УДК 517.938

ОБ УСЛОВИЯХ СУЩЕСТВОВАНИЯ ЦИКЛОВ В ДВУХ БАЗОВЫХ МОДЕЛЯХ ЦИРКАДНОГО ОСЦИЛЛЯТОРА МЛЕКОПИТАЮЩИХ

© 2021 В. П. Голубятников^{1,2a}, О. А. Подколодная^{3b}, Н. Л. Подколодный^{3,4c}, Н. Б. Аюпова^{1,2d}, Н. Е. Кириллова^{1e}, Е. В. Юношева^{2f}

¹Институт математики им. С. Л. Соболева СО РАН, просп. Акад. Коптюга, 4, Новосибирск, 630090, Россия, ²Новосибирский государственный университет, ул. Пирогова, 1, Новосибирск 630090, Россия, ³Институт цитологии и генетики СО РАН, просп. Акад. Коптюга 2, Новосибирск 630090, Россия, ⁴Институт вычислительной математики и математической геофизики СО РАН, просп. Акад. Лаврентьева, 6, Новосибирск 630090, Россия,

Поступила в редакцию 30.08.2021 г.; после доработки 30.08.2021 г.; принята к публикации 21.10.2021 г.

Построены две нелинейные динамические системы, моделирующие функционирование простейшего циркадного осциллятора. Получены условия единственности стационарных точек этих систем и условия существования циклов в их фазовых портретах.

Ключевые слова: циркадный осциллятор, генная сеть, математическая модель, нелинейные динамические системы, положительные и отрицательные обратные связи, гиперболическая стационарная точка, фазовый портрет, предельный цикл.

DOI: 10.33048/SIBJIM.2021.24.403

ВВЕДЕНИЕ

Система регуляции суточного ритма является одним из древнейших механизмов, позволяющих живым организмам оптимально адаптироваться к 24-часовым циклическим изменениям в среде обитания, обеспечивая упреждающую готовность к этим изменениям. Хорошо известно, что основой функционирования этого механизма служат молекулярно-генетические осцилляторы, присутствующие практически в каждой клетке организмов [1,2].

Первые модели минимального обобщённого молекулярного осциллятора, использующие экспрессию генов и предсказывающие осцилляции на основе отрицательной обратной связи, были предложены в [3,4], когда молекулярные механизмы циркадного осциллятора ещё не были известны. Эти работы послужили стимулом для серии теоретических исследований, направленных на определение минимальных механизмов генерации колебаний предельного цикла и расшифровку принципов конструкции биологических осцилляторов.

Работа выполнена в рамках Государственных заданий ИЦиГ СО РАН (проект 0259-2021-0009), ИВМиМГ СО РАН (проект 0251-2021-0004), ИМ СО РАН (проект 0314-2019-0011) и при частичной финансовой поддержке Российского фонда фундаментальных исследований (проект 20-31-90011).

Существующие в настоящее время модели различаются особенностями и детальностью описания механизмов регуляции циркадного осциллятора для различных видов организмов и часто включают дополнительные обратные связи, в зависимости от специфики применения модели.

Однако несмотря на различия в моделях в них можно выделить ядро циркадного осциллятора, присутствующее практически во всех моделях. Кроме того, модели автономного клеточного циркадного осциллятора должны удовлетворять определённым требованиям, включая наличие предельного цикла, согласование фаз колебаний уровня РНК и белков друг с другом и с экспериментальными данными, согласование изменений ритма при мутациях генов, захват биологических часов входным сигналом, реакцию на сдвиг суточного ритма и т. д. (см. [5]).

В данной работе рассматривается модель автономного клеточного циркадного осциллятора млекопитающих, ядро которого может быть описано небольшой генной сетью с двумя петлями с отрицательными обратными связями, (см. рис. 1 и [5,6]).

Проведён качественный анализ двух систем дифференциальных уравнений, описывающих регуляцию основных генов ядра циркадного осциллятора, и выявлены условия существования осциллирующих траекторий при достаточно общих требованиях на математическое представление экспрессии этих генов.

Puc. 1. Схема минимального циркадного осциллятора:
CLOCK:BMAL — транскрипционный фактор (далее в тексте обозначается как C/B);
белые прямоугольники — E-box элементы, сайты связывания транскрипционного фактора C/B в регуляторах районах генов Per, Cry, Ror, Rev-erb;
серый прямоугольник — RRE-элемент, сайт связывания транскрипционных факторов ROR и REV-ERB в регуляторном районе гена Bmal1; (+) — активация; (-) — репрессия

Основная обратная связь в этой генной сети реализуется следующим образом: гетеродимерный транскрипционный фактор CLOCK:BMAL1 (C/B) активирует транскрипцию генов семейства *Period* (*Per*) и *Cryptochrome* (*Cry*) (см. левую часть рис. 1). Два белка PER и CRY образуют в свою очередь гетеродимер PER:CRY, который подавляет активность транскрипционного фактора C/B, тем самым подавляя транскрипцию собственных генов. Это приводит к снижению уровня белков PER и CRY, в результате чего подавление активности C/B прекращается. Такая обратная связь обеспечивает периодичность активности транскрипционного фактора C/B и, как следствие, экспрессии его генов-мишеней [1].

В реализации петли второй обратной связи, часто называемой стабилизирующей, участвует тот же транскрипционный фактор C/B. Он активирует транскрипцию генов *Ror* и *Rev-erb*, кодирующих транскрипционные факторы ROR и REV-ERB.

ROR активирует транскрипцию гена Bmal1, а REV-ERB подавляет её. Учитывая, что ген

Bmal1 кодирует одну из субъединиц транскрипционного фактора C/B, эта обратная связь обеспечивает изменение концентрации C/B и колебания экспрессии его генов-мишеней [7] (см. правую часть рис. 1).

В дальнейшем для упрощения мы будем обозначать гетеродимеры PER:CRY, CLOCK:BMAL1 и белки PER, CRY, ROR, REV-ERB, BMAL1 через P, C/B, U, W, Y, Z, B, а их концентрации — через p(t) и x(t), u(t), w(t), y(t), z(t), b(t) соответственно.

