любая грань $I\subseteq Q$ называется допустимой гранью. Допустимая грань I для множества вершин $Q\subseteq B^n$ называется максимальной, если не существует грани $I'\neq I$ такой, что $I\subset I'\subseteq Q$.

Определение 1. Грань I называется ядровой для множества вершин $Q \subset B^n$, если она максимальна для Q и существует такая вершина $\widetilde{\alpha} \in I$, что $\widetilde{\alpha}$ не принадлежит никакой другой грани, максимальной для Q. Вершины ядровой грани I, которые не покрываются никакими другими максимальными для Q гранями, называются собственными вершинами ядровой грани I. Ядром Q называется множество всех ядровых граней для $Q \subseteq B^n$. Число ядровых граней для $Q \subseteq B^n$ будем обозначать через c(Q).

Определение 2. Комплекс граней $M = \{I_r, r = 1, \dots, l\}$ в кубе B^n , называется ядровым, если любая грань комплекса M является ядровой для подмножества вершин $N_M \subset B^n$. Множество вершин, покрываемых ядровым комплексом граней, называется ядровым множеством вершин в единичном кубе B^n .

Легко видеть, что для множества вершин куба $Q \subset B^n$, с одной стороны, ядровых граней может не быть, т. е. $c\left(Q\right)=0$, а с другой стороны, если Q является ядровым множеством вершин, то ядровой комплекс граней для Q является минимальным для любой меры сложности. При этом ключевым свойством ядрового множества, обеспечивающим локальный критерий обоснования вхождения ядровой грани в минимальный комплекс, является отсутствие допустимых граней для ядрового множества, содержащих собственные вершины различных ядровых граней.

Ядровые и кратчайшие комплексы граней являются неприводимыми, но в кратчайшем комплексе граней допускаются не максимальные грани. Тем самым по ядровому комплексу граней можно построить различные кратчайшие комплексы граней. Для этого в комплекс граней включаются для различных ядровых граней по одной допустимой грани меньшей размерности, содержащейся в ядровой грани и покрывающей хотя бы одну собственную вершину этой ядровой грани. Любой такой комплекс граней будет кратчайшим в силу отсутствия допустимых граней, покрывающих собственные вершины граней в кратчайшем комплексе, совпадающих с собственными вершинами ядровых граней.

Для максимального числа ядровых граней множества вершин c(n) в кубе B^n очевидная верхняя оценка $c(n) \leq 2^{n-1}$ вытекает из простого факта, что не может быть пар соседних вершин среди собственных вершин различных ядровых граней. При этом значение 2^{n-1} достигается на линейной функции $N_f = \{\widetilde{x} \in B^n \mid x_1 \oplus \ldots \oplus x_n = c \pmod{2}\}$ для 0-мерных ядровых граней. Следовательно, как и для максимального числа граней в кратчайшем комплексе, $c(n) = 2^{n-1}$.

Для почти всех функций известно [4], что число ядровых граней не превосходит

$$n^{\log\log n \cdot (1-o(1))} = 2^{\log n \cdot \log\log n \cdot (1-o(1))}$$

и размерность ядровых граней не превосходит

$$k \leq \lceil \log \log n + \log \log \log n \rceil$$

при $n \to \infty$.

Для максимального числа k-мерных ядровых граней c_k (n) в комплексе простые оценки можно получить, используя свойства класса монотонных функций из P_n . Для монотонного множества каждая максимальная грань является ядровой. Множество вершин монотонной и симметрической функции $S^n_{n-k,n}$ имеет $\binom{n}{k}$ ядровых граней размерности k, где $S^n_{m-k,m} = \{\widetilde{x} \in B^n \mid m-k \leqslant \|\widetilde{x}\| \leqslant m\}$ для $0 \leqslant k \leqslant m \leqslant n$. Соответственно $S^n_{0,k} \cup S^n_{n-k,n}$ будет ядровым множеством вершин при $k \leqslant \lfloor n/2 \rfloor - 1$ для комплекса, состоящего из $2\binom{n}{k}$ ядровых граней размерности k. Таким образом, можно утверждать, что $c_k(n) \geqslant 2\binom{n}{k}$ и для $k - \lfloor n/2 \rfloor = o(\sqrt{n})$ нижняя оценка $c_k(n)$ имеет порядок $2^n/\sqrt{n}$ при $n \to \infty$.

В статье предлагаются методы построения ядровых и кратчайших комплексов граней с экстремальными значениями характеристик, основанные на развитии идей, изложенных в [13]. Для $1 \le k \le \frac{n}{2} \left(1-c_{\varepsilon}\right)$ доказывается существование ядровых комплексов k-мерных граней с числом граней порядка 2^n , т.е. $c_k\left(n\right) \asymp 2^n$ при $n \to \infty$. С использованием экстремальных ядровых комплексов граней заданной размерности получены нижние оценки числа кратчайших комплексов граней в единичном n-мерном кубе. Показано, что число кратчайших комплексов k-мерных граней совпадает по порядку логарифма с числом комплексов, состоящих из не более чем 2^{n-1} различных граней размерности k. Для числа кратчайших комплексов граней улучшена нижняя оценка:

$$\log M_l(n) \geqslant c \cdot n \cdot 2^n,$$

где $c>1.0614\cdot 2^{-5},$ при $n\to\infty.$ Аналогичные нижние оценки справедливы для максимальных значений длины ядровых и числа кратчайших д.н.ф. булевых функций.

1. Описание конструкции

Определение 3. Для произвольного множества вершин $Q \subseteq B^n$ подмножество $C \subseteq Q$ называется *интервально независимым множеством* вершин для Q, если любой допустимый интервал для Q содержит не более одной вершины из C, т. е. $I\left(\widetilde{x},\widetilde{y}\right) \nsubseteq Q$ для любых двух вершин \widetilde{x} и \widetilde{y} из C.

Для соседних вершин $\tilde{x}, \tilde{y} \in Q$ одномерный интервал $I(\tilde{x}, \tilde{y})$ является допустимым для множества Q. Поэтому, во-первых, для произвольного множества $Q \subset B^n$ интервально независимое множество вершин состоит из изолированных вершин. Во-вторых, мощность интервально независимого множества вершин для любого множества вершин куба B^n не превосходит 2^{n-1} .

Пусть подмножество C является интервально независимым множеством вершин для множества $Q\subseteq B^n$ и M — комплекс допустимых для Q интервалов, который покрывает множество вершин C. Тогда $l\left(M\right)\geqslant |C|$ и понятие интервально независимого множества вершин для подмножества вершин единичного куба позволяет обосновать нижнюю оценку длины покрывающего его комплекса интервалов. Если в комплексе M нет интервалов, которые не содержат вершин из множества C, и каждая вершина из множества C содержится в одном интервале, то l(M)=|C| и M является кратчайшим комплексом.

