УДК 519.854.2

ОБ ОПТИМАЛЬНЫХ ЦИКЛАХ ДЛЯ РЕГУЛЯРНОЙ СБАЛАНСИРОВАННОЙ РОБОТИЗИРОВАННОЙ ЯЧЕЙКИ БЕЗ ЗАДЕРЖЕК *)

С.В.Павлов

Аннотация. Рассматривается задача построения оптимальных циклических расписаний для роботизированной ячейки, обслуживаемой одним роботом, со строгой стратегией разгрузки в машинной среде flow shop и с критерием максимум производительности ячейки. Идентичные детали проходят обработку на каждой машине роботизированной ячейки одинаковое количество времени. На основе анализа возможных циклов (вариация циклических расписаний) находится оптимальное решение задачи с 5 машинами. Найденное оптимальное решение согласуется с известными гипотезами о структуре оптимальных расписаний для данной задачи.

Ключевые слова: роботизированная ячейка, flow shop, циклическое расписание, гипотеза Агнетиса.

Введение

В работе рассматриваются циклические расписания для роботизированной ячейки, обслуживаемой одним роботом. Идентичные детали проходят машины в среде flow shop таким образом, что их обработка выполняется без задержек, т. е. сразу после окончания обработки на какойто машине деталь должна освободить машину и начать перемещение на следующую машину. Перемещение деталей между машинами осуществляется (за фиксированное время) роботом, который может переносить только одну деталь.

Как утверждается в [7], первые постановки задач о роботизированных ячейках относятся к 60-м годам, когда группой белорусских математиков был опубликован ряд работ по теме циклических процессов в сборочных линиях с использованием устройств для перемещения. В этих

^{*)}Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проект 12–01–00184–а) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (гос. контракт № 14.740.11.0362).

исследованиях сформулирована задача о циклическом роботизированном конвейерном производстве, а также представлен метод запрещённых интервалов для решения этой задачи.

За рубежом постановки задач о роботизированных ячейках получили популярность позднее в связи с развитием производств, которые не требовали участия человека. Обширные обзоры, а также классификации задач могут быть найдены в [4,5].

Постановки задач о роботизированных ячейках можно разделить на три группы в зависимости от того, какая стратегия разгрузки машин рассматривается: неограниченная, когда деталь может находиться на машине неограниченно долго после завершения операции, интервальная, когда допустимое время нахождения детали на машине лежит в некотором интервале, и строгая, когда деталь необходимо снять с машины строго в момент завершения обработки. В данной работе рассматривается последний вариант, в англоязычной литературе называемый no-wait.

В процессе выполнения циклического расписания робот движется по замкнутому маршруту, выполняя действия по переносу деталей. Последовательность действий робота в рамках одного периода расписания называется uuknom. У циклов есть cmenehb, которая определяется как количество деталей, которые начали свою обработку за время выполнения цикла. Циклы степени k называют k-uuknamu.

Известно, что для некоторых ограниченных классов расписаний за полиномиальное время можно получить оптимальное решение задачи. Например, можно найти наилучший 1-цикл для широкого класса задач о роботизированной ячейке [6,8]. Кроме того, в [3] представлен алгоритм, позволяющий определить наилучший k-цикл для фиксированного k для задачи о роботизированной ячейке со строгой стратегией разгрузки. Тем не менее открытым остаётся вопрос о верхней границе степени оптимального цикла даже для простых постановок задачи [2], например, для рассматриваемой в настоящей работе.

В [1] высказана гипотеза (впоследствие названная «гипотезой Агнетиса») о том, что степень оптимального цикла в роботизированной ячей-ке со строгой стратегией разгрузки не превосходит m-1, где m — число машин, и приведено доказательство для m=2 и 3. Позднее в [9] представлена гипотеза о структуре оптимальных расписаний в случае регулярной (расстояние между соседними машинами одинаковое) сбалансированной (время выполнения всех операций одинаковое) роботизированной ячейки со строгой стратегией разгрузки. Эта гипотеза согласуется с гипотезой Агнетиса и более детально представляет точное решение рас-

сматриваемой задачи.