1. ШЕСТИМЕРНАЯ МОДЕЛЬ ЦИРКАДНОГО ОСЦИЛЛЯТОРА

Следуя схеме, изображённой на рис. 1, построим нелинейную динамическую систему (1), моделирующую эту генную сеть. Во всех уравнениях системы монотонно возрастающие положительные нелинейные функции γ_1 и Γ_j описывают положительные связи, а монотонно убывающие положительные функции L_m соответствуют отрицательным связям, как и в [8–10]:

$$\frac{dp}{dt} = k_1(\Gamma_1(u)\gamma_1(w) - p); \quad \frac{du}{dt} = k_2(\Gamma_2(x)L_2(p) - u); \\
\frac{dw}{dt} = k_3(\Gamma_3(x)L_3(p) - w); \quad \frac{dz}{dt} = k_4(\Gamma_4(x)L_4(p) - z); \\
\frac{dx}{dt} = k_5(\Gamma_5(b) - x); \quad \frac{db}{dt} = k_6(CL_6(z) - b).$$
(1)

Все функции, параметры и переменные в этих уравнениях принимают неотрицательные значения. При моделировании генных сетей многими исследователями в качестве убывающих функций $L_m(p)$ рассматривались функции Хилла $\frac{a_m}{c_m + p^{s_m}}$, а в качестве возрастающих функций $\Gamma_j(x)$ — сигмоидные функции $\frac{a_j x^{s_j}}{c_j + x^{s_j}}$ (см., в частности, [11–13]).

В отличие от этих публикаций, следуя [9, 14, 15], при качественном описании поведения траекторий динамической системы (1) здесь мы не конкретизируем аналитический вид функций L_m , $\gamma_1(w)$ и $\Gamma_j(x)$, ограничиваясь минимальными требованиями — их гладкостью, монотонностью и равенствами $\Gamma_1(0) = \gamma_1(0) = 0$.

Кроме того, при рассмотрении уравнения $x = \mathcal{L}(x)$ на каком-либо отрезке [0, a], где функция $\mathcal{L}(x)$ гладкая, положительная и монотонно убывающая, мы будем всюду предполагать, что выполнено неравенство

$$\mathcal{L}(a) < a. \tag{2}$$

Из этого неравенства следует, что уравнение $x = \mathcal{L}(x)$ имеет единственное решение на отрезке [0, a] (см. [16]).

В дальнейшем так же, как и в [12, 13, 17], при построении численных моделей такой генной сети аналитический вид этих функций и значения параметров будут подбираться в соответствии с литературными данными о биологических экспериментах.

При составлении системы (1) мы считаем, что действие отрицательной связи $P \dashv C/B$ на положительные связи $C/B \to U$, $C/B \to W$, $C/B \to Z$ описывается в уравнениях системы убывающими функциями L_j , j = 2, 3, 4, и что белок ROR связывается с сайтом RRE и активирует транскрипцию гена *Bmal1* в отсутствие REV-ERB на постоянном уровне C > 0. REV-ERB, концентрация которого меняется циклически, конкурирует с ROR при связывании с RRE сайтом и циклически подавляет транскрипцию гена *Bmal1*. Такое предположение является достаточно распространённым при моделировании циркадного осциллятора в клетках млекопитающих.

В разд. 2 будет рассмотрена более сложная модель циркадного осциллятора, в которой активация транскрипции гена *Bmal1* транскрипционным фактором ROR в отсутствие REV-ERB не предполагается постоянной.

Введём обозначения: $a_1 := \max \Gamma_1, a_2 := \max \Gamma_2, a_3 := \max \Gamma_3, \alpha_1 := \max \gamma_1, d_2 := \max L_2$ и т. д.

Лемма 1. Все траектории системы (1) со временем попадают в параллелепипед

$$Q^{6} = [0, a_{1}\alpha_{1}] \times [0, a_{2}d_{2}] \times [0, a_{3}d_{3}] \times [0, a_{4}d_{4}] \times [0, a_{5}] \times [0, C \cdot d_{6}],$$

лежащий в положительном октанте пространства \mathbb{R}^6 переменных p, u, w, z, x, b. B дальнейшем они из этого параллелепипеда не выходят.

Доказательство леммы 1 полностью следует схеме доказательств положительной инвариантности аналогичных параллелепипедов, рассмотренных в [16, 18].

Таким образом, Q^6 — положительно инвариантная область системы (1).

Будем искать стационарные точки динамической системы (1) из уравнений

$$p = \Gamma_1(u)\gamma_1(w); \quad u = L_2(p)\Gamma_2(x); \quad w = \Gamma_3(x)L_3(p); z = \Gamma_4(x)L_4(p); \quad x = \Gamma_5(b); \quad b = CL_6(z).$$
(3)

Исключая из уравнений (3) переменные u, w, z, b, получаем соотношения

$$x = \Gamma_5(CL_6(L_4(p)\Gamma_4(x))), \tag{4}$$

$$p = \Gamma_1(L_2(p)\Gamma_2(x))\gamma_1(L_3(p)\Gamma_3(x)), \tag{5}$$

которые определяют неявные функции, связывающие переменные x и p. Ниже в лемме 2 будет показано, что определяемая из (4) функция $x = \varphi(p)$ и определяемая из (5) функция $p = \psi(x)$ имеют положительные производные и, следовательно, уравнения (4) и (5) явным образом разрешимы относительно x и соответственно p. Графики этих функций схематично представлены на рис. 2. Это позволит нам сформулировать условия единственности стационарной точки системы (1).

Рис. 2. Графики функций $x = \varphi(p)$ (штрихованный) и $p = \psi(x)$ (сплошной)

В уравнении (5), если x = 0, то p = 0, и наоборот, если p = 0, то x = 0. При произвольном $x = x_0 \in [0, a_5]$ это уравнение принимает вид $p = \Gamma_1(L_2(p)\Gamma_2(x_0))\gamma_1(L_3(p)\Gamma_3(x_0))$, в левой его части возрастающая функция от p, а в правой — убывающая. Решение такого уравнения единственное: $p_1 = \psi(x_0)$ (см. (2)).

Если x = 0, то уравнение (4) неразрешимо относительно p ввиду противоречия:

$$0 = \Gamma_5(CL_6(L_4(p)\,\Gamma_4(0))) = \Gamma_5(Cd_6) > 0.$$

Если в уравнении (4) p = 0, то $x = \Gamma_5(CL_6(d_4\Gamma_4(x)));$ левая часть возрастает вместе с x, а правая — убывает, решение единственное: $x = x(0) = \varphi(0)$.

Если в (4) положить $p = a_1\alpha_1$, то $x = \Gamma_5(CL_6(L_4(a_1\alpha_1)\Gamma_4(x)));$ левая часть возрастает вместе с x, а правая — убывает, решение единственное: $x = \varphi(a_1\alpha_1) = x_1$ (см. (2) и рис. 2).