Очевидно, что для ядрового комплекса интервалов M множество собственных вершин C_M , в которое входит по одной вершине для каждого ядрового интервала, является интервально независимым множеством вершин для множества N_M .

Определение 4. Пусть A — произвольное подмножество вершин куба B^n . Вершина $\widetilde{x} \in B^n$ называется простой k-граничной вершиной множества A, если $\rho\left(A,\widetilde{x}\right) = \min_{\widetilde{\alpha} \in A} \rho\left(\widetilde{\alpha},\widetilde{x}\right) \geqslant k$ и существует ровно одна вершина $\widetilde{\alpha} \in A$ такая, что $\rho\left(\widetilde{\alpha},\widetilde{x}\right) = k$. Подмножество $A \subset B^n$, относительно которого рассматривается множество простых k-граничных вершин, будем называть опорным подмножеством в единичном кубе B^n . Множество простых k-граничных вершин множества $A \subset B^n$ обозначим через $G_k\left(A\right)$.

Для множества простых k-граничных вершин подмножества $A \subset B^n$ определено однозначное отображение $\widetilde{\varphi}_{A,k} \mid G_k\left(A\right) \to A$, которое каждой вершине $\widetilde{x} \in G_k\left(A\right)$ ставит в соответствие единственную вершину $\widetilde{\varphi}_{A,k}\left(\widetilde{x}\right) \in A$ такую, что $\rho\left(\widetilde{x},\widetilde{\varphi}_{A,k}\left(\widetilde{x}\right)\right) = k$. При этом для вершины $\widetilde{x} \in G_k\left(A\right)$ соседние вершины находятся от вершины $\widetilde{\varphi}_{A,k}\left(\widetilde{x}\right)$ либо

на расстоянии k-1 и содержатся в интервале $I(\widetilde{x}, \widetilde{\varphi}_{A,k}(\widetilde{x}))$, либо на расстоянии k+1 и не содержатся в интервале $I(\widetilde{x}, \widetilde{\varphi}_{A,k}(\widetilde{x}))$.

Будем говорить, что подмножество $X \subset B^n$ состоит из *изолирован*ных вершин, если в подмножестве X нет пар соседних вершин, т. е. для любых вершин $\widetilde{x}_1, \widetilde{x}_2 \in X$ выполняется $\rho(\widetilde{x}_1, \widetilde{x}_2) \geqslant 2$.

Пусть множество G есть некоторое подмножество изолированных простых k-граничных вершин опорного множества $A\subset B^n$. Определим комплекс интервалов $M=\{I_j=I\left(\widetilde{x}_j,\widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\right),\ j=1,\ldots,l\},\ \text{где }l=|G|,$ следующим образом. Для каждой простой k-граничной вершины $\widetilde{x}_j\in G$ в комплекс включается единственный, однозначно определённый k-мерный интервал, содержащий вершины $\widetilde{x}_j\in G$ и $\widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\in A$. Тогда справедлива

Лемма 1. Комплекс интервалов M является ядровым, при этом каждая вершина $\tilde{x}_j \in G$ является собственной вершиной для покрывающего её k-мерного ядрового интервала $I_j = I(\tilde{x}_j, \tilde{\varphi}_{A,k}(\tilde{x}_j))$.

Доказательство. Отметим, что по определению комплекса интервалов M для любой вершины $\widetilde{x} \in N_M$ существует покрывающий эту вершину интервал $I_j = I\left(\widetilde{x}_j, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\right) \in M$, где $\widetilde{x}_j \in G$. Докажем, что $B_1^n\left(\widetilde{x}_j\right) \setminus I\left(\widetilde{x}_j, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\right) \subseteq B^n \setminus N_M$ для любой вершины $\widetilde{x}_j \in G$, где $B_1^n\left(\widetilde{x}_j\right)$ — сфера Хэмминга радиуса 1 с центром в вершине \widetilde{x}_j . Другими словами, соседние с $\widetilde{x}_j \in G$ вершины, не покрывающиеся интервалом $I\left(\widetilde{x}_j, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\right)$, не могут покрываться никаким другим интервалом из комплекса M и, следовательно, не входят в множество вершин N_M .

Предположим противное, т. е. что некоторую вершину $\widetilde{x} \in B_1^n(\widetilde{x}_j) \setminus I(\widetilde{x}_j, \, \widetilde{\varphi}_{A,k}(\widetilde{x}_j))$ покрывает интервал $I_s = I(\widetilde{x}_s, \widetilde{\varphi}_{A,k}(\widetilde{x}_s))$, где $\widetilde{x}_s \in G \subseteq G_k(A)$. При этом $\widetilde{x} \neq \widetilde{x}_s$, поскольку в подмножестве G нет соседних вершин, а $\widetilde{x}_s \neq \widetilde{x}_j$, так как вершина \widetilde{x} интервалом $I_j = I(\widetilde{x}_j, \widetilde{\varphi}_{A,k}(\widetilde{x}_j))$ не покрывается. Тогда

$$\rho\left(\widetilde{x},\widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) < \rho\left(\widetilde{x}_{s},\widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) = k,$$

т. е. $\rho\left(\widetilde{x},\widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right)\leqslant k-1$, и, следовательно,

$$\rho\left(\widetilde{x}_{i},\widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) \leqslant \rho\left(\widetilde{x}_{i},\widetilde{x}\right) + \rho\left(\widetilde{x},\widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) \leqslant 1 + (k-1) = k.$$

Это противоречит определению простой k-граничной вершины, так как для $\widetilde{x}_j \in G$ существуют две вершины $\widetilde{\varphi}_{A,k}(\widetilde{x}_j)$ и $\widetilde{\varphi}_{A,k}(\widetilde{x}_s)$ из опорного подмножества A на расстоянии не более k. Из этого следует, что любой допустимый интервал для N_M , содержащий $\widetilde{x}_j \in G$, содержится

в k-мерном интервале $I_j = I\left(\widetilde{x}_j, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_j\right)\right)$, который является единственным максимальным интервалом для множества N_M , покрывающим вершину \widetilde{x}_j . Лемма 1 доказана.

Конструкция, используемая для построения ядровых комплексов интервалов заданной размерности, основана на лемме 1. Комплекс интервалов, построенный по подмножеству $G \subset G_k(A)$ изолированных простых k-граничных вершин для опорного множества A, является ядровым комплексом, состоящим из |G| интервалов размерности k, при этом вершины из множества G являются собственными для покрывающих их интервалов. Поэтому задача построения ядрового комплекса k-мерных интервалов в кубе B^n , в котором число интервалов имеет порядок 2^n , сводится к задаче построения опорного множества A, в котором число изолированных простых k-граничных вершин сравнимо с мощностью единичного куба B^n .