Как показывает анализ, проведённый в упомянутых выше статьях, для рассматриваемой постановки задачи вид оптимального решения существенно зависит от времени выполнения операции р, времени перемещения робота между соседними машинами δ и числа машин m. В частности, важную роль играют интервалы значений параметра p, кратные 4δ , поскольку при пересечении параметром p границ этих интервалов изменяется множество допустимых решений. Случай $p < 4\delta$ исследован. В этом случае оптимальным решением является «восходящий» 1-цикл, в котором просто последовательно выполняются операции одной работы. Следующий интервал значений параметра $[4\delta, 8\delta)$ представляет собой первый не до конца исследованный случай. Гипотеза о том, что в этом случае оптимальным является 2-цикл, доказана ранее для всех значений m, за исключением m=5. Именно случай m=5 рассматривается в настоящей статье. Упомянутая выше гипотеза подтверждается и в этом случае, таким образом, вопрос об оптимальном решении задачи о регулярной сбалансированной ячейке с запретом на задержки между операциями одной работы полностью закрыт для случая $p \in [4\delta, 8\delta)$.

В разд. 1 сформулирована математическая постановка задачи и даны определения. В разд. 2 доказан основной результат работы. В разд. 3 кратко сформулированы вопросы, представляющие интерес для дальнейшего исследования.

1. Постановка задачи

Роботизированная ячейка представляет собой m+2 машины $\{M_0,\ldots,M_{m+1}\}$, на которых выполняются идентичные работы, и одного робота. Под работой понимается обработка некоторой детали. Каждая работа состоит из m операций $\{O_j\}$, выполняемых в порядке $O_1 \to O_2 \to \cdots \to O_m$ на машинах M_1,\ldots,M_m соответственно. Машины M_0 и M_{m+1} являются выделенными и представляют собой exod и euxod роботизированной ячейки соответственно. На этих машинах не выполняются операции, и их можно рассматривать как склады деталей, ещё не поступивших в обработку и завершивших свою обработку соответственно.

Определение 1. Сбалансированной называется роботизированная ячейка, в которой время выполнения каждой операции равно $p \geqslant 0$, т. е. время выполнения всех операций одинаковое.

Время перемещения робота между машинами будем считать независимым от направления передвижения и того, переносит ли робот деталь. Время, за которое робот перемещается между машинами M_i и M_j ,

 $i, j \in \{0, \dots, m+1\}$, обозначим через δ_i^j .

Определение 2. Регулярной называется роботизированная ячейка такая, что $\delta_i^j = |i-j|\delta$, где $\delta \geqslant 0$ — константа, равная времени перемещения робота между двумя соседними машинами.

В случае, когда $\delta = 0$, решение задачи известно [4]. Поэтому будем полагать параметры p и δ нормированными таким образом, что $\delta = 1$.

Роботизированная ячейка считается регулярной и сбалансированной. Также будем считать, что робот разгружает и загружает машины за пренебрежимо малое время. Таким образом, индивидуальная задача задаётся двумя параметрами: числом машин m и временем выполнения операции p.

Для того чтобы формально задать целевую функцию, нам потребуется ввести несколько определений.

Определение 3. Состоянием роботизированной ячейки называется кортеж $\Omega \in \{\mathbb{R}^+ \cup \{\nabla\}\}^m \times [0, (m+1)] \times \{0, 1\}.$

Рассмотрим состояние $\Omega = \langle \omega_1, \dots, \omega_{m+2} \rangle$. Первые m значений $\omega_1, \dots, \omega_m$ определяют, есть ли на машине M_i $(i=1,\dots,m)$ деталь. Если деталь есть, то ω_i равно времени, которое деталь должна провести на машине для завершения операции. Если детали на машине M_i нет, то $\omega_i = \nabla, \nabla \notin \mathbb{R}$. Компонента ω_{m+1} равна времени, которое потребуется роботу, чтобы достичь машины M_0 из текущего положения. Равенство $\omega_{m+2} = 0$ означает, что робот свободен, а $\omega_{m+2} = 1$ — что робот «держит деталь».

Например, состояние $\Omega_{\nabla} = \langle \nabla, \nabla, \nabla, \nabla, \nabla, 0, 0 \rangle$ означает, что все машины пусты, а робот находится на машине M_0 . Это состояние будем называть также состоянием пустой ячейки.