Продифференцируем (4) по p как неявную функцию:

$$\frac{dx}{dp} = \Gamma_5' C L_6' \left(L_4' \Gamma_4 + L_4 \Gamma_4' \frac{dx}{dp} \right) \quad \text{или} \quad \frac{dx}{dp} \left(1 - C \Gamma_5' L_6' L_4 \Gamma_4' \right) = \left(C \Gamma_5' L_6' L_4' \Gamma_4 \right). \tag{6}$$

Здесь обе скобки положительные, так как $L'_4 < 0, L'_6 < 0.$

Продифференцируем (5) по x как неявную функцию:

$$\frac{dp}{dx} = \Gamma_1' \left(L_2' \frac{dp}{dx} \Gamma_2 + L_2 \Gamma_2' \right) \gamma_1 + \Gamma_1 \gamma_1' \left(L_3' \frac{dp}{dx} \Gamma_3 + L_3 \Gamma_3' \right)$$

или

$$\frac{dp}{dx}\left(1 - \Gamma_1' L_2' \Gamma_2 \gamma_1 - \Gamma_1 L_3' \Gamma_3 \gamma_1'\right) = \left(\Gamma_1' L_2 \Gamma_2' \gamma_1 + \Gamma_1 L_3 \Gamma_3' \gamma_1'\right).$$
(7)

Обе скобки положительные, так как $L'_2 < 0, L'_3 < 0$. Итак, нами доказана

Лемма 2. Справедливы соотношения $\frac{dx}{dp} = \frac{d\varphi}{dp} > 0, \ \frac{dp}{dx} = \frac{d\psi}{dx} \ge 0.$ Поскольку $\gamma_1(0) = \Gamma_1(0) = 0$, равенство во второй формуле достигается только при x = 0.

В силу леммы 2 обе функции $\varphi(p)$ и $\psi(x)$ монотонно возрастают.

1.1. Единственность стационарной точки у шестимерной модели

Будет ли точка пересечения графиков монотонно возрастающих функций $x = \varphi(p)$, $p = \psi(x)$ единственной в прямоугольнике $Q^2 = [0, a_5] \times [0, a_1 \alpha_1]$?

Такой вопрос естественным образом возникает в исследовании качественного поведения траекторий динамических систем биохимической кинетики, аналогичных (1) (см., например, [2]).

Указанный прямоугольник лежит в положительном квадранте координатной плоскости переменных x, p. На рис. 2 ориентация упорядоченной пары касательных векторов $V_x = \left(1; \frac{d\psi}{dx}\right)$ и $V_p = \left(\frac{d\varphi}{dp}; 1\right)$ положительна, поэтому для изображённой там точки пересечения графиков смешанное произведение векторов V_x и V_p положительно:

$$1 - \frac{d\psi}{dx}\frac{d\varphi}{dp} > 0. \tag{8}$$

Лемма 3. Если в каждой точке пересечения графиков функций $p = \psi(x)$ и $x = \varphi(p)$ выполняется неравенство (8), то точка пересечения этих графиков единственна.

Доказательство. Существование хотя бы одной точки такого пересечения следует из теоремы Жордана [19].

Из того, что неравенство (8) строгое, следует, что эти графики не могут касаться и, значит, множество точек их пересечения конечно.

В соседних точках пересечения этих графиков ориентация пары касательных векторов V_x и V_p различна, но согласно неравенству (8) ориентация таких пар векторов должна быть положительной, значит, такая точка пересечения всего одна, и лемма 3 доказана.

Перепишем это неравенство в виде

$$\frac{C\Gamma_{5}'L_{6}'L_{4}'\Gamma_{4}}{1 - C\Gamma_{5}'L_{6}'L_{4}\Gamma_{4}'} \frac{\Gamma_{1}'L_{2}\Gamma_{2}'\gamma_{1} + \Gamma_{1}\gamma_{1}'L_{3}\Gamma_{3}'}{1 - \Gamma_{1}'L_{2}'\Gamma_{2}\gamma_{1} - \Gamma_{1}\gamma_{1}'L_{3}'\Gamma_{3}} < 1.$$
(9)

Следующее утверждение вытекает из леммы 3.

Теорема 1. При выполнении неравенства (9) динамическая система (1) имеет единственную стационарную точку.

Обозначим эту стационарную точку через S_6 . Отметим, что для достаточно широкого круга динамических систем вида (1) неравенство (8) действительно выполнено.

В частности, сделаем естественное предположение.

Пусть монотонно возрастающие функции $\Gamma_2(x)$, $\Gamma_3(x)$, $\Gamma_4(x)$, описывающие положительные связи $C/B \to U$, $C/B \to W$, $C/B \to Z$, соответственно пропорциональны между собой, а монотонно убывающие функции $L_2(p)$, $L_3(p)$, $L_4(p)$, описывающие ингибирование димером Pэтих положительных связей, также пропорциональны друг другу:

$$\Gamma_2(x) = \xi \Gamma_4(x); \quad \Gamma_3(x) = \mu \Gamma_4(x); \quad L_2(p) = \eta L_4(p); \quad L_3(p) = \varkappa L_4(p). \tag{10}$$

При таких предположениях неравенство (9), эквивалентное неравенству (8), принимает вид

$$0 < 1 - C\Gamma_5' L_6' L_4 \Gamma_4' - \Gamma_1' L_2' \Gamma_2 \gamma_1 - \Gamma_1 \gamma_1' L_3' \Gamma_3.$$
⁽¹¹⁾

Все вычитаемые в этом неравенстве отрицательны, поскольку $L'_6 < 0, L'_2 < 0, L'_3 < 0$, следовательно, при предположениях (10) неравенство (11) выполнено. Фактически это неравенство вытекает из двух нестрогих неравенств:

$$L_4L_2'\Gamma_4'\Gamma_2 \geqslant L_4'L_2\Gamma_4\Gamma_2' \quad \text{if} \quad L_4L_3'\Gamma_4'\Gamma_3 \geqslant L_4'L_3\Gamma_4\Gamma_3'.$$

Это достаточные условия единственности точки пересечения графиков монотонно возрастающих функций $x = \varphi(p)$ и $p = \psi(x)$ в прямоугольнике Q^2 или условия единственности стационарной точки у динамической системы (1).

1.2. О неустойчивости стационарной точки шестимерной модели

Будем считать, что предположения (10) выполнены и, значит, динамическая система (1) имеет единственную стационарную точку. Матрица линеаризации этой системы в точке S_6 имеет вид

$$M_{6} = \begin{pmatrix} -k_{1} & k_{1}\Gamma_{1}\gamma_{1} & k_{1}\Gamma_{1}\gamma_{1}' & 0 & 0 & 0\\ k_{2}L_{2}'\Gamma_{2} & -k_{2} & 0 & 0 & k_{2}L_{2}\Gamma_{2}' & 0\\ k_{3}L_{3}'\Gamma_{3} & 0 & -k_{3} & 0 & k_{3}L_{3}\Gamma_{3}' & 0\\ k_{4}L_{4}'\Gamma_{4} & 0 & 0 & -k_{4} & k_{4}L_{4}\Gamma_{4}' & 0\\ 0 & 0 & 0 & 0 & -k_{5} & k_{5}\Gamma_{5}'\\ 0 & 0 & 0 & Ck_{6}L_{6}' & 0 & -k_{6} \end{pmatrix}.$$

Здесь все производные вычисляются в стационарной точке S₆. Напомним определение.