Метод построения множества кратчайших комплексов k-мерных интервалов по произвольному ядровому комплексу k_0 -мерных интервалов, где $1 \leqslant k < k_0$, основан на сечении интервалов ядрового комплекса сферами радиуса k с центром в собственных вершинах ядровых интервалов. В результате такого сечения для каждой собственной вершины получим пучок из $\binom{k_0}{k}$ интервалов размерности k. Включая в комплекс интервалов для каждой вершины из C_M по одному интервалу из пучка k-мерных интервалов, получим не менее $\binom{k_0}{k}^{|C_M|}$ кратчайших комплексов интервалов из множества $\mathcal{M}_l^{n,k}$. При $|C_M| \geq 2^n$ это позволяет получить для $\log M_l(n,k)$ нижнюю оценку порядка $n \cdot 2^n$ при $n \to \infty$, если $k_0 \asymp n$ и $k \sim c \cdot k_0$, где 0 < c < 1.

Следовательно, существование ядрового комплекса интервалов, имеющего длину порядка 2^n и размерность интервалов порядка n, является достаточным условием для получения нижней оценки числа кратчайших комплексов, по порядку логарифма равной $n \cdot 2^n$. Поэтому для получения высоких оценок числа кратчайших комплексов интервалов на основе предлагаемого подхода ключевой задачей является построение опорного множества вершин в кубе, для которого число изолированных простых k-граничных вершин сравнимо с мощностью куба B^n .

2. Формулировка основных результатов

Теорема 1. Для $1 \leqslant k < \frac{n}{2} - \eta(n)$, где $\eta(n)/\sqrt{n} \to \infty$ при $n \to \infty$, существует ядровой комплекс k-мерных интервалов M, построенный по подмножеству изолированных простых k-граничных вершин $G \subset G_k(A)$

для некоторого опорного множества $A \subset B^n$, такой, что

$$l\left(M\right) \gtrsim \frac{2^{n-1}}{e} \cdot \max\left\{\frac{n-2k}{n-k}, \frac{2\left(k+1\right)\left(n-2k\right)}{\left(n-k\right)^{2}}\right\} \sim \frac{2^{n-1}}{e} \cdot \varphi_{c}\left(\frac{k}{n}\right),$$

где $\varphi_c(x) = \frac{1-2x}{1-x} \cdot \max \left\{ 1, \frac{2x}{1-x} \right\}$. При этом в комплексе M каждый интервал содержит одну вершину из опорного подмножества A и одну вершину из подмножества G, которая является собственной для покрывающего её ядрового интервала.

Из теоремы 1 следует существование ядровых комплексов k-мерных граней с числом граней порядка 2^n для $1 \leqslant k < \frac{n}{2} \cdot (1 - c_{\varepsilon})$ при $n \to \infty$: если $1 \leqslant k = o(n)$, то $\frac{2^{n-1}}{e} \lesssim c_k(n) \leqslant 2^{n-1}$;

если
$$1 \leqslant k = o(n)$$
, то $\frac{2^{n-1}}{e} \lesssim c_k(n) \leqslant 2^{n-1}$;

если
$$k/n \sim x$$
, где $0 < x < 0.5$, то $\frac{2^{n-1}}{e} \varphi_c(x) \lesssim c_k(n) \leqslant 2^{n-1}$, где $0 < \varphi_c(x) < 1$.

Нижние оценки для числа кратчайших комплексов получаются при построении подмножества комплексов из множества $\mathcal{M}_{l}^{n,k,m}$. Построение выполняется по ядровому комплексу k_0 -мерных граней M максимальной длины $c_{k_0}(n)$ и некоторому подмножеству собственных вершин $C \subseteq C_M$ мощности $m \leqslant c_{k_0}(n)$. При этом $\log M_l(n,k,m) \geqslant m \cdot \log \binom{k_0}{k}$, если $1 \leqslant k < k_0$ и $m \leqslant c_{k_0}(n)$. С использованием оценки максимальной длины ядрового комплекса k_0 -мерных граней отсюда следует, что

$$\log M_l(n,k) \gtrsim \frac{2^{n-1}}{e} \cdot \varphi_c\left(\frac{k_0}{n}\right) \cdot \log\binom{k_0}{k}$$

для $1 \leqslant k < k_0 < \frac{n}{2} - \eta(n)$, где $\eta(n) / \sqrt{n} \to \infty$ при $n \to \infty$.

Пусть $D_{n,k}(m)$ — число комплексов из не более чем m различных граней размерности k в единичном кубе B^n .

Теорема 2. $\log M_l(n,k) \asymp \log D_{n,k}(2^{n-1})$ для $1 \leqslant k \leqslant \frac{n}{2}(1-c_{\varepsilon})$ при $n \to \infty$. Если $1 \leqslant k = o(n)$, то

$$\frac{2^{n-1}}{e} \cdot k \cdot \log \frac{n}{k} \lesssim \log M_l(n, k) \lesssim 2^{n-1} \cdot k \cdot \log \frac{n}{k}$$

причём для $1 \le k \le n^{o(1)}$

$$\frac{2^{n-1}}{e} \cdot k \cdot \log n \lesssim \log M_l(n,k) \lesssim 2^{n-1} \cdot k \cdot \log n.$$

Если $k \sim x \cdot n$, где 0 < x < 0.5, то

$$n \cdot 2^{n-5} \cdot c_{\min}(x) \lesssim \log M_l(n,k) \lesssim n \cdot 2^{n-5} \cdot c_{\max}(x)$$

где
$$c_{\min}\left(x\right) = 2^{5} \cdot \max_{y|x < y < 0.5} \psi\left(y\right) \cdot H\left(x/y\right), \ c_{\max}\left(x\right) = 2^{4} \cdot \left(H\left(x\right) - x\right),$$
 $\psi\left(t\right) = \frac{t}{2e} \varphi_{c}\left(t\right)$ и $H\left(t\right) = -t \cdot \log t - (1-t) \cdot \log\left(1-t\right).$

Таким образом, для k-мерных граней при $1 \leqslant k \leqslant \frac{n}{2} (1 - c_{\varepsilon})$ число кратчайших комплексов и число всех комплексов из не более чем 2^{n-1} различных граней по порядку логарифма совпадают.

Для числа кратчайших комплексов граней в кубе B^n и соответственно для максимального числа кратчайших д.н.ф. функции из P_n при оптимальном выборе параметров получена оценка (теорема 3)

$$\log \mu_l(n) \sim \log M_l(n) \ge \log M_l(n,k) > 1.0614 \cdot n \cdot 2^{n-5}$$

где $k \approx 0.191 \cdot n$, при $n \to \infty$.