Определение 4. Под действием A_i , $i \in \{0, 1, ..., m\}$, понимается следующая последовательность элементарных действий, выполняемых роботом: снятие детали с машины M_i , перенос детали от машины M_i до машины M_{i+1} и загрузка детали на машину M_{i+1} .

Для удобной записи последовательности действий будем использовать знак Π наравне с перечислением действий, а для операции конкатенации последовательностей — символ *. Будем обозначать j-е по счёту действие в последовательности \mathcal{A} через A^j . Количество действий K в конечной последовательности $\mathcal{A} = A^1 * \cdots * A^K$ будем обозначать через $|\mathcal{A}|$. Определим вспомогательную функцию $\mu(j)$ такую, что $A^j = A_{\mu(j)}$ (т. е. $\mu(j)$ определяет номер машины, на которой начинается j-е действие), $j \in \{1, \ldots, |\mathcal{A}|\}$.

Определение 5. Будем называть k- $uu\kappa$ лом такую последовательность действий \mathcal{A} , которая удовлетворяет следующим условиям.

- (i) Между двумя последовательными (в циклическом смысле) действиями A_i $(i=0,\ldots,m-1)$ в $\mathcal A$ содержится в точности одно вхождение A_{i+1} .
- (іі) В \mathcal{A} не существует интервалов вида $A_i * \cdots * A_j * \cdots * A_{j+1} * \cdots * A_{i+1}$, в которых действие A_{i+1} ближайшее справа (в циклическом смысле) к действию A_i .

Из условия (i) вытекает симметричное ему: между двумя последовательными (в циклическом смысле) действиями A_i ($i=1,\ldots,m$) в \mathcal{A} содержится в точности одно вхождение A_{i-1} . Из (i) также следует, что число вхождений действия A_i в последовательность \mathcal{A} равно k для всех $i=0,\ldots,m$. Число k называют cmenenhoo цикла.

Заметим, что если $\mathcal{A}-k$ -цикл, то $|\mathcal{A}|=k(m+1).$

Для заданного k-цикла \mathcal{A} пусть

$$J_b = \{j \in \{1, \dots, k(m+1)\} \mid \nexists j' < j, \ \mu(j') + 1 = \mu(j)\}$$

— множество номеров действий $A^j=A_i \ (i\neq 0)$ в \mathcal{A} , которым не предшествует A_{i-1} , и пусть

$$J_e = \{j \in \{1, \dots, k(m+1)\} \mid \nexists j' > j : \mu(j) + 1 = \mu(j')\}$$

— множество номеров действий $A^j=A_i\ (i\neq m)$ в \mathcal{A} , за которыми не следует A_{i+1} . Положим $M'=\{\mu(j)\mid j\in J_b\},\ M''=\{\mu(j)+1\mid j\in J_e\}.$ Из определения 5 следует, что M'=M''.

Определение 6. *Циклическое расписание* есть пара $S = \{\mathcal{A}, I\}$, где $\mathcal{A} - k$ -цикл, $I = \{t_1, t_2, \ldots, t_{k(m+1)}\}$ — моменты времени начала выполнения действий из цикла (т.е. A^j начинается в момент времени t_j). Без ограничения общности можно считать, что $t_1 = 0$, а \mathcal{A} начинается с A_0 , что и будет подразумеваться в дальнейшем.

Определение 7. Циклическое расписание *допустимо*, если выполняются условия

- (a) $t_{j_2}-t_{j_1}=p+1$ для всех $j_1,j_2\in\{1,\ldots,k(m+1)\}$ таких, что $\mu(j_1)=i,\ j_2=\min\{j>j_1\mid \mu(j)=i+1\};$
 - (b) $t_{j+1}-t_j-1 \ge |\mu(j)+1-\mu(j+1)|$ для всех $j \in \{1,\ldots,k(m+1)-1\}$;
- (c) существует константа T (называемая nepuodom uuклического pacnucahus) такая, что для всех $i \in M'$ справедливо равенство

$$T = t_{i_1} + p + 1 - t_{i_2}$$

где $j_1 \in J_e, j_2 \in J_b$ и $\mu(j_1) + 1 = \mu(j_2) = i$;

(d) выполняется неравенство $T - t_{k(m+1)} \ge \mu(k(m+1)) + 2$.