Стационарная точка динамической системы называется гиперболической, если матрица линеаризации системы в этой точке не имеет мнимых собственных чисел, т. е. вещественные части этих чисел либо строго положительны, либо строго отрицательны (см., например, [20, 21]).

В дальнейшем мы будем предполагать, что точка S₆ является гиперболической, что никак не ограничивает общности рассуждений. Как хорошо известно, гиперболическая стационарная точка системы (1) неустойчива тогда и только тогда, когда матрица M₆ имеет собственные числа с положительными вещественными частями.

Характеристический многочлен $P_6(\lambda)$ этой матрицы при предположениях (10) приводится к виду

$$P_{6}(\lambda) = (\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{3})(\lambda + k_{2})(\lambda + k_{1}) - (\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{2})k_{1}\Gamma_{1}\gamma_{1}'k_{3}L_{3}'\Gamma_{3} - (\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{3})k_{1}\Gamma_{1}'\gamma_{1}k_{2}L_{2}'\Gamma_{2} - (\lambda + k_{1})(\lambda + k_{2})(\lambda + k_{3})Ck_{6}L_{6}'k_{5}\Gamma_{5}'k_{4}L_{4}\Gamma_{4}';$$

все его коэффициенты положительны и поэтому он не имеет положительных вещественных корней.

В очень частном случае, когда все коэффициенты k_j равны друг другу и равны k, введём обозначение $\Lambda = \lambda + k$, тогда уравнение $P_6(\lambda) = 0$ принимает вид

$$\begin{split} \Lambda^6 - \Lambda^4 k^2 \big(\Gamma_1 \gamma_1' L_3' \Gamma_3 + \Gamma_1' \gamma_1 L_2' \Gamma_2 \big) &- \Lambda^3 k^3 \big(C L_6' \Gamma_5' L_4 \Gamma_4' \big) \\ &= \Lambda^3 \big[\Lambda^3 - \Lambda k^2 \big(\Gamma_1 \gamma_1' L_3' \Gamma_3 + \Gamma_1' \gamma_1 L_2' \Gamma_2 \big) - k^3 \big(C L_6' \Gamma_5' L_4 \Gamma_4' \big) \big] = \Lambda^3 \mathcal{P}_3(\Lambda) = 0. \end{split}$$

Отсюда $\lambda_1 = \lambda_2 = \lambda_3 = -k$ является кратным корнем. Отметим, что все коэффициенты многочлена $\mathcal{P}_3(\Lambda)$ положительны.

Кубическое уравнение $\mathcal{P}_3(\Lambda) = 0$ имеет один отрицательный корень Λ_4 ; согласно теореме Виета, сумма всех его корней равна нулю. Так как $\frac{d\mathcal{P}_3(\Lambda)}{d\Lambda} > 0$, оставшиеся его корни комплексны и их вещественная часть положительна: $\operatorname{Re} \Lambda_{5,6} = -\Lambda_4/2$.

Условие $\operatorname{Re} \lambda_{5,6} > 0$ эквивалентно неравенству $-\Lambda_4 - 2k > 0$ или $-2k > \Lambda_4$. Значит, положительность этих вещественных частей эквивалентна неравенству $\mathcal{P}_3(-2k) > 0$:

$$\mathcal{P}_{3}(-2k) = -8k^{3} + 2k^{3} \left(\Gamma_{1}\gamma_{1}'L_{3}'\Gamma_{3} + \Gamma_{1}'\gamma_{1}L_{2}'\Gamma_{2}\right) - k^{3} \left(CL_{6}'\Gamma_{5}'L_{4}\Gamma_{4}'\right)$$

Здесь выражения в скобках отрицательны, так как $L'_i < 0$.

В рассматриваемом случае $(k_j = k)$ характеристический многочлен матрицы линеаризации имеет комплексно сопряжённые корни λ_5 и λ_6 с положительной вещественной частью, если

$$-CL_{6}'\Gamma_{5}L_{4}\Gamma_{4}' > 8 - 2(\Gamma_{1}\gamma_{1}'L_{3}'\Gamma_{3} + \Gamma_{1}'\gamma_{1}L_{2}'\Gamma_{2}), \qquad (12)$$

т. е. когда вычисленные в стационарной точке S_6 значения функции L_4 , постоянной C и производных функций Γ_4 , Γ_5 , $-L'_6$, регулирующих процессы, изображённые в правой части схемы генной сети на рис. 1 (в стабилизирующей петле обратной связи), достаточно велики по сравнению со значениями функций, регулирующих связи, изображённые в левой части этой схемы.

В случае, когда $k_j = k$, и в случаях, когда все эти коэффициенты k_j отличаются друг от друга достаточно мало, это — необходимое и достаточное условие неустойчивости стационарной точки.

Следуя [18, 20], в случае, когда стационарная точка S_6 неустойчива, используя теоремы о локально неустойчивом и глобально неустойчивом многообразиях, в фазовом портрете системы (1) можно построить инвариантную двумерную поверхность, соответствующую паре собственных чисел матрицы M_6 с положительными вещественными частями. Траектории всех точек этой поверхности удаляются вдоль неё от точки S_6 и в то же время, согласно лемме 1, не могут выйти за пределы положительно инвариантной области Q^6 . Следовательно, имеет место

Теорема 2. Если матрица M_6 имеет собственные числа с положительными вещественными частями и не имеет мнимых собственных чисел, то динамическая система (1) имеет цикл в области Q^6 .

2. СЕМИМЕРНАЯ МОДЕЛЬ ЦИРКАДНОГО ОСЦИЛЛЯТОРА

В соответствии со схемой, изображённой на рис. 1, построим динамическую систему

$$\frac{dp}{dt} = k_1(\Gamma_1(u)\gamma_1(w) - p); \quad \frac{du}{dt} = k_2(\Gamma_2(x)L_2(p) - u); \\
\frac{dw}{dt} = k_3(\Gamma_3(x)L_3(p) - w); \quad \frac{dz}{dt} = k_4(\Gamma_4(x)L_4(p) - z); \quad (13)$$

$$\frac{dy}{dt} = k_5(\Gamma_5(x)L_5(p) - y); \quad \frac{dx}{dt} = k_6(\Gamma_6(b) - x); \quad \frac{db}{dt} = k_7(\gamma_7(y)L_7(z) - b).$$

В отличие от рассмотренной выше шестимерной модели циркадного осциллятора в данном случае белок ROR связывается с сайтом RRE и активирует транскрипцию гена *Bmal1* на уровне $\gamma_7(y) = \Gamma_7(y) + C$, где $\Gamma_7(y)$ — монотонно возрастающая функция, $\Gamma_7(0) = 0$ и $y = y(t) \neq \text{const.}$

Лемма 4. Все траектории системы (13) со временем попадают в параллелепипед

$$Q^{7} = [0, a_{1}\alpha_{1}] \times [0, a_{2}d_{2}] \times [0, a_{3}d_{3}] \times [0, a_{4}d_{4}] \times [0, a_{5}d_{5}] \times [0, a_{6}] \times [0, (C + \alpha_{7})d_{7}],$$

лежащий в положительном октанте пространства \mathbb{R}^7 переменных p, u, w, z, y, x, b. В дальнейшем они из этого параллелепипеда не выходят.