3. Оценки числа граней ядровых комплексов

Будем использовать следующие обозначения для подмножеств вершин в единичном кубе B^n :

 $B^n_k(\widetilde{lpha})=\{\widetilde{x}\in B^n\mid
ho\left(\widetilde{lpha},\widetilde{x}
ight)=k\}$ — *cфера радиуса k* с центром в веришне \widetilde{lpha} :

 $S^n_k\left(\widetilde{\alpha}\right)=\left\{\widetilde{x}\in B^n\mid \rho\left(\widetilde{\alpha},\widetilde{x}\right)\leqslant k\right\}$ — шар радиуса k с центром в вериине $\widetilde{\alpha}$:

$$B_k^n=B_k^n(\widetilde{0})=\{\widetilde{x}\in B^n\mid
ho(\widetilde{0},\widetilde{x})=\|\widetilde{x}\|=k\}-k$$
-й слой куба $B^n.$

Для числа вершин в подмножествах будем использовать обозначения:

$$b_k^n = \left| B_k^n \right| = \left| B_k^n(\widetilde{lpha}) \right| = \binom{n}{k}$$
 — число вершин в сфере радиуса $k;$

$$s_k^n = \left| S_k^n(\widetilde{\alpha}) \right| = \sum_{i=0}^k {n \choose i}$$
 — число вершин в шаре радиуса k .

Докажем вспомогательные леммы 2–5, позволяющие получить оценку максимальной мощности подмножества изолированных простых k-граничных вершин опорного множества в единичном кубе B^n .

Пусть $A^n_t = \{A \mid A \subset B^n, \ |A| = t\}$ — множество всех подмножеств из t различных вершин в единичном кубе B^n . Будем рассматривать множество A^n_t как конечное пространство элементарных равновероятных событий, при этом для любого $A \in A^n_t$ вероятность $\mathsf{P}\{A\}$ равна $\left|A^n_t\right|^{-1} = \binom{2^n}{t}^{-1}$.

Лемма 2. Если $1 \leqslant k < n/2$ и $s_k^n = o\left(2^n\right)$, то при $n \to \infty$

$$g_k(n) = \max_{A \subset B^n} |G_k(A)| \gtrsim \frac{2^n}{e} \cdot \frac{n-2k}{n-k}.$$

Доказательство. Очевидно, что $g_k\left(n\right)\geqslant \max_{t>0}\overline{g}_k\left(n,t\right)$, где $\overline{g}_k\left(n,t\right)$ — средняя мощность множества $G_k\left(A\right)$ для случайно выбранного опорного множества $A\in A^n_t$. Пусть $\xi_k\left(\widetilde{x},A\right)$ — индикаторная функция свойства «вершина \widetilde{x} принадлежит $G_k\left(A\right)$ ». Тогда $|G_k\left(A\right)|=\sum\limits_{\widetilde{x}\in B^n}\xi_k\left(\widetilde{x},A\right)$ и

$$\begin{split} \overline{g}_{k}\left(n,t\right) &= \sum_{A \in A_{t}^{n}} \mathsf{P}\left\{A\right\} \left|G_{k}\left(A\right)\right| = \sum_{A \in A_{t}^{n}} \mathsf{P}\left\{A\right\} \sum_{\widetilde{x} \in B^{n}} \xi_{k}\left(\widetilde{x},A\right) \\ &= \sum_{\widetilde{x} \in B^{n}} \sum_{A \in A_{t}^{n}} \mathsf{P}\left\{A\right\} \xi_{k}\left(\widetilde{x},A\right) = \sum_{\widetilde{x} \in B^{n}} \mathsf{P}\left\{\widetilde{x} \in G_{k}\left(A\right)\right\}. \end{split}$$

Для множества A мощности t вершина \widetilde{x} принадлежит $G_k(A)$ тогда и только тогда, когда $\left|B_k^n(\widetilde{x})\cap A\right|=1$ и $\left|\left(B^n\setminus \mathcal{S}_k^n(\widetilde{x})\right)\cap A\right|=t-1$. Поэтому для любой вершины $\widetilde{x}\in B^n$, если $t\leqslant 2^n-s_k^n+1$, то имеем

$$\mathsf{P}\left\{\widetilde{x}\in G_k(A)\right\} = \left|B_k^n(\widetilde{\alpha})\right| \cdot \binom{2^n - \left|S_k^n(\widetilde{\alpha})\right|}{t-1} \cdot \mathsf{P}\left\{A\right\} = b_k^n \cdot \binom{2^n - s_k^n}{t-1} \cdot \binom{2^n}{t}^{-1}$$

и $P\left\{\widetilde{x}\in G_k\left(A\right)\right\}=0$, если $t>2^n-s_k^n+1$. Тогда

$$\overline{g}_k\left(n,t\right) = 2^n \cdot b_k^n \cdot \binom{2^n - s_k^n}{t-1} \cdot \binom{2^n}{t}^{-1} = \frac{2^n \cdot t \cdot b_k^n}{2^n - s_k^n - t + 1} \cdot \binom{2^n - s_k^n}{t} \cdot \binom{2^n}{t}^{-1}.$$

Используем для оценки $\overline{g}_{k}(n,t)$ неравенство

$$\binom{m-p}{q}\binom{m}{q}^{-1}\geqslant \exp\left\{-rac{p\cdot q}{m-q-p}
ight\},$$
 где $m>q+p.$

Тогда, обозначая $z_{n,k}\left(t\right)=rac{t\cdot s_{k}^{n}}{2^{n}-s_{k}^{n}-t}$, можем записать

$$\begin{split} \overline{g}_{k}\left(n,t\right) \geqslant 2^{n} \cdot \frac{t \cdot b_{k}^{n}}{2^{n} - s_{k}^{n} - t + 1} \cdot \exp\left\{-\frac{t \cdot s_{k}^{n}}{2^{n} - s_{k}^{n} - t}\right\} \\ &= 2^{n} \cdot \frac{b_{k}^{n}}{s_{k}^{n}} \cdot \left(1 - \frac{1}{2^{n} - s_{k}^{n} - t + 1}\right) \cdot z_{n,k}\left(t\right) \cdot \exp\left\{-z_{n,k}\left(t\right)\right\}. \end{split}$$

Так как $\max_{x>0} x \cdot e^{-x} = e^{-1}$ достигается при x=1, определим значение t_0 из соотношения $z_{n,k}(t_0) \sim 1$, т.е. положим $t_0 = \left\lfloor \frac{2^n - s_k^n}{1 + s_k^n} \right\rfloor$. Для $1 \leqslant k < n/2$ и $s_k^n = o(2^n)$ выполняется ограничение $t_0 \leqslant 2^n - s_k^n + 1$ и при $n \to \infty$ справедливы соотношения $t_0 = o(2^n)$, $1 - \frac{1}{2^n - s_k^n - t_0 + 1} \sim 1$,

