ОЦЕНКИ МОЩНОСТИ МИНИМАЛЬНОГО 1-СОВЕРШЕННОГО БИТРЕЙДА В ГРАФЕ ХЭММИНГА *)

К.В.Воробьёв, Д.С.Кротов

Аннотация. Улучшены известные нижняя и верхняя оценки на минимальную мощность носителя собственной функции графа Хэмминга H(n,q), где q>2. В частности, оценена мощность минимального 1-совершенного битрейда в H(n,q). Показано, что мощность такого битрейда ограничена снизу величиной $2^{n-\frac{n-1}{q}}(q-2)^{\frac{n-1}{q}}$ в случае $q\geqslant 4$ и $3^{\frac{n}{2}}(1-O(1/n))$ в случае q=3. Кроме того, предложена конструкция, позволяющая строить битрейды мощности $q^{\frac{(q-2)(n-1)}{q}}2^{\frac{n-1}{q}+1}$ при $n\equiv 1 \bmod q$, где q— степень простого числа.

Ключевые слова: граф Хэмминга, полином Кравчука, 1-совершенный битрейд.

1. Предварительные сведения

Обозначим через H(n,q) граф, вершинами которого являются все слова длины n над алфавитом $\{0,1,\ldots,q-1\}$. Расстоянием Хэмминга d(x,y) между вершинами $x,y\in H(n,q)$ называется число позиций, в которых x и y различны, рёбрам графа соответствуют пары вершин на расстоянии 1. Известно [1], что множество собственных чисел матрицы смежности такого графа есть $\{\lambda_m=n(q-1)-qm\mid m=0,1,\ldots,n\}$. Соответствующие собственные подпространства будем обозначать через V_m , т. е.

$$V_m = \Big\{ f : H(n,q) \to \mathbb{C} \mid \sum_{\substack{y \in H(n,q), \\ d(x,y) = 1}} f(y) = \lambda_m f(x), \ x \in H(n,q) \Big\}.$$

Известно также [1], что для произвольных $f \in V_m$ и $x \in H(n,q)$ имеет место следующее соотношение, задающее распределение значений соб-

 $^{^{*)}}$ Исследование выполнено при финансовой поддержке Российского научного фонда (проект № 14–11–00555).

^{© 2014} Воробьёв К. В., Кротов Д. С.

ственной функции f относительно x:

$$\sum_{\substack{y \in H(n,q), \\ d(x,y) = r}} f(y) = K_r(m,q,n)f(x), \tag{1}$$

где $K_r(t,q,n)=\sum\limits_{j=0}^r{(-1)^j(q-1)^{r-j}\binom{t}{j}\binom{n-t}{r-j}}$ — полиномы Кравчука, производящая функция которых имеет вид

$$\sum_{k=0}^{n} K_k(t,q,n) z^k = (1 + (q-1)z)^{n-t} (1-z)^t.$$
 (2)

Множество $S(f) = \{x \in H(n,q) \mid f(x) \neq 0\}$ называется *посителем* функции f.

Окрестностью $\Omega(T)$ множества вершин T назовём множество вершин на расстоянии не более 1 от T. 1-Совершенным битрейдом называется пара (T_0, T_1) непересекающихся множеств вершин таких, что $\Omega(T_0) = \Omega(T_1)$, причём в каждом шаре радиуса 1 содержится не более одного элемента из каждого T_0 и T_1 . Составляющие T_0 и T_1 1-совершенного битрейда (T_0, T_1) называются 1-совершенными трейдами, при этом отметим, что разность характеристических функций T_0 и T_1 является собственной функцией графа с собственным числом -1.

Примером 1-совершенного битрейда в H(n,q) является пара разностей $(C_0 \backslash C_1, C_1 \backslash C_0)$ двух совершенных кодов C_0 и C_1 (1-совершенный код — множество C вершин графа такое, что любой шар радиуса 1 в этом графе содержит ровно одну вершину из C). Трейды такого вида, т. е. вложимые в 1-совершенный код, известны как «свитчинговые компоненты» 1-совершенных кодов [10]. Кроме того, широко изучаются латинские трейды в графах Хэмминга [2,3] и трейды Штейнера в графах Джонсона [5], которые определяются аналогично 1-совершенным трейдам, если заменить шары радиуса 1 максимальными кликами соответствующего графа. Латинские битрейды и битрейды Штейнера также соответствуют собственным функциям графа.