Таким образом, Q^7 — положительно инвариантная область системы (13).

Стационарные точки динамической системы (13) находятся тем же способом, что и у системы (1). Исключая все переменные, кроме x и p, из системы уравнений, аналогичных (3), мы получаем уравнение

$$p = \Gamma_1(L_2(p)\Gamma_2(x))\gamma_1(L_3(p)\Gamma_3(x)),$$

совпадающее с уравнением (5), и уравнение

$$x = \Gamma_6(\gamma_7(\Gamma_5(x)L_5(p))L_7(L_4(p)\Gamma_4(x))), \tag{14}$$

связывающие эти переменные в фазовом портрете системы (13). Далее мы следуем схеме доказательства теоремы 1.

Если x = 0, то уравнение (14) неразрешимо относительно p ввиду противоречия

$$0 = \Gamma_6(C + \Gamma_7(0 \cdot L_5(p))L_7(L_4(p)\Gamma_4(0))) = \Gamma_6(Cd_7) > 0.$$

При фиксированном $p = p_0 \in [0, a_1\alpha_1]$ уравнение (14) принимает вид

$$x = \Gamma_6(\gamma_7(\Gamma_5(x)L_5(p_0))L_7(L_4(p_0)\Gamma_4(x))), \tag{15}$$

правая часть убывает по x, если

$$\frac{d}{dx}[\gamma_7(\Gamma_5(x)L_5(p_0))L_7(\Gamma_4(x)L_4(p_0))] = \gamma_7'\Gamma_5'L_5L_7 + \gamma_7L_7'\Gamma_4'L_4 < 0 \quad \text{при всех } x.$$
(16)

При выполнении этого условия уравнение (14) имеет единственное решение (см. (2)): $x = x(p_0) = \zeta(p_0)$, как и на рис. 2.

В дальнейшем мы будем предполагать, что условие (16) выполнено.

Продифференцируем (14) по p как неявную функцию:

$$\frac{dx}{dp} = \Gamma_6' \left[\gamma_7' \left(\Gamma_5' \frac{dx}{dp} L_5 L_7 + \Gamma_5 L_5' L_7 \right) + \gamma_7 L_7' \left(\Gamma_4' \frac{dx}{dp} L_4 + \Gamma_4 L_4' \right) \right]$$

или

$$\frac{dx}{dp} \left(1 - \Gamma_6' \gamma_7' \Gamma_5' L_5 L_7 - \Gamma_6' \gamma_7 L_7' \Gamma_4' L_4 \right) = \Gamma_6' \left[\gamma_7' \Gamma_5 L_5' L_7 + \gamma_7 L_7' \Gamma_4 L_4' \right].$$

Здесь правая скобка положительна, так как $L'_4 < 0$, $L'_7 < 0$, а левая скобка строго больше единицы ввиду (16).

Как и для шестимерной модели осциллятора, следует, что производная функции $p = \xi(x)$, задаваемой из (5), имеет вид

$$\frac{dp}{dx}\left(1-\Gamma_1'L_2'\Gamma_2\gamma_1-\Gamma_1L_3'\Gamma_3\gamma_1'\right)=\left(\Gamma_1'L_2\Gamma_2'\gamma_1+\Gamma_1L_3\Gamma_3'\gamma_1'\right),$$

что совпадает с (7).

Таким образом, для динамической системы (13) справедлива

Лемма 5. 1. Справедливо соотношение $\frac{dp}{dx} = \frac{d\xi}{dx} \ge 0$. Поскольку $\gamma_1(0) = \Gamma_1(0) = 0$, равенство здесь достигается только при x = 0.

2. При выполнении условия (16) производная $\frac{dx}{dp} = \frac{d\zeta}{dp}$ корректно определена на отрезке $[0, a_1 \alpha_1].$

2.1. О единственности стационарной точки семимерной модели

Для динамической системы (13) вопрос о единственности стационарной точки рассматривается так же, как и в разд. 1. Для касательных векторов $V_x = \left(1; \frac{d\xi}{dx}\right)$ и $V_p = \left(\frac{d\zeta}{dp}; 1\right)$ в точках пересечения графиков функций $x = \zeta(p), p = \xi(x)$ вычисляется их смешанное произведение и проверяется условие положительной ориентации этой упорядоченной пары векторов: $1 - \frac{d\xi}{dx}\frac{d\zeta}{dp} > 0$. Перепишем это неравенство в виде

$$\frac{\Gamma_{6}'[\gamma_{7}'\Gamma_{5}L_{5}'L_{7} + \gamma_{7}L_{7}'L_{4}'\Gamma_{4}]}{1 - \Gamma_{6}'(\gamma_{7}'\Gamma_{5}'L_{5}L_{7} + \gamma_{7}L_{7}'L_{4}'\Gamma_{4}')} \frac{\Gamma_{1}'L_{2}\Gamma_{2}'\gamma_{1} + \Gamma_{1}\gamma_{1}'L_{3}\Gamma_{3}'}{1 - \Gamma_{1}'L_{2}'\Gamma_{2}\gamma_{1} - \Gamma_{1}\gamma_{1}'L_{3}'\Gamma_{3}} < 1.$$

$$(17)$$

Доказательство следующего утверждения аналогично доказательству теоремы 1.

Теорема 3. При выполнении неравенства (17) динамическая система (13) имеет единственную стационарную точку. Эта точка лежит в области Q^7 .

Обозначим эту стационарную точку через S_7 . Отметим, что для достаточно широкого круга динамических систем вида (13) неравенство (17) действительно выполнено.