 $z_{n,k}\left(t_{0}\right)\cdot\exp\left\{ -z_{n,k}\left(t_{0}\right)\right\} \sim e^{-1}$ и, следовательно, $\overline{g}_{k}\left(n,t_{0}\right)\gtrsim\frac{2^{n}}{e}\cdot\frac{b_{k}^{n}}{s_{k}^{n}}$. При $1\leqslant k< n/2$ справедливо неравенство

$$\frac{s_k^n}{b_k^n} = \binom{n}{k}^{-1} \sum_{j=0}^k \binom{n}{k-j} < \sum_{j=0}^k \left(\frac{k}{n-k}\right)^j < \frac{n-k}{n-2k}.$$

Поэтому $g_k\left(n\right)\geqslant\overline{g}_k\left(n,t_0\right)\gtrsim\frac{2^n}{e}\cdot\frac{n-2k}{n-k}$ при $n\to\infty.$ Лемма 2 доказана.

Лемма 3. Для $1 \leqslant k < \frac{n}{2} - \eta(n)$, где $\eta(n)/\sqrt{n} \to \infty$ при $n \to \infty$, существует подмножество G изолированных простых k-граничных вершин для некоторого опорного множества в кубе B^n такое, что

$$|G| \gtrsim \frac{2^{n-1}}{e} \cdot \frac{n-2k}{n-k}.$$

Доказательство. Из условия $1\leqslant k<\frac{n}{2}-\eta\left(n\right)$ и ограничения на $\eta\left(n\right)$ следует, что $s_k^n=o\left(2^n\right)$ при $n\to\infty$. Поэтому по лемме 2 существует опорное множество $A\subset B^n$ такое, что $|G_k\left(A\right)|\gtrsim \frac{2^n}{e}\cdot\frac{n-2k}{n-k}$. Рассмотрим подмножества $G^0=G_k\left(A\right)\cap B^{n,0}$ и $G^1=G_k\left(A\right)\cap B^{n,1}$, где $B^{n,0}=\{\widetilde{x}\in B^n\mid \|\widetilde{x}\| \text{ mod } 2=0\}$ — подмножество вершин, принадлежащих чётным слоям B^n , и $B^{n,1}=\{\widetilde{x}\in B^n\mid \|\widetilde{x}\| \text{ mod } 2=1\}$ — подмножество вершин, принадлежащих нечётным слоям куба B^n . Подмножество G^0 лежит в чётных слоях, а G^1 — в нечётных слоях куба B^n , поэтому каждое из этих подмножеств состоит из изолированных вершин. Так как $G^0\cap G^1=\varnothing$ и $G^0\cup G^1=G_k\left(A\right)$, то $|G^0|+|G^1|=|G_k(A)|$ и $\max\{|G^0|,|G^1|\}\geqslant \frac{1}{2}\,|G_k\left(A\right)|$. Тогда если G является максимальным по мощности подмножеством из G^0 и G^1 , то

$$|G| \geqslant \frac{1}{2} |G_k(A)| \gtrsim \frac{2^{n-1}}{e} \cdot \frac{n-2k}{n-k}.$$

Лемма 3 доказана.

Определим подмножество $G_k^+(A)\subset G_k(A)$ простых k-граничных вершин опорного множества A, удовлетворяющих следующему условию: вершина $\widetilde{x}\in G_k(A)$ входит в $G_k^+(A)$ тогда и только тогда, когда

$$\rho\left(\widetilde{x}, A \setminus \{\widetilde{\varphi}_{A,k}\left(\widetilde{x}\right)\}\right) > k+1.$$

Другими словами, для вершины $\widetilde{x} \in G_k^+(A)$ существует единственная вершина $\widetilde{\varphi}_{A,k}(\widetilde{x}) \in A$ такая, что $\rho(\widetilde{x},\widetilde{\varphi}_{A,k}(\widetilde{x})) = k$, и для других вершин $\widetilde{\alpha} \in A$ выполняется условие $\rho(\widetilde{x},\widetilde{\alpha}) > k+1$. Отметим, что в случае простых k-граничных вершин из $G_k(A)$ допускается выполнение соотношения $\rho(\widetilde{x},\widetilde{\alpha}) = k+1$.

Лемма 4. Если $1 \leqslant k < n/2$ и $s_{k+1}^n = o(2^n)$, то при $n \to \infty$

$$g_k^+(n) = \max_{A \subset B^n} |G_k^+(A)| \gtrsim \frac{2^n}{e} \cdot \frac{(k+1)(n-2k)}{(n-k)^2}.$$

Доказательство. Аналогично доказательству леммы 2 используем, что $g_k^+(n)\geqslant \max_{0< t}\overline{g}_k^+(n,t)$, где $\overline{g}_k^+(n,t)=\sum_{\widetilde{x}\in B^n}\mathsf{P}\left\{\widetilde{x}\in G_k^+(A)\right\}$ — средняя

мощность множества $G_k^+(A)$ для случайно выбранного опорного множества $A \in A_t^n$. Для множества A мощности t вершина \widetilde{x} принадлежит $G_k^+(A)$ тогда и только тогда, когда $\left|B_k^n(\widetilde{x})\cap A\right|=1$ и $\left|\left(B^n\setminus S_{k+1}^n\left(\widetilde{x}\right)\right)\cap A\right|=t-1$. Поэтому для любой вершины $\widetilde{x}\in B^n$, если $t\leqslant 2^n-s_{k+1}^n+1$, то $\mathsf{P}\left\{\widetilde{x}\in G_k^+(A)\right\}=b_k^n\cdot \binom{2^n-s_{k+1}^n}{t-1}\cdot \binom{2^n}{t}^{-1}$, и $\mathsf{P}\left\{\widetilde{x}\in G_k^+(A)\right\}=0$, если $t>2^n-s_{k+1}^n+1$. Тогда

$$\overline{g}_{k}^{+}(n,t) = \frac{2^{n} \cdot t \cdot b_{k}^{n}}{2^{n} - s_{k+1}^{n} - t + 1} \cdot {2^{n} - s_{k+1}^{n} \choose t} \cdot {2^{n} \choose t}^{-1}$$

Обозначая $z_{n,k+1}\left(t\right)=rac{t\cdot s_{k+1}^{n}}{2^{n}-s_{k+1}^{n}-t},$ можем оценить

$$\begin{split} \overline{g}_{k}^{+}\left(n,t\right) &\geqslant 2^{n} \cdot \frac{t \cdot b_{k}^{n}}{2^{n} - s_{k+1}^{n} - t + 1} \cdot \exp\left\{-\frac{t \cdot s_{k+1}^{n}}{2^{n} - s_{k+1}^{n} - t}\right\} \\ &= 2^{n} \cdot \frac{b_{k}^{n}}{s_{k+1}^{n}} \cdot \left(1 - \frac{1}{2^{n} - s_{k+1}^{n} - t + 1}\right) \cdot z_{n,k+1}\left(t\right) \cdot \exp\left\{-z_{n,k+1}\left(t\right)\right\}. \end{split}$$