Заметим, что условия на существование константы T задают требования no-wait для тех пар действий, которые не содержатся целиком в одном цикле.

Утверждение 1. Если циклическое расписание допустимо, то состояния ячейки в момент времени 0 и Т совпадают.

Доказательство. Обозначим через Ω^0 и Ω^T состояния ячейки в моменты времени 0 и T соответственно. Сначала покажем, что $\omega_i^0 = \omega_i^T$ для BCEX $i \in \{1, ..., m\}$.

Действительно, $\omega_i^0 = \omega_i^T = \nabla$ для $i \notin M'$ по определению множества M'. Для $i\in M'$ существуют $j_1\in J_e, j_2\in J_b$ и $\mu(j_1)+1=\mu(j_2)=i,$ из чего следует, что $\omega_i^T=p+1-(T-t_{j_1})=t_{j_2}=\omega_i^0$. Нетрудно заметить, что $\omega_{m+1}^0=\omega_{m+2}^0=0$, поскольку цикл начинает-

ся с действия A_0 . Так как

$$T - t_{k(m+1)} - 1 \ge \mu(k(m+1)) + 1,$$

робот на момент времени T свободен и у него достаточно времени, чтобы после завершения последнего действия в цикле к моменту времени Tдостичь машины M_0 . Поэтому можно считать, что $\omega_{m+1}^T = \omega_{m+2}^T = 0$. Утверждение 1 доказано.

Из утверждения 1 следует, что допустимое циклическое расписание можно повторять. В дальнейшем под расписанием будем понимать допустимое циклическое расписание.

Определение 8. Производительностью расписания называется отношение k/T, где k — степень цикла, а T — период.

Целевой функцией рассматриваемой задачи является производительность расписания, которую следует максимизировать.

Известно, что, имея некоторый k-цикл A и заданное время операции p, за полиномиальное время можно либо построить допустимое циклическое расписание, выполняющее этот цикл и имеющее минимальный период, либо показать, что не существует допустимого расписания. Таким образом, в дальнейшем будем говорить об оптимальности циклов. Например, для m=3 можно определить 3-цикл $A_0A_1A_0A_2A_1A_0A_3$ $A_2A_1A_3A_2A_3$, для которого можно построить допустимое циклическое расписание только при значении $p \ge 8$. Обзор известных результатов в области построения расписаний по циклу можно найти в [4].

Определим следующие k-циклы:

$$C_a(k) = \prod_{i=1}^k \left[A_0 \prod_{j=1}^i A_{i-j+1} \right] * \prod_{i=k+1}^m \left[\prod_{j=1}^k A_{i-j+1} \right] * \prod_{i=1}^{k-1} \left[\prod_{j=1}^{k-i} A_{m-j+1} \right],$$

$$C_b(k) = \prod_{i=0}^{2(k-1)-m} \left[\prod_{j=0}^{i} A_{i-j} * \prod_{j=0}^{2(k-1)-m-i} A_{m-j} \right]$$

$$* \prod_{i=2k-m-1}^{k-1} \left[\prod_{j=0}^{i} A_{i-j} \right] * \prod_{i=k}^{m} \left[\prod_{j=0}^{k-1} A_{i-j} \right] * \prod_{i=k-2}^{2k-m-1} \left[\prod_{j=0}^{i} A_{m-j} \right],$$

$$C_c(k) = \prod_{i=0}^{2k-m-1} \left[\prod_{j=0}^{i} A_{i-j} * \prod_{j=0}^{2k-m-1-i} A_{m-j} \right] * \prod_{i=2k-m}^{k-1} \left[\prod_{j=0}^{i} A_{i-j} \right]$$

$$* \prod_{i=k}^{m} \left[\prod_{j=0}^{k-1} A_{i-j} \right] * \prod_{i=k-2}^{2k-m} \left[\prod_{j=0}^{i} A_{m-j} \right],$$

$$m-1 \qquad m/2 \qquad m/2-1$$

$$C_d = A_0 \prod_{i=0}^{m-1} A_{m-i}, \quad C_e = \prod_{i=0}^{m/2} A_{2i} * \prod_{i=0}^{m/2-1} A_{2i+1}.$$