Из результатов работы [9] следует, что мощность носителя собственной функции $f: H(n,q) \to \{-1,0,1\}$ с собственным значением $\lambda = q(n-m) - n$ можно оценить следующим образом:

$$|S(f)| \geqslant 2^m$$

(неравенство легко доказывается индукцией по n при фиксированном m). Если $\lambda = -1$, то оценка принимает вид

$$|S(f)| \geqslant 2^{\frac{n(q-1)+1}{q}},$$

при этом она достижима при q = 2 [4].

В [8] показано существование вложимых в 1-совершенный код трейдов мощности $q^{\frac{(q-2)(n-1)}{q}}p^{\frac{n-1}{q}}$ для $n=(q^k-1)/(q-1),\ k=2,3,\ldots$, где q — степень простого числа p. Нетрудно построить аналогичный трейд такой мощности для любого $n\equiv 1 \bmod q$ без условия вложимости.

Цель данной работы — улучшить указанные выше оценки мощности носителя собственных функций и мощности 1-совершенного трейда. Докажем нижнюю оценку $2^m(q-2)^{n-m}$ в случае, когда $\frac{mq^2}{2n(q-1)}>2$, и $q^n\left(\frac{1}{q-1}\right)^{\frac{m}{2}}\left(\frac{m}{n-m}\right)^{\frac{m}{2}}\left(1-\frac{m}{n}\right)^{\frac{n}{2}}$ в случае, когда $\frac{mq^2}{2n(q-1)}\leqslant 2$, на мощность носителя собственной функции с собственным значением $\lambda_m=n(q-1)-qm$. Половина этой величины для собственного значения -1 ограничивает снизу мощность 1-совершенного трейда. Покажем существование 1-совершенного трейда мощности $q^{\frac{(q-2)(n-1)}{q}}2^{\frac{n-1}{q}}$, где q— степень простого числа p (при p>2 это меньше мощности трейда, рассмотренного в [8]), что даёт оценку вдвое больше на мощность минимального носителя собственной функции.

2. Нижняя оценка мощности минимального битрейда

В данном разделе будем рассматривать функции, заданные на вершинах H(n,q) и принимающие значения из \mathbb{R} . Для таких функций всегда имеет место следующая оценка мощности их носителя.

Предложение 1. Пусть $f: H(n,q) \to \mathbb{R}, f \in V_m$ и $f \not\equiv 0$. Тогда

$$|S(f)| \ge \sum_{k=0}^{n} |K_k(m, q, n)|.$$
 (3)

Доказательство. Рассмотрим $x \in H(n,q)$ такой, что

$$|f(x)| = \max_{y \in H(n,q)} |f(y)|.$$

Тогда $|S(f) \cap \{z \in H(n,q) \mid d(x,z) = k\}| \geqslant |K_k(m,q,n)|$, так как f принимает лишь значения, не превышающие |f(x)| по модулю, и справедливо (1). Суммированием по всем целым k, $0 \leqslant k \leqslant n$, получаем требуемое. Предложение 1 доказано.

Заметим, что вопрос об асимптотическом поведении полиномов Кравчука до конца не решён, поэтому найти асимптотику суммы из (3) не представляется возможным. Далее эта сумма будет оценена снизу, и для этого понадобится следующее соотношение, которое является частным случаем неравенства Коши — Буняковского,

$$\sum_{k=0}^{n} |\alpha_k| \geqslant \sqrt{\left(\sum_{k=0}^{n} \alpha_k \cos \varphi_k\right)^2 + \left(\sum_{k=0}^{n} \alpha_k \sin \varphi_k\right)^2},\tag{4}$$

где $\alpha_k, \, \varphi_k \in \mathbb{R}, \, 0 \leqslant k \leqslant n, \, k, n \in \mathbb{N}$.

Основываясь на этом несложном наблюдении и соотношении (2), следующая теорема позволяет оценить снизу сумму из неравенства (3).

Теорема 1. Пусть $f: H(n,q) \to \mathbb{R}, f \in V_m$ и $f \not\equiv 0$. Тогда

$$|S(f)| \geqslant \begin{cases} 2^{m} (q-2)^{n-m}, & \text{если } \frac{mq^2}{2n(q-1)} > 2, \\ q^{n} \left(\frac{1}{q-1}\right)^{\frac{m}{2}} \left(\frac{m}{n-m}\right)^{\frac{m}{2}} \left(1 - \frac{m}{n}\right)^{\frac{n}{2}}, & \text{если } \frac{mq^2}{2n(q-1)} \leqslant 2. \end{cases}$$
 (5)