Определим значение t_0 из соотношения $z_{n,k+1}$ (t_0) ~ 1 , т. е. положим $t_0 = \left\lfloor \frac{2^n - s_{k+1}^n}{1 + s_{k+1}^n} \right\rfloor$. Для $1 \leqslant k < n/2$ и $s_{k+1}^n = o\left(2^n\right)$ выполняется ограничение $t_0 \leqslant 2^n - s_{k+1}^n + 1$ и при $n \to \infty$ справедливы соотношения $t_0 = o\left(2^n\right)$, $1 - \frac{1}{2^n - s_{k+1}^n - t_0 + 1} \sim 1$, $z_{n,k+1}\left(t_0\right) \cdot \exp\left\{-z_{n,k+1}\left(t_0\right)\right\} \sim e^{-1}$ и, следовательно, $\overline{g}_k^+\left(n,t_0\right) \gtrsim \frac{2^n}{e} \cdot \frac{b_k^n}{s_{k+1}^n}$. Используя оценку

$$\frac{b_{k}^{n}}{s_{k+1}^{n}} = \frac{s_{k}^{n}}{s_{k+1}^{n}} \cdot \frac{b_{k}^{n}}{s_{k}^{n}} \geqslant \frac{k+1}{n-k} \cdot \frac{n-2k}{n-k}$$

при $1 \leqslant k < n/2$, окончательно получаем, что

$$g_k^+\left(n\right)\geqslant \overline{g}_k^+\left(n,t_0\right)\gtrsim \frac{2^n}{e}\cdot \frac{\left(k+1\right)\left(n-2k\right)}{\left(n-k\right)^2}$$
 при $n\to\infty.$

Лемма 4 доказана.

Лемма 5. Для $1 \le k < n/2 - \eta(n)$, где $\eta(n)/\sqrt{n} \to \infty$ при $n \to \infty$, существует подмножество G изолированных простых k-граничных вершин для некоторого опорного множества в кубе B^n такое, что

$$|G| \gtrsim \frac{2^n}{e} \cdot \frac{(k+1)(n-2k)}{(n-k)^2}.$$

ДОКАЗАТЕЛЬСТВО. Из условия $1\leqslant k<\frac{n}{2}-\eta\left(n\right)$ и ограничения на $\eta\left(n\right)$ при $n\to\infty$ следует, что $s_{k+1}^n=o\left(2^n\right)$ и по лемме 4 существует опорное множество $A\subset B^n$ такое, что $\left|G_k^+\left(A\right)\right|\gtrsim \frac{2^n}{e}\cdot\frac{(k+1)(n-2k)}{(n-k)^2}$. Покажем, что множество $G_k^+\left(A\right)$ состоит из изолированных вершин. Предположим противное, т. е. существуют вершины \widetilde{x}_i и \widetilde{x}_s из $G_k^+\left(A\right)\subseteq G_k\left(A\right)$ такие, что $\rho\left(\widetilde{x}_i,\widetilde{x}_s\right)=1$. Тогда для простых k-граничных вершин \widetilde{x}_i и \widetilde{x}_s имеем $\rho\left(\widetilde{x}_i,\widetilde{\varphi}_{A,k}\left(\widetilde{x}_i\right)\right)=\rho\left(\widetilde{x}_s,\widetilde{\varphi}_{A,k}\left(\widetilde{x}_s\right)\right)=k$ и $\widetilde{\varphi}_{A,k}\left(\widetilde{x}_i\right)\neq\widetilde{\varphi}_{A,k}\left(\widetilde{x}_s\right)$. Следовательно,

$$k+1 \leqslant \rho\left(\widetilde{x}_{i}, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) \leqslant \rho\left(\widetilde{x}_{i}, \widetilde{x}_{s}\right) + \rho\left(\widetilde{x}_{s}, \widetilde{\varphi}_{A,k}\left(\widetilde{x}_{s}\right)\right) = k+1,$$

т. е. для $\tilde{x}_i \in G_k^+(A)$ существует вершина $\tilde{\varphi}_{A,k}(\tilde{x}_s)$ из опорного множества A на расстоянии k+1, что противоречит определению подмножества $G_k^+(A)$. Лемма 5 доказана.

Из доказанных лемм 1–5 вытекает справедливость теоремы 1, из которой при $1 \leqslant k < \frac{n}{2} \left(1 - c_{\varepsilon} \right)$ следует существование ядровых комплексов k-мерных граней с числом граней порядка 2^n .

Следствие 1. Если $1 \leqslant k = o(n)$, то $\frac{2^{n-1}}{e} \lesssim c_k(n) \leqslant 2^{n-1}$ при $n \to \infty$.

Следствие 2. Если $k/n \sim x$, то $\frac{2^{n-1}}{e} \varphi_c(x) \lesssim c_k(n) \leqslant 2^{n-1}$ для 0 < x < 0.5 при $n \to \infty$, где $0 < \varphi_c(x) < 1$.

4. Оценки числа кратчайших комплексов граней

Для собственной вершины $\widetilde{x} \in C_M$ ядрового комплекса интервалов M через $I_{M,\widetilde{x}}$ будем обозначать интервал из M, покрывающий эту собственную вершину. Пусть для каждой собственной вершины $\widetilde{x} \in C_M$ ядрового комплекса M определён пучок интервалов $P_{\mu}\left(\widetilde{x}\right)$, покрывающих вершину \widetilde{x} и содержащихся в интервале $I_{M,\widetilde{x}}$. Будем рассматривать комплексы интервалов вида $\{I_j \mid I_j \in P_{\mu}(\widetilde{x}_j), \ \widetilde{x}_j \in C_M, \ j=1,\dots,|C_M|\}$, т. е. для каждой вершины $\widetilde{x} \in C_M$ в комплекс входит по одному интервалу из пучка интервалов $P_{\mu}\left(\widetilde{x}\right)$. Множество различных комплексов интервалов, построенных по пучкам интервалов $P_{\mu}\left(\widetilde{x}\right)$ для собственных вершин из C_M ядрового комплекса M, обозначим через $\Omega^n_{\mu}\left(M,C_M,P_{\mu}\right)$.

Лемма 6. Для любого комплекса интервалов $w \in \Omega^n_\mu(M, C_M, P_\mu)$ подмножество C_M является интервально независимым для множества N_w и, следовательно, w является кратчайшим комплексом интервалов.