Представим длительность операции p в виде

$$p = 4(k-1) + \Delta,\tag{1}$$

где k — некоторое натуральное число, а $0 \leqslant \Delta < 4$. Пусть

$$\theta = \frac{m^2}{(2p+4)(3mp-p+4m)}, \quad \rho = \frac{m(2pm+4m-1)}{3mp-2p+4m}.$$

В [9] для рассматриваемой в настоящей работе постановки задачи без уточнения параметров θ и ρ сформулирована

Гипотеза. Оптимальным циклом для рассматриваемой задачи является один из пяти циклов, представленных выше (т. е. либо один из трёх k-циклов $C_a(k)$, $C_b(k)$, $C_c(k)$, где k определяется из соотношения (1), либо один из двух 1-циклов C_d , C_e). При этом выбор оптимального цикла зависит от соотношения между k и m и значения Δ , определяемого из (1), и задаётся табл. 1.

Производительности циклов составляют [9]

$$C_a(k) \to k/[(m+k-1)p+2(m+2k-1)],$$
 $C_b(k) \to k/[(2m-k)p+4m], \quad C_c(k) \to k/[(2m-k-1)p+(4m-2)],$ $C_e \to 1 / \left(2\frac{m-1}{m}p+4\right), \quad C_d \to 1/(p+4).$

Таблица 1

m- нечётное				
	$k \leqslant \frac{m-1}{2}$	$k = \frac{m+1}{2}$	$\frac{m+1}{2} < k \leqslant m-1$	$m \leqslant k$
$\Delta < 2$	$C_a(k)$	$C_a(k)$	$C_b(k)$	C_d
$\Delta \geqslant 2$	$C_a(k)$	$C_a(k)$	$C_b(k)$	C_d
m — чётное				
	$k \leqslant \frac{m}{2}$	$\frac{m}{2} < k \leqslant \theta$	$\theta \leqslant k \leqslant m - 1$	$m \leqslant k$
$\Delta < 2$	$C_a(k)$	C_e	$C_b(k)$	C_d
	$k \leqslant \frac{m}{2}$	$\frac{m}{2} < k \leqslant \rho$	$\rho \leqslant k \leqslant m-1$	$m \leqslant k$
$\Delta \geqslant 2$	$C_a(k)$	C_e	$C_c(k)$	C_d

Значения параметров θ , ρ вытекают из значений производительностей циклов $C_b(k)$, $C_c(k)$, C_e . Эта гипотеза доказана для $m \leqslant 4$, а также для произвольного числа машин m в случаях, когда (s1) $p \in [4(k-1), 4k)$, $k \leqslant \frac{m+2}{4}$; (s2) p < 4 и (s3) $p \geqslant 4(m-1)$.

Из известных результатов следует, что при $p \in [4,8)$ гипотеза доказана для $m \ge 6$ и $m \le 4$. Открытым оставался случай m = 5, который рассмотрен в следующем разделе.

2. Оптимальное решение для m = 5 и $p \in [4,8)$

Рассмотрим случай m=5 и $p\in[4,8)$. Представим p в виде $p=4(2-1)+\Delta$. Величина k равна 2, следовательно, $k=\frac{m-1}{2}$, и в соответствии с вышеприведённой гипотезой можно сформулировать

Утверждение 2. Для регулярной сбалансированной роботизированной ячейки с одним роботом в среде flow shop и запретом на задержки между операциями одной работы, если m = 5, а $p \in [4,8)$, оптимальным является цикл $C_a(2) = A_0A_1A_0A_2A_1A_3A_2A_4A_3A_5A_4A_5$.

На рис. 1 изображено не расписание, а условная схема работы цикла. Стрелками от машины M_i до M_{i+1} изображены действия A_i , а линиями из точек — перемещения робота, когда он не выполняет действий. Показаны лишь те интервалы времени, когда робот перемещается, поэтому, например, первое действие A_1 изображено как происходящее сразу после действия A_0 , хотя между окончанием действия A_0 и началом действия A_1 должен стоять интервал времени длиной p. Карта Ганта для расписания будет зависеть от величины p. Заметим также, что цикл начинается и заканчивается в состоянии, когда машины не выполняют работ, а робот находится на машине M_0 .