В частности, в дополнение к предположениям (10) рассмотрим случай, когда

$$\Gamma_5(x) = \sigma \Gamma_4(x); \quad L_5(p) = \mu L_4(p).$$
 (18)

При таких предположениях пропорциональности условие (16) принимает вид $\frac{\gamma'_7}{\gamma_7}\sigma\mu < -\frac{L'_7}{L_7}$. Это означает, что функции Γ'_5 и L_5 достаточно малы по сравнению с Γ'_4 и L_4 ; напомним, что $L'_7 < 0$. В этом случае неравенство (17) принимает вид

$$0 < 1 - \Gamma_{6}' \Gamma_{7}' L_{5} \Gamma_{5}' - \Gamma_{6}' L_{7}' L_{4} \Gamma_{4}' - \Gamma_{1}' L_{2}' \Gamma_{2} \gamma_{1} - \Gamma_{1} \gamma_{1}' L_{3}' \Gamma_{3}.$$
⁽¹⁹⁾

Два последних слагаемых в этом неравенстве положительны, поскольку $L'_2 < 0$ и $L'_3 < 0$, сумма второго и третьего слагаемых положительна ввиду (16). В дальнейшем для упрощения формул мы обозначим все производные L'_j через $-q_j$. Следовательно, при предположениях (10) и (18) неравенство (17) выполнено. Это достаточные условия единственности точки пересечения графиков функций $x = \zeta(p)$ и $p = \xi(x)$ в прямоугольнике Q^2 или условия единственности стационарной точки у динамической системы (13).

2.2. О неустойчивости стационарной точки семимерной модели

Будем считать, что предположения (10) и (18) выполнены и, значит, динамическая система (13) имеет единственную стационарную точку. Матрица линеаризации этой системы в точке S_7 имеет вид

$$M_{7} = \begin{pmatrix} -k_{1} & k_{1}\Gamma_{1}'\gamma_{1} & k_{1}\Gamma_{1}\gamma_{1}' & 0 & 0 & 0 & 0 \\ k_{2}L_{2}'\Gamma_{2} & -k_{2} & 0 & 0 & 0 & k_{2}L_{2}\Gamma_{2}' & 0 \\ k_{3}L_{3}'\Gamma_{3} & 0 & -k_{3} & 0 & 0 & k_{3}L_{3}\Gamma_{3}' & 0 \\ k_{4}L_{4}'\Gamma_{4} & 0 & 0 & -k_{4} & 0 & k_{4}L_{4}\Gamma_{4}' & 0 \\ k_{5}L_{5}'\Gamma_{5} & 0 & 0 & 0 & -k_{5} & k_{5}L_{5}\Gamma_{5}' & 0 \\ 0 & 0 & 0 & 0 & 0 & -k_{6} & k_{6}\Gamma_{5}' \\ 0 & 0 & 0 & k_{7}\gamma_{7}'L_{7} & k_{7}L_{7}'\gamma_{7} & 0 & -k_{7} \end{pmatrix}$$

Здесь все производные вычисляются в стационарной точке S₇.

Характеристический многочлен $P_7(\lambda)$ этой матрицы при предположениях (10), (18) может быть записан в виде

$$-P_{7}(\lambda) = (\lambda + k_{7})(\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{3})(\lambda + k_{2})(\lambda + k_{1}) + (\lambda + k_{7})(\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{2})k_{1}\Gamma_{1}\gamma_{1}'k_{3}q_{3}\Gamma_{3} + (\lambda + k_{7})(\lambda + k_{6})(\lambda + k_{5})(\lambda + k_{4})(\lambda + k_{3})k_{1}\Gamma_{1}'\gamma_{1}k_{2}q_{2}\Gamma_{2} + (\lambda + k_{1})(\lambda + k_{2})(\lambda + k_{3})(\lambda + k_{5})k_{7}q_{7}\Gamma_{7}k_{6}\Gamma_{6}'k_{4}L_{4}\Gamma_{4}';$$

все его коэффициенты положительны и поэтому он не имеет положительных вещественных корней.

Как и в разд. 1, рассмотрим частный случае, когда все коэффициенты k_j в уравнениях системы (13) равны друг другу и равны k; введём обозначение $\Lambda = \lambda + k$. Тогда уравнение $P_7(\lambda) = 0$ принимает вид

$$\Lambda^{7} + \Lambda^{5} k^{2} \big(\Gamma_{1}^{\prime} \gamma_{1} q_{2} \Gamma_{2} + \Gamma_{1} \gamma_{1}^{\prime} q_{3} \Gamma_{3} \big) + \Lambda^{4} k^{3} \big(L_{5} \Gamma_{5}^{\prime} L_{7} \Gamma_{7}^{\prime} \Gamma_{6}^{\prime} + q_{7} \Gamma_{7} L_{4} \Gamma_{4}^{\prime} \Gamma_{6}^{\prime} \big) \\ = \Lambda^{4} \big[\Lambda^{3} + \Lambda k^{2} \big(\Gamma_{1}^{\prime} \gamma_{1} q_{2} \Gamma_{2} + \Gamma_{1} \gamma_{1}^{\prime} q_{3} \Gamma_{3} \big) + k^{3} \Gamma_{6}^{\prime} \big(L_{5} \Gamma_{5}^{\prime} L_{7} \Gamma_{7}^{\prime} + q_{7} \Gamma_{7} L_{4} \Gamma_{4}^{\prime} \big) \big] = \Lambda^{4} \mathcal{R}_{3}(\Lambda) = 0.$$

Отсюда $\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = -k$ является кратным корнем. Отметим, что все коэффициенты многочлена $\mathcal{R}_3(\Lambda)$ положительны. Так же, как и в разд. 1, уравнение $\mathcal{R}_3(\Lambda) = 0$ имеет один отрицательный корень Λ_5 , а у оставшихся двух корней Λ_6 и Λ_7 вещественные части равны $-\Lambda_5/2$. Для того, чтобы вещественные части соответствующих собственных чисел λ_6 и λ_7 матрицы M_7 были положительными, необходимо и достаточно выполнение неравенства

$$\mathcal{R}_{3}(-2k) = k^{3} \left[-8 - 2 \left(\Gamma_{1}' \gamma_{1} q_{2} \Gamma_{2} + \Gamma_{1} \gamma_{1}' q_{3} \Gamma_{3} \right) + \Gamma_{6}' \left(L_{5} \Gamma_{5}' L_{7} \Gamma_{7}' + q_{7} \Gamma_{7} L_{4} \Gamma_{4}' \right) \right] > 0$$

или

$$\Gamma_{6}'(L_{5}\Gamma_{5}'L_{7}\Gamma_{7}'+q_{7}\Gamma_{7}L_{4}\Gamma_{4}') > 8 + 2(\Gamma_{1}'\gamma_{1}q_{2}\Gamma_{2}+\Gamma_{1}\gamma_{1}'q_{3}\Gamma_{3})$$

что так же, как и в неравенстве (12), можно интерпретировать как преобладание действия стабилизирующей петли обратной связи над процессами, описанными в левой части рис. 1.

Теорема 4. Если матрица M_7 имеет собственные числа с положительными вещественными частями и не имеет мнимых собственных чисел, то динамическая система (13) имеет цикл в области Q^7 .