Доказательство. Отметим, что $N\left(\widetilde{x}\right)=\bigcup_{I\in P_{\mu}\left(\widetilde{x}\right)}I\subset I_{M,\widetilde{x}}$ для любой

вершины $\widetilde{x} \in C_M$, т. е. множество вершин, покрываемых интервалами из пучка $P_{\mu}(\widetilde{x})$, содержится в интервале $I_{M,\widetilde{x}}$. Поэтому

$$N_w \subseteq \bigcup_{x \in C_M} N\left(\widetilde{x}\right) \subseteq \bigcup_{x \in C_M} I_{M,\widetilde{x}} = N_M$$

для любого комплекса $w \in \Omega^n_\mu(M, C_M, P_\mu)$. Так как $C_M \subset N_w \subset N_M$ и множество C_M интервально независимо для N_M , то C_M интервально независимо для N_w . Тогда комплекс w состоит из $|C_M|$ интервалов и покрывает множество вершин N_w , для которого C_M является интервально независимым множеством вершин, т. е. w — кратчайший комплекс. Лемма 6 доказана.

Лемма 7.
$$\log M_l(n, k, m) \geqslant m \cdot \log \binom{k_0}{k}$$
 при $1 \leqslant k < k_0$ и $m \leqslant c_{k_0}(n)$.

Доказательство. Пусть M — ядровой комплекс k_0 -мерных интервалов длины c_{k_0} (n) в кубе B^n . Для каждой вершины $\widetilde{x} \in C_M$ определим пучок k-мерных интервалов P_l (\widetilde{x}) следующим образом:

$$P_{l}(\widetilde{x}) = \left\{ I = I(\widetilde{x}, \widetilde{y}) \mid \widetilde{y} \in B_{k}^{n}(\widetilde{x}) \cap I_{M,\widetilde{x}} \right\},\,$$

где $1 \le k < k_0$.

Множество различных комплексов интервалов, построенных по пучкам интервалов $P_l\left(\widetilde{x}\right)$ для собственных вершин из некоторого подмножества $C\subseteq C_M$ мощности $m\leqslant c_{k_0}\left(n\right)$, обозначим через $\Omega^n_l\left(M,C,k,k_0,m\right)$. Тогда по лемме 6 любой комплекс интервалов из $\Omega^n_l\left(M,C,k,k_0,m\right)$ является кратчайшим комплексом k-мерных интервалов длины m, т. е.

$$\Omega_l^n(M,C,k,k_0,m) \subseteq \mathcal{M}_l^{n,k,m}$$
.

Так как $|P_l(\widetilde{x})| = |B_k^n(\widetilde{x}) \cap I_{M,\widetilde{x}}| = \binom{k_0}{k}$ для любой вершины $\widetilde{x} \in C \subseteq C_M$, имеем

$$M_l(n, k, m) \geqslant \left|\Omega_l^n(M, C, k, k_0, m)\right| = \prod_{\widetilde{x} \in C} |P_l(\widetilde{x})| = {k_0 \choose k}^m.$$

Лемма 7 доказана.

Лемма 8. Если $1\leqslant k < k_0 < \frac{n}{2} - \eta(n),$ где $\eta(n)/\sqrt{n} \to \infty,$ то при $n\to\infty$

 $\log M_l(n,k) \gtrsim \frac{2^{n-1}}{e} \cdot \varphi_c(k_0/n) \cdot \log \binom{k_0}{k}.$

Доказательство. В силу теоремы 1 $c_{k_0}(n)\gtrsim \frac{2^{n-1}}{e}\cdot \varphi_c(k_0/n)$ при $n\to\infty$. Тогда утверждение леммы вытекает из справедливости леммы 7 при $m=c_{k_0}(n)$ и очевидного соотношения

$$\log M_l(n,k) \geqslant \log M_l(n,k,c_{k_0}(n)) \geqslant c_{k_0}(n) \cdot \log {k_0 \choose k}.$$

Лемма 8 доказана.

Доказательство теоремы 2. Очевидно, что $D_{n,k}(m) = \sum_{s=1}^{m} {i_{n,k} \choose s}$, где $i_{n,k}$ — число k-мерных граней в единичном кубе B^n и $i_{n,k} = {n \choose k} \cdot 2^{n-k}$. В кратчайших комплексах число граней не превосходит 2^{n-1} . Поэтому

$$M_l(n,k) < D_{n,k}(2^{n-1}) = \sum_{s=1}^{2^{n-1}} {i_{n,k} \choose s} \sim {i_{n,k} \choose 2^{n-1}},$$

так как $2^{n-1}=o\left(i_{n,k}\right)$ для $1\leqslant k\leqslant \frac{n}{2}$ при $n\to\infty$. С другой стороны, по лемме 8 для $1\leqslant k\leqslant \frac{n}{2}\left(1-c_{\varepsilon}\right)$ при $n\to\infty$ справедлива оценка

$$\log M_l(n,k) \gtrsim \frac{2^{n-1}}{e} \cdot \varphi_c\left(\frac{k_0}{n}\right) \cdot \log\binom{k_0}{k}.$$

При оценивании значения $\log \binom{q}{p}$, где p = p(n) и q = q(n), используем соотношения $\log \binom{q}{p} \sim p \cdot \log (q/p)$, если p = o(q), и $\log \binom{q}{p} \sim q \cdot H(p/q)$, если $p \sim c \cdot q$, где 0 < c < 1, при $n \to \infty$.

В случае $1\leqslant k=o\left(n\right)$ определим $k_0=\left\lfloor n/\log \frac{n}{k}\right\rfloor =o\left(n\right)$. Тогда

$$k = o(k_0), \quad \varphi_c(k_0/n) \sim 1, \quad \log\binom{k_0}{k} \sim k \cdot \log \frac{k_0}{k} \sim k \cdot \log \frac{n}{k},$$

так как

$$\log \frac{k_0}{k} \sim \log \frac{n}{k} - \log \log \frac{n}{k} \sim \log \frac{n}{k}$$

при $n \to \infty$. С другой стороны,

$$\log \binom{i_{n,k}}{2^{n-1}} \sim 2^{n-1} \cdot \log \left(\binom{n}{k} \cdot 2^{-(k-1)} \right) = 2^{n-1} \cdot \left(\log \binom{n}{k} - (k-1) \right)$$
$$\sim 2^{n-1} \cdot \left(k \cdot \log \frac{n}{k} - (k-1) \right) \sim 2^{n-1} \cdot k \cdot \log \frac{n}{k}.$$

Окончательно получаем при $n \to \infty$

$$\frac{2^{n-1}}{e} \cdot k \cdot \log \frac{n}{k} \lesssim \log M_l(n,k) < \log D_{n,k}\left(2^{n-1}\right) \sim 2^{n-1} \cdot k \cdot \log \frac{n}{k}.$$