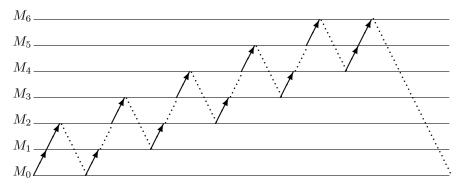


Рис. 1. Карта Ганта для цикла $C_a(2)$

Доказательство утверждения 2. Сначала покажем, что вне зависимости от цикла ячейка будет в процессе выполнения любого допустимого периодического расписания проходить через состояние Ω_{∇} , т. е. опустошаться. После этого можно рассмотреть только циклы, начинающиеся с пустой ячейки, и выбрать из них оптимальный. Приведём леммы, которые потребуются при дальнейшем доказательстве и верны в рассматриваемой постановке задачи.

Лемма 1. Если в некотором k-цикле \mathcal{A} встречается последовательность действий вида $A_{j-1}*\ldots*A_iA_j$, где $j\neq (i+1)$, то при значении p<2|i-j| не существует допустимого циклического расписания, реализующего \mathcal{A} .

Доказательство. Рассмотрим случай, когда i > j. После завершения действия A_{j-1} роботу требуется не менее i-j+1 единиц времени, чтобы достичь машины M_i и выполнить действие A_i , а после этого — не менее i+1-j единиц времени, чтобы достичь машины M_j . В силу условия выполнения операций без задержек имеем $p \geqslant 2(i+1-j)$.

Рассмотрим случай, когда i < j. После завершения действия A_{j-1} роботу требуется не менее j-i единиц времени, чтобы достичь машины M_i , а после этого — не менее j-i единиц времени, чтобы выполнить действие A_i и достичь машины M_j . В силу условия выполнения операций без задержек имеем $p \geqslant 2(j-i)$. Лемма 1 доказана.

Лемма 2 (приведена без доказательства в [9]). Если $p \in [4(k-1), 4k)$, то в роботизированной ячейке может находиться в обработке одновременно не более k деталей.

ДОКАЗАТЕЛЬСТВО. Допустим, что в роботизированной ячейке в процессе выполнения некоторого допустимого цикла C начинает обрабатываться деталь, в то время как на других машинах уже находится k-1 деталей. Рассмотрим в цикле C последовательность действий $\mathcal{A} = A_0A_{i_1}*\ldots*A_{i_{k-1}}A_1$, которая начинается с вхождения k-й детали, далее следуют k-1 действий по переносу уже обрабатываемых деталей, и наконец, снова совершается действие по переносу k-й детали. В силу условия по-wait определим нижнюю границу длительности операции:

$$p \geqslant \Sigma(\mathcal{A}) = \sum_{j=0}^{k-1} (1 + |i_j + 1 - i_{j+1}|),$$

где $i_0 = 0, i_k = 1$. Определим $\Sigma_k = \min_{|\mathcal{A}| = (k+1)} \Sigma(\mathcal{A})$.

Покажем, что для любого $k\geqslant 1$ верно $\Sigma_k\geqslant 4(k-1)$. При k=1 утверждение очевидно. Пусть для некоторого k утверждение доказано, положим k'=k+1. Рассмотрим последовательность $\mathcal{A}=A_0A_{i_1}*\ldots*A_{i_{k'-1}}A_1$ и j' такое, что $i_{j'}=\max\limits_{0< j< k'}\{i_j\mid A_{i_j}\in\mathcal{A}\}$. Обозначим $i_{j'-1}=a$, $i_{j'}=b,\ i_{j'+1}=c$. Из условия, что рассматриваемая последовательность действий является частью допустимого цикла, следует, что a+1< b и $a+1\neq c$, а также $a\neq c$.