Доказательство. По предложению 1

$$|S(f)| \ge \sum_{k=0}^{n} |K_k(m, q, n)|.$$

Воспользуемся неравенством (4) при $\varphi_k = k\varphi$ и $\alpha_k = K_k(m,q,n)$:

$$|S(f)| \geqslant \sqrt{\left(\sum_{k=0}^{n} K_k(m,q,n) \cos k\varphi\right)^2 + \left(\sum_{k=0}^{n} K_k(m,q,n) \sin k\varphi\right)^2}.$$

Благодаря соотношению (2) получаем

$$\sqrt{\left(\sum_{k=0}^{n} K_k(m,q,n)\cos k\varphi\right)^2 + \left(\sum_{k=0}^{n} K_k(m,q,n)\sin k\varphi\right)^2}$$

$$= \left|\left(1 + (q-1)z\right)^{n-m}(1-z)^m\right|,$$

где $z = \cos \varphi + i \sin \varphi$. Таким образом, имеем

$$|S(f)| \geqslant \max_{\varphi \in \mathbb{R}} F(\varphi), \tag{6}$$

где $F(\varphi) = \left| (1 + (q-1)(\cos \varphi + i \sin \varphi))^{n-m} (1 - (\cos \varphi + i \sin \varphi))^m \right|$. Непосредственное вычисление функций F, F' даёт

$$F(\varphi) = (2 - 2\cos\varphi)^{\frac{m}{2}} (q^2 - 2q + 2 + 2(q - 1)\cos\varphi)^{\frac{n - m}{2}},$$

$$F'(\varphi) = 2n(q-1)(2 - 2\cos\varphi)^{\frac{m}{2} - 1}(q^2 - 2q + 2 + 2(q-1)\cos\varphi)^{\frac{n-m}{2} - 1} \times \sin\varphi \left(\cos\varphi - 1 + \frac{mq^2}{2n(q-1)}\right).$$

В результате анализа функции F' несложно определить максимум функции $F(\varphi)$ и получить следующее соотношение:

$$\max_{\varphi \in \mathbb{R}} F(\varphi) = \begin{cases} 2^m (q-2)^{n-m}, & \text{если } \frac{mq^2}{2n(q-1)} > 2, \\ q^n \left(\frac{1}{q-1}\right)^{\frac{m}{2}} \left(\frac{m}{n-m}\right)^{\frac{m}{2}} \left(1 - \frac{m}{n}\right)^{\frac{n}{2}}, & \text{если } \frac{mq^2}{2n(q-1)} \leqslant 2, \end{cases}$$

при этом в первом случае максимум $F(\varphi)$ достигается при $\cos \varphi = -1$, а во втором — при $\cos \varphi = 1 - \frac{mq^2}{2n(q-1)}$. Последнее соотношение вместе с (6) даёт требуемое. Теорема 1 доказана.

Любому 1-совершенному битрейду (T_0,T_1) в H(n,q) можно сопоставить функцию $f:H(n,q)\to\{-1,0,1\}$, равную разности характеристических функций множеств T_0 и T_1 . Из определения битрейда видно, что для f выполняется $f\in V_{n-\frac{n-1}{q}}$. Далее, говоря об 1-совершенном битрейде, будем подразумевать соответствующую ему функцию f.

де, будем подразумевать соответствующую ему функцию f. Особый интерес представляет случай $m=n-\frac{n-1}{q}$, так как тогда неравенство (5) даёт нижнюю оценку на мощность носителя 1-совершенного битрейда в H(n,q).

Следствие 1. Пусть f есть 1-совершенный битрейд в $H(n,q),\, q\geqslant 3,$ и $f\not\equiv 0.$ Тогда

$$|S(f)|\geqslant\begin{cases}2^{n-\frac{n-1}{q}}(q-2)^{\frac{n-1}{q}},&\text{если }q\geqslant4,\\3^{\frac{n}{2}}(1-\frac{1}{n})^{\frac{n}{2}}\big(1+\frac{3}{2(n-1)}\big)^{\frac{2n+1}{6}}=3^{\frac{n}{2}}\big(1-O(1/n)\big),&\text{если }q=3.\end{cases}$$

ДОКАЗАТЕЛЬСТВО. Как замечено выше, соответствующая 1-совершенному битрейду в H(n,q) функция f принадлежит $V_{n-\frac{n-1}{q}}$. Применение теоремы 1 при $m=n-\frac{n-1}{q}$ даёт

$$|S(f)|\geqslant \left\{\begin{array}{l} 2^{n-\frac{n-1}{q}}(q-2)^{\frac{n-1}{q}}, & \exp{\frac{(n-\frac{n-1}{q})q^2}{2n(q-1)}}>2, \\ q^{\frac{n}{2}}\left(1-\frac{1}{n}\right)^{\frac{n}{2}}\left(\left(1+\frac{q}{(n-1)(q-1)}\right)^{\frac{(n-1)(q-1)}{q}}\right)^{\frac{n(q-1)+1}{2(n-1)(q-1)}} \text{ иначе.} \end{array}\right.$$