В случае $k \sim x \cdot n$, где 0 < x < 0.5, определим $k_0 = \lfloor y \cdot n \rfloor$, где $y \in (x, 0.5)$, что обеспечивает выполнение условия $k < k_0 < \frac{n}{2} \left(1 - c_{\varepsilon}\right)$. Тогда

$$\log M_l\left(n,k\right) \gtrsim n \frac{2^{n-1}}{e} \cdot \frac{k_0}{n} \varphi_c\left(\frac{k_0}{n}\right) \cdot \frac{1}{k_0} \log \binom{k_0}{k} = n 2^n \cdot \psi\left(\frac{k_0}{n}\right) \cdot \frac{1}{k_0} \log \binom{k_0}{k},$$

где
$$\psi\left(t\right)=\frac{t}{2e}\cdot\varphi_{c}\left(t\right),\,k_{0}/n\sim y$$
 и $\frac{1}{k_{0}}\mathrm{log}\binom{k_{0}}{k}\sim H\left(x/y\right)$. При этом

$$\log \binom{i_{n,k}}{2^{n-1}} \sim 2^{n-1} \left(\log \binom{n}{k} - (k-1) \right) \sim 2^{n-1} \cdot n \cdot \left(H\left(x\right) - x \right).$$

Следовательно, при $n \to \infty$

$$n \cdot 2^n \cdot \psi(y) \cdot H(x/y) \lesssim \log M_l(n,k) < \log D_{n,k}(2^{n-1}) \sim n \cdot 2^{n-1} \cdot (H(x) - x)$$
.

Значение параметра y выбирается из условия максимизации по y функции $C\left(x,y\right)=\psi\left(y\right)\cdot H\left(x/y\right)$ в области $\{y\mid x< y<0.5\}.$ Обозначая

$$c_{\min}(x) = 2^5 \cdot \max_{x < y < 0.5} \psi(y) \cdot H\left(\frac{x}{y}\right), \quad c_{\max}(x) = 2^4 \cdot (H(x) - x),$$

получаем при $n \to \infty$

$$n \cdot 2^{n-5} \cdot c_{\min}(x) \leq \log M_l(n,k) < \log D_{n,k}(2^{n-1}) \sim n \cdot 2^{n-5} \cdot c_{\max}(x)$$
.

Теорема 2 доказана.

Теорема 3.
$$M_l(n) \geqslant (2^{2^n})^{cn}$$
, где $c > 1.0614 \cdot 2^{-5}$, при $n \to \infty$.

Доказательство. Для получения нижней оценки $M_l(n)$ используем оценку из теоремы 2: $\log M_l(n) \geqslant \log M_l(n,k) \gtrsim n \cdot 2^n \cdot C(x,y)$, где $C(x,y) = \psi(y) \cdot H(x/y)$, $k/n \sim x$ и 0 < x < y < 0.5. Значения x и y выбираются из условия максимизации функции C(x,y) в области $\{(x,y) \mid 0 < x < y < 0.5\}$. Численная оптимизация этой функции двух переменных позволяет получить $C(0.1909, 0.3819) > 1.06149 \cdot 2^{-5}$. Тогда для $k \approx 0.191 \cdot n$ получаем оценку $\log M_l(n) > \log M_l(n,k) > 1.0614 \cdot n \cdot 2^{n-5}$. Теорема 3 доказана.

ЛИТЕРАТУРА

- **1. Андреев А. Е.** Об одной модификации градиентного алгоритма // Вестн. МГУ. Сер. Математика. Механика. 1985. № 3. С. 29–35.
- 2. Васильев Ю. Л. К вопросу о числе минимальных и тупиковых дизъюнктивных нормальных форм // Дискрет. анализ. № 2. Новосибирск: Ин-т математики СО АН СССР, 1964. —С. 3–9.
- **3.** Васильев Ю. Л., Глаголев В. В. Метрические свойства дизъюнктивных нормальных форм // Дискрет. математика и мат. вопросы кибернетики. Т. 1. М.: Наука, 1974. С. 99–148.
- **4.** Глаголев В. В. Некоторые оценки д.н.ф. булевых функций алгебры логики // Проблемы кибернетики. 1967. Т. 19. С. 75–94.
- **5. Журавлев Ю. И.** Оценка для числа тупиковых д.н.ф. функций алгебры логики //Сиб. мат. журн. 1962. Т. 3, № 5. С. 802–804.
- **6.** Журавлев Ю. И. Алгоритмы построения минимальных д.н.ф. // Дискрет. математика и мат. вопросы кибернетики. Т. 1. М.: Наука, 1974. С. 67–98.
- 7. **Коршунов А. Д.** Сравнение сложности длиннейших и кратчайших д.н.ф. и нижняя оценка числа тупиковых д.н.ф. для почти всех булевых функций // Кибернетика. 1969. Т. 4. С. 1–11.
- **8. Коршунов А. Д.** О сложности кратчайших дизъюнктивных нормальных форм булевых функций // Методы дискрет. анализа в изучении булевых функций. Новосибирск: Ин-т математики СО АН СССР. 1981. № 37. С. 9—41.
- **9. Кузнецов С. Е.** О нижней оценке длины кратчайшей д.н.ф. почти всех булевых функций // Вероятност. методы и кибернетика. Казань: Издво Казанского ун-та, 1983. № 19. С. 44—47.
- **10.** Нигматуллин Р. Г. Вариационный принцип в алгебре логики // Дискрет. анализ. Новосибирск: Ин-т математики СО АН СССР, 1967. № 10. С. 69–89.
- **11.** Сапоженко А. А., Чухров И. П. Минимизация булевых функций в классе дизъюнктивных нормальных форм // Итоги науки и техники. Сер. Теория вероятности. Мат. статистика. Теорет. кибернетика. 1987. Т. 25. С. 68–116.
- **12.** Чухров И. П. Оценки числа минимальных дизъюнктивных нормальных форм для поясковой функции // Методы дискрет. анализа в исследованиях функцион. систем. Новосибирск: Ин-т математики СО АН СССР, 1981.-N 36. С. 74–92.
- **13.** Чухров И. П. О числе минимальных дизъюнктивных нормальных форм // Докл. АН СССР. 1984. Т. 276, № 6. С. 1335—1339.
- **14. Яблонский С. В.** Введение в дискретную математику. М.: Высш. шк., 2003. 384 с.

15. Pippenger N. The shortest disjunctive normal form of a random Boolean function // Random structures&algorithms. — 2003. — Vol. 22, N 2. — P. 161–186.

Чухров Игорь Петрович, e-mail: chip@icad.org.ru

Статья поступила 2 ноября 2010 г.