Рассмотрим последовательность $\mathcal{B}=\mathcal{A}\backslash A_{i_{j'}}$, т. е. выкинем из \mathcal{A} действие $A_{i_{j'}}$. Тогда \mathcal{B} имеет длину $|\mathcal{B}|=k'-1$ и удовлетворяет условиям индукции, следовательно,

$$\Sigma(\mathcal{B}) \geqslant 4(k'-2).$$

Рассмотрим в сумме $\Sigma(\mathcal{A})$ пару слагаемых |a+1-b|+|b+1-c|+2=2b-a-c+2. Если a< c-1, то

$$2b - a - c + 2 = |a + 1 - c| + 2b - 2c + 3 \ge |a + 1 - c| + 5.$$

Если a>c, то $2b-a-c+2=|a+1-c|+2b-2a+1\geqslant |a+1-c|+5$. В обоих случаях $\Sigma(\mathcal{A})\geqslant \Sigma(\mathcal{B})+4$. Отсюда следует, что $\Sigma_{k'}\geqslant \Sigma_k+4$. Лемма 2 доказана.

Заметим, что по лемме 1 любой допустимый цикл не может содержать последовательности действий A_0A_4 или A_0A_5 . Тем самым достаточно рассмотреть случаи, когда цикл начинается с действий A_0A_1 , A_0A_2 или A_0A_3 . Для этих трёх случаев покажем, что в ходе выполнения цикла ячейка неизбежно достигнет состояния Ω_{∇} , когда ни на одной из машин детали не обрабатываются, а робот находится на машине M_0 .

Случай 1. Если цикл начинается с действий A_0A_1 , то в момент начала действия A_0 ячейка в состоянии Ω_{∇} . Действительно, предположим напротив, что в момент начала действия A_0 в ячейке есть деталь, обрабатываемая на машине $M_i, i \in \{2,\dots,5\}$. Тогда с момента окончания действия A_0 до начала действия A_1 проходит время p, и деталь заведомо успеет завершить обработку и должна быть разгружена с машины, чего не происходит, и нарушается условие строгой стратегии разгрузки.

Случай 2. Если цикл начинается с действий A_0A_2 , то после выполнения действия A_0 в ячейке оказывается две детали. По лемме 2 следует, что после начала цикла A_0A_2 следуют действия $A_1A_3A_2A_4A_3A_5$. После завершения действия A_5 одна из деталей покидает ячейку. По лемме 1 продолжения вида A_0A_4 быть не может, поэтому после завершения действия A_5 следует продолжение A_4A_5 , и роботу остаётся только переместиться к машине M_0 , что приводит ячейку в состояние Ω_{∇} . Таким образом, полная последовательность действий до опустошения ячейки равна $A_0A_2A_1A_3A_2A_4A_3A_5A_4A_5$.

Случай 3, когда цикл начинается с действий A_0A_3 , разбирается аналогично предыдущему, но у него полная последовательность действий до опустошения ячейки равна $A_0A_3A_1A_4A_2A_5A_3A_4A_5$.

Таким образом, вне зависимости от начала цикла ячейка всё равно проходит через состояние Ω_{∇} . Это позволяет в поисках оптимального решения рассмотреть только циклы, которые начинаются с этого состояния.

Структура орграфа, изображённого на рис. 2, непосредственно вытекает из предыдущих рассуждений. Таким образом, есть три варианта, какой может быть последовательность действий, начинающаяся и заканчивающаяся в состоянии Ω_{∇} :

(d1)
$$C_1 = A_0 A_1 A_2 A_3 A_4 A_5$$
,

(d2)
$$C_2 = A_0 A_1 A_0 A_2 A_1 A_3 A_2 A_4 A_3 A_5 A_4 A_5$$
,

$$A_0 \to A_2 \to A_1 \to A_3 \to A_2 \to A_4 \to A_3 \to A_5 \to A_4 \to A_5$$

$$A_0 \to A_1 \to A_2 \to A_3 \to A_4 \to A_5$$

$$A_0 \to A_3 \to A_1 \to A_4 \to A_2 \to A_5 \to A_3 \to A_4 \to A_5$$

(d3)
$$C_3 = A_0 A_1 A_2 A_0 A_3 A_1 A_4 A_2 A_5 A_3 A_4 A_5$$
.