Упрощая соотношение $\frac{\left(n-\frac{n-1}{q}\right)q^2}{2n(q-1)}\leqslant 2$, получаем неравенство

$$n\left(5 - q - \frac{4}{q}\right) \geqslant 1,$$

которое имеет место тогда и только тогда, когда $q \in \{2,3\}, n \in \mathbb{N}$. Таким образом, оценка при q=3 принимает вид

$$3^{\frac{n}{2}} \left(1 - \frac{1}{n}\right)^{\frac{n}{2}} \left(1 + \frac{3}{2(n-1)}\right)^{\frac{2n+1}{6}}.$$

В результате несложных вычислений видим, что последнее выражение при больших n ведёт себя как $3^{\frac{n}{2}}(1-O(1/n))$. Следствие 1 доказано.

В следствии мы исключили случай q=2, так как выше упоминалась достижимая нижняя оценка для этого случая.

3. Верхняя оценка мощности минимального битрейда

Построим 1-совершенный трейд, имеющий на сегодняшний день рекордно минимальную мощность. Идея построения исходит из конструкций 1-совершенных кодов на основе латинских гиперкубов (эквивалентно, мультиарных квазигрупп) [6, 7]. Аналогично построению 1-совершенных кодов из латинских гиперкубов можно строить 1-совершенные трейды из латинских трейдов. Не вдаваясь в подробности общих конструкций, приведём явную конструкцию полученного трейда.

Пусть n=qm+1, где q — степень простого числа, а $f(x_1,\ldots,x_{q-1})=x_1+\ldots+x_{q-1}$ и $g(x_1,\ldots,x_{q-1})=\gamma_1x_1+\ldots+\gamma_{q-1}x_{q-1}$, где $\gamma_1,\ldots,\gamma_{q-1}$ — все ненулевые элементы поля $\mathrm{GF}(q)$. Определим два множества T_0 и T_1 слов длины n=qm+1:

$$T_{\sigma} = \left\{ \left(x_{1}^{1}, \dots, x_{q-1}^{1}, g\left(x_{1}^{1}, \dots, x_{q-1}^{1} \right), x_{1}^{2}, \dots, x_{q-1}^{2}, g\left(x_{1}^{2}, \dots, x_{q-1}^{2} \right), \\ \dots, x_{1}^{m}, \dots, x_{q-1}^{m}, g\left(x_{1}^{m}, \dots, x_{q-1}^{m} \right), \bigoplus_{i=1}^{m} f\left(x_{1}^{i}, \dots, x_{q-1}^{i} \right) \oplus \sigma \right) \mid f\left(x_{1}^{i}, \dots, x_{q-1}^{i} \right) \in \{0, 1\}, \ i \in \{1, \dots, m\} \right\}.$$

Предложение 2. Пара (T_0,T_1) является 1-совершенным битрейдом c мощностью $q^{\frac{(q-2)(n-1)}{q}}2^{\frac{(n-1)}{q}}$ каждого из составляющих.

Доказательство. Сначала удостоверимся, что мощность множества T_{σ} равна $q^{n-2m-1}2^m$. Действительно, для любого i от 1 до m значения x_1^i,\ldots,x_{q-2}^i могут быть выбраны произвольно, после чего существует два значения для x_{q-1}^i , удовлетворяющих условию $f\left(x_1^i,\ldots,x_{q-1}^i\right) \in \{0,1\}$. Значения остальных m+1 координат слова T_{σ} вычисляются однозначно

В силу выбора функций f и g любые два различных набора вида $(x_1,\ldots,x_{q-1},g(x_1,\ldots,x_{q-1}),f(x_1,\ldots,x_{q-1}))$ отличаются не менее чем

в трёх элементах. Отсюда следует, что два слова из T_{σ} не могут различаться только в одной или только в двух позициях, т. е. каждый шар радиуса 1 содержит не более одного слова из T_{σ} .

Остаётся показать, что $\Omega(T_0)=\Omega(T_1)$, где $\Omega(T_\sigma)$ — множество слов на расстоянии не больше 1 от T_σ . Это нетрудно проверить и непосредственно перебором вариантов, но поступим иначе. Опишем множество таких слов.