ЗАКЛЮЧЕНИЕ

Проведён качественный анализ систем дифференциальных уравнений, описывающих два варианта моделей автономного клеточного циркадного осциллятора млекопитающих.

При описании регуляции экспрессии генов мы не конкретизируем аналитический вид функций, ограничиваясь минимальными требованиями: их гладкостью, монотонностью и ограниченностью. Это важная особенность данной работы. Ранее были проведены многочисленные исследования условий появления предельного цикла в моделях биологических осцилляторов, в которых задан вид нелинейных функций, описывающих регуляцию экспрессии генов. В частности, работы по исследованию условий существования предельного цикла в модели Гудвина [3,4], в которой регуляция транскрипции описана функцией Хилла [22,23]. Эти результаты оказали большое влияние на моделирование биологических осцилляторов, поиск параметров модели, при которых обеспечиваются условия существования предельных циклов модели. Без такого типа ограничений на параметры модели поиск их значений становится крайне трудоёмким. Однако несмотря на то, что функции Хилла очень часто используются при описании регуляции экспрессии генов, необходимо учитывать, что функции Хилла — это в большинстве моделей аппроксимация сложных нелинейных регуляторных зависимостей в условиях, когда наши знания о механизме регуляции транскрипции ограничены. По мере того, как появляются новые знания о механизмах регуляции транскрипции конкретных генов, изменяются степень обоснованности моделей и появляются новые варианты описания этих процессов. Поэтому выбор математического описания модели должен быть обоснован биологическими знаниями о механизмах регуляции тенов.

В частности, в работе [23] описан механизм, основанный на многосайтовом фосфорилировании и включении дополнительных обратных связей, обеспечивающих появление предельного цикла (см. также [6]). Для описания такого рода механизма кооперативной регуляции использование функций Хилла биологически обосновано. Однако в настоящее время показано, что влияние белкового комплекса PER:CRY на активность транскрипционного фактора CLOCK:BMAL1 для млекопитающих обеспечивается так называемым механизмом секвекстрации белков, математическое описание которого отличается от функции Хилла, которую использовали в ранних моделях циркадного осциллятора [24]. Поэтому исследования условий существования осцилляций в моделях циркадного осциллятора, регуляторные функции которых описаны в досточно общем виде, крайне актуальны.

Первый вариант анализируемой модели описывает регуляцию генов *Bmal1*, *Per*, *Cry*, *Rev-Erb*. В качестве переменных приняты концентрация белков BMAL1, PER, CRY, REV-ERB, белковых комплексов CLOCK:BMAL1 и PER:CRY. В этой модели считается, что концентрация и активность белка ROR не меняется и его действие на ген *Bmal1* в отсутствие белка REV-ERB постоянно. Такое приближение часто используется в моделях циркадного осциллятора в клетках различных тканей. Зачастую такой подход основывается на известных экспериментальных данных, свидетельствующих о незначительности вклада ROR в формирование ритмичности циркадного осциллятора в некоторых тканях, где он скорее определяет величину амплитуды колебаний [25].

Во втором варианте анализируемой модели добавлена динамика изменения концентраций белка ROR и его влияние на экспрессию гена *Bmal1*. В некоторых случаях требуется учитывать суточную динамику белка ROR. В частности, в работе [26] проведено исследование так называемого парадокса SIRT1, состоящего в том, что один и тот же тип изменения активности деацетилазы SIRT1 разнонаправленно влияет на параметры функционирования циркадного осциллятора через различные пути. Моделирование позволило разрешить это парадокс, но для этого авторам работы потребовалось включить ген *Ror* в разработанную модель.

Таким образом, качественный анализ систем дифференциальных уравнений, описывающих регуляцию основных генов ядра циркадного осциллятора, выявил условия существования осциллирующих траекторий при достаточно общих требованиях на математическое представление экспрессии этих генов. Проверка этих условий необходима для ограничения области параметров модели при поиске их значений.

Отметим, что в работе [27] было установлено, что у моделей трёхкомпонентных генных сетей, подобных рассматриваемой на рис. 1, стационарная точка устойчива и периодических режимов функционирования нет. С. Смейл [28] показал, что объединение двух подобных моделей, каждая из которых не имеет периодических траекторий, может иметь предельный цикл.

ЛИТЕРАТУРА

- Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks // Neuron. 2012.
 V. 74, N. 2. P. 246–260; DOI: 10.1016/j.neuron.2012.04.006
- Newman S. A., Forgacs G. Complexity and self-orgatization in biological development and evolution. Complexity in Chemistry, Biology and Ecology. Springer-Verl., 2005. P. 49–96.