Рис. 2. Возможные варианты циклов

Отсюда следует, что любой допустимый цикл является некоторой комбинацией C_1 , C_2 и C_3 (например, это может быть $C_1*C_2*C_3$, или $C_2*C_2*C_3$ или просто C_1). Но известно [9], что поскольку каждый из C_i , $i\in\{1,2,3\}$, заканчивается и начинается в состоянии Ω_{∇} , если рассмотреть произвольный допустимый цикл C^* , то найдётся такая составляющая C_i из цикла C^* , что производительность C_i будет не меньше производительности C^* . Таким образом, для нахождения оптимального цикла достаточно сравнить между собой C_1, C_2, C_3 и выбрать из них наилучший по производительности цикл.

Заметим, что цикл C_2 совпадает с циклом $C_a(2)$, оптимальность которого доказывается. Цикл C_1 называется $\mathit{socxodsumum}$, и его производительность равна 1/(5p+12). Для цикла C_2 производительность равна 2/(6p+16). Для цикла C_3 минимальный период расписания можно оценить следующим образом: с начала цикла до момента начала действия A_0 второй работы должно пройти не менее 2p+6 единиц времени. В силу условия выполнения операций без задержек время от начала действия A_0 второй работы до завершения действия A_5 второй работы равно 5p+6, а после завершения A_5 роботу требуется 6 единиц времени, чтобы вернуться на машину M_0 . Таким образом, расписание, реализующее цикл C_3 , имеет период не менее чем 7p+18, а следовательно, производительность C_3 не более чем 2/(7p+18). Сравнивая производительности, получаем $\frac{2}{6p+16} > \frac{2}{7p+18} > \frac{1}{5p+12}$. Тем самым оптимальным является цикл C_2 . Утверждение 2 доказано.

3. Открытые вопросы

Интересными для дальнейшего исследования представляются следующие вопросы: доказательство или опровержение гипотезы 1 в случаях,

когда $m \geqslant 5$ и $8 \leqslant p < 4(m-1)$; постановка задачи для несбалансированной ячейки; постановка задачи для нерегулярной ячейки; постановка задачи с ненулевыми временами разгрузки и загрузки деталей на машину; постановка задачи для «кругового» расположения машин, когда предполагается, что машины расположены по кругу, M_0 и M_{m+1} совпадают, а робот при перемещении выбирает наименьшую из двух дуг, соединяющих машины; нахождение верхней границы степени оптимального пикла.

ЛИТЕРАТУРА

- **1. Agnetis A.** Scheduling no-wait robotic cells with two and three machines // Eur. J. Oper. Res. -2000. Vol. 123, N 2. P. 303–314.
- **2. Brauner N.** Identical part production in cyclic robotic cells: concepts, overview and open questions // Discrete Appl. Math. 2008. Vol. 156, N 13. P. 2480–2492.
- 3. Che A., Chu C. Multi-degree cyclic scheduling of a no-wait robotic cell with multiple robots // Eur. J. Oper. Res. 2009. Vol. 199, N 1. P. 77–88.
- **4. Crama Y. et al.** Cyclic scheduling in robotic flowshops // Ann. Oper. Res. 2000. Vol. 96. P. 97–124.
- 5. Dawande M., Geismar H. N., Sethi S. P., Sriskandarajah C. Sequencing and scheduling in robotic cells: recent developments // J. Sched. 2005. Vol. 8. P. 387–462.
- **6. Kats V., Levner E.** A strongly polynomial algorithm for no-wait cyclic robotic flowshop scheduling // Oper. Res. Lett. 1997. Vol. 21, N 4. P. 171–179.
- 7. Levner E., Kats V., Alcaide D., Cheng T. C. E. Complexity of cyclic scheduling problems: a state-of-the art survey // Comput. Ind. Eng. 2010. Vol. 59, N 2. P. 352–361.
- 8. Levner E., Kats V., Levit V. E. An improved algorithm for cyclic flowshop scheduling in a robotic cell // Eur. J. Oper. Res. 1997. Vol. 97, N 3. P. 500–508.
- Mangione F., Brauner N., Penz B. Cyclic production for the robotic balanced no-wait flow shop // Int. Conf. Ind. Eng. Production Management (Porto, Portugal, 2003). Vol. 2. Porto: IERM, 2003. P. 539–547.

Павлов Сергей Вадимович, e-mail: kiberdweller@gmail.com Статья поступила 20 декабря 2011 г. Переработанный вариант— 4 октября 2012 г.