Набор (x_1,\ldots,x_{q-1},x_0) назовём xopowwm, если $f(x_1,\ldots,x_{q-1})\in\{0,1\}$ и $x_0=g(x_1,\ldots,x_{q-1})$, и nnoxum, если $x_0\neq g(x_1,\ldots,x_{q-1})$. Число хороших наборов равно $G=2q^{q-2}$, а число плохих — $B=q^{q-1}(q-1)$. Слово $\begin{pmatrix}x_1^1,\ldots,x_{q-1}^1,x_0^1,\ldots,x_1^m,\ldots,x_{q-1}^m,x_0^m,x_0^0\end{pmatrix}$ назовём npabunum, если все наборы $\begin{pmatrix}x_1^i,\ldots,x_{q-1}^i,x_0^i\end{pmatrix},\ i=1,\ldots,m$, хорошие, либо один из них плохой, а остальные хорошие, и при этом $x_0^0\in\{0,1\}$.

Легко видеть, что $\Omega(T_{\sigma})$ состоит только из правильных слов. Действительно, любое слово из T_{σ} содержит m хороших наборов, а отступая от него на расстояние 1, либо меняем последнюю координату, либо делаем один из хороших блоков плохим. С другой стороны, число правильных слов равно

$$G^{m} \cdot q + m \cdot G^{m-1} \cdot B \cdot 2 = (2q^{q-2})^{m} \cdot (mq^{2} - mq + q)$$
$$= |T_{\sigma}| \cdot (n(q-1) + 1) = |\Omega(T_{\sigma})|.$$

Таким образом, как $\Omega(T_{\sigma})$, так и $\Omega(T_{\sigma})$ совпадают с множеством правильных слов, откуда $\Omega(T_{0}) = \Omega(T_{1})$. Предложение 2 доказано.

Следствие 2. Пусть $q,n\in\mathbb{N}$, $n\equiv 1\bmod q$ и q- степень простого числа. Тогда существует функция $f:H(n,q)\to\{-1,0,1\},\ f\in V_{n-\frac{n-1}{q}},$ такая, что $|S(f)|=q^{\frac{(q-2)(n-1)}{q}}2^{\frac{n-1}{q}+1}.$

Следствие 1 даёт нижнюю оценку мощности 1-совершенного битрейда в $H(n,q), q \geqslant 3$, которая значительно лучше полученной ранее в [9]. Однако зазор между новой нижней оценкой и верхней оценкой, полученной в следствии 2, всё ещё остаётся существенным.

В заключение стоит обратить внимание на то, что техника, используемая в доказательстве теоремы 1, может оказаться полезной для оценки мощности носителей собственных функций и 1-совершенных битрейдов и в других дистанционно-регулярных графах.

ЛИТЕРАТУРА

- **1. Дельсарт Ф.** Алгебраический подход к схемам отношений теории кодирования. М.: Мир, 1976. 136 с.
- **2. Потапов В. Н.** Многомерные латинские битрейды // Сиб. мат. журн. 2013. Т. 52, № 2. С. 317–324.
- **3. Cavenagh N. J.** The theory and application of latin bitrades: a survey // Math. Slovaca. 2008. Vol. 58, N 6. P. 691–718.
- **4. Etzion T., Vardy A.** Perfect binary codes: constructions, properties, and enumeration // IEEE Trans. Inform. Theory. 1994. Vol. 40, N 3. P. 754–763.
- **5. Hedayat A. S., Khosrovshahi G. B.** Trades // CRC Handbook of Combinatorial Designs. Boca Raton; London; New York: Chapman and Hall/CRC, 2006. P. 644–648.
- **6. Heden O., Krotov D. S.** On the structure of non-full-rank perfect q-ary codes // Adv. Math. Comm. 2011. Vol. 5, N 2. P. 149–156.
- 7. Phelps K. T. A product construction for perfect codes over arbitrary alphabets // IEEE Trans. Inf. Theory. 1984. Vol. 30, N 5. P. 769–771.
- 8. Phelps K. T., Rifà J., Villanueva M. Kernels and p-kernels of p^r -ary 1-perfect codes // Des. Codes Cryptogr. -2005. Vol. 37, N 2. P. 243–261.
- **9. Potapov V. N.** On perfect 2-colorings of the q-ary n-cube // Discrete Math. -2012. Vol. 312, N 8. P. 1269–1272.
- **10. Solov'eva F. I.** Structure of *i*-components of perfect binary codes // Discrete Appl. Math. -2001. Vol. 111, N 1–2. P. 189–197.

Воробьёв Константин Васильевич, e-mail: vorobev@math.nsc.ru Кротов Денис Станиславович, e-mail: krotov@math.nsc.ru Статья поступила 23 октября 2014 г. Переработанный вариант— 10 ноября 2014 г.