- Goodwin B. C. Temporal Organization in Cells; A Dynamic Theory of Cellular Control Processes. London; N. Y.: Acad. Press, 1963.
- Goodwin B. C. Oscillatory behavior in enzymatic control processes // Adv. Enzyme Regul. 1965. V. 3. P. 425–438; DOI: 10,1016/0065-2571(65)90067-1
- Podkolodnaya O. A., Tverdokhleb N. N., Podkolodnyy N. L. Computational modeling of the cell autonomous mammalian circadian oscillator // BMC Systems Biology. 2017. V. 11. P. 27–42.
- Almeida S., Chaves M., Delaunay F. Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs // J. Theor. Biology. 2020, V. 484. 110015.
- Sato T. K., Panda S., Miraglia L. J., Reyes T. M., Rudic R. D., Mcnamara P., Naik K. A., Fitzgerald G. A., Kay S. A., Hogenesch J. B. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock // Neuron. 2004. V. 43, N. 4. P. 527–537; DOI: 10.1016/j.neuron.2004.07.018
- Hastings S., Tyson J., Webster D. Existebce of periodic solutions for negative feedback cellular control system // J. Different. Equat. 1977. V. 25. P. 39–64.
- Hofbauer J., Mallet-Paret J., Smith H. L. Stable periodic solutions for the hypercycle system // J. Dynamics Different. Equat. 1991. V. 3, N. 3. P. 423–436.
- Акиньшин А. А., Бухарина Т. А., Голубятников В. П., Фурман Д. П. Математическое моделирование взаимодействия двух клеток в пронейральном кластере крылового имагинального диска D. melanogaster // Сиб. журн. чистой и прикл. математики. 2014. Т. 14, № 4. С. 3–10.
- Elowitz M. B., Leibler S. A synthetic oscillatory network of transcriptional regulators // Nature. 2000.
 V. 403. P. 335 338.
- 12. Системная компьютерная биология. Новосибирск: Изд-во СО РАН, 2008.
- Бухарина Т. А., Акиньшин А. А., Голубятников В. П., Фурман Д. П. Математическая и численная модель центрального регуляторного контура системы морфогенеза механорецепторов дрозофилы // Сиб. журн. индустр. математики. 2020. Т. 23, № 2. С. 41–50.
- Glass L., Pasternack J. S. Stable oscillations in mathematical models of biological control systems // J. Math. Biology. 1978. V. 6. P. 207–223.
- Smith R. Orbital stability of ordinary differential equations // J. Different. Equat. 1987. V. 69. P. 265–287.
- 16. Гайдов Ю. А., Голубятников В. П. О некоторых нелинейных динамических системах, моделирующих несимметричные генные сети // Сиб. журн. чистой и прикл. математики. 2007. Т. 7, № 2. С. 8–17.
- 17. Gaidov Yu. A., Golubyatnikov V. P., Mjolsness E. Topological index of a model of *p53-Mdm2* circuit // Информ. вестн. Вавиловского об-ва генетиков и селекционеров. 2009. Т. 13, № 1. С. 160–162.
- 18. Кириллова Н. Е. Об инвариантных поверхностях в моделях генных сетей // Сиб. журн. индустр. математики. 2020. Т. 23, № 4. С. 69–76.
- 19. *Аносов Д. В.* Отображения окружности, векторные поля и их применения М.: Изд-во МЦНМО, 2003.
- 20. Abraham R., Robbins J. Transversal Mappings and Flows. N. Y.: W.A. Benjamin, 1967.
- 21. Anosov D. V. Remarks concerning hyperbolic sets // J. Math. Sci. 1996. V. 78, N 5. P. 497–529.
- Griffith J. S. Mathematics of cellular control processes. I. Negative feedback to one gene // J. Theor. Biol. 1968. V. 20, N 2. P. 202–208; DOI: 10.1016/0022-5193(68)90189-6
- Gonze D., Abou-Jaoudé W. The Goodwin model: behind the Hill function // PLoS ONE. 2013. V. 8, N 8. e69573; https://doi.org/10.1371/journal.pone.0069573
- Kim J. K. Protein sequestration versus Hill-type repression in circadian clock models // IET Syst. Biol. 2016. V. 10, N. 4. P. 125–135; DOI: 10.1049/iet-syb.2015.0090; PMID: 27444022
- Liu A. C., Tran H. G., Zhang E.E., Priest A. A., Welsh D. K., Kay S. A. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms // PLoS Genet. 2008. V. 4, N 2. e1000023; DOI: 10.1371/journal.pgen.1000023

- Foteinou P. T., Venkataraman A., Francey L. J., Anafi R. C., Hogenesch J. B., Doyle F. J. Computational and experimental insights into the circadian effects of SIRT1 // Proc. Nat. Acad. Sci. USA. 2018. V. 115, N 45. P. 11643–11648; DOI: 10.1073/pnas.1803410115
- 27. Голубятников В. П., Кириллова Н. Е. Фазовые портреты моделей двух генных сетей // Мат. заметки СВФУ. 2021. Т. 28, № 1. С. 3–11.
- Смейл С. Математическая модель взаимодействия двух клеток, использующая уравнение Тьюринга // Марсден Дж., МакКракен М. Бифуркация рождения цикла и её приложения. М.: Мир, 1980. С. 274–283.

SIBERIAN JOURNAL OF INDUSTRIAL MATHEMATICS

UDC 517.938

CONDITIONS OF EXISTENCE OF CYCLES IN TWO BASIC MODELS OF CIRCADIAN OSCILLATOR OF MAMMALIANS

© 2021 V. P. Golubyatnikov^{1,2a}, O. A. Podkolodnaya^{3b}, N. L. Podkolodnyi^{3,4c}, N. B. Ayupova^{1,2d}, N. E. Kirillova^{1e}, E. V. Yunosheva^{2f}

 ¹Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia;
 ²Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia;
 ³Institute of Cytology and Genetics SB RAS, pr. Acad. Koptyuga 2, Novosibirsk 630090, Russia;
 ⁴Institute of Computational Mathematics and Mathematical Geophysics SB RAS, pr. Acad. Lavrentyeva 6, Novosibirsk 630090, Russia

Received 30.08.2021, revised 30.08.2021, accepted 21.10.2021

Abstract. We construct two non-linear dynamical systems as models of symplest circadian oscillator's functioning. Conditions of uniqueness of equilibrium point of these systems are described as well as conditions of existence of cycles in their phase portraits.

Keywords: circadian oscillator, gene network, mathematical model, non-linear dynamical systems, positive and negative feedbacks, hyperbolic equilibrium point, phase portrait, cycle.

DOI: 10.33048/SIBJIM.2021.24.403

REFERENCES

- Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. *Neuron*, 2012, Vol. 74, No. 2, pp. 246–260; DOI: 10.1016/j.neuron.2012.04.006
- Newman S.A., Forgacs G. Complexity and self-orgatization in biological development and evolution. Complexity in Chemistry, Biology and Ecology. Springer-Verl., 2005, pp. 49–96.
- Goodwin B.C. Temporal Organization in Cells; A Dynamic Theory of Cellular Control Processes. London; N. Y.: Acad. Press, 1963.
- Goodwin B.C. Oscillatory behavior in enzymatic control processes. Adv. Enzyme Regul., 1965, Vol. 3, pp. 425–438; DOI: 10,1016/0065-2571(65)90067-1
- Podkolodnaya O.A., Tverdokhleb N.N., Podkolodnyy N.L. Computational modeling of the cell autonomous mammalian circadian oscillator. *BMC Systems Biology*, 2017, Vol. 11, pp. 27–42; https://doi.org/10.1186/s12918-016-0379-8
- Almeida S., Chaves M., Delaunay F. Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs. J. Theor. Biology, 2020, Vol. 484, article number 110015; https://doi.org/10.1016/j.jtbi.2019.110015
- Sato T.K., Panda S., Miraglia L.J., Reyes T.M., Rudic R.D., Mcnamara P., Naik K. A., Fitzgerald G. A., Kay S. A., Hogenesch J. B. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. *Neuron*, 2004, Vol. 43, No. 4, pp. 527–537; DOI: 10.1016/j.neuron.2004.07.018

English translation is published in Journal of Applied and Industrial Mathematics, 2021, Vol. 15, No. 4.

- Hastings S., Tyson J., Webster D. Existebce of periodic solutions for negative feedback cellular control system. J. Diff. Equ., 1977, Vol. 25, pp. 39–64.
- Hofbauer J., Mallet-Paret J., Smith H.L. Stable periodic solutions for the hypercycle system. J. Dynamics Diff. Equ., 1991, Vol. 3, No. 3, pp. 423–436.
- Akin'shin A.A., Bukharina T.A., Golubyatnikov V.P., Furman D.P. Mathematical modeling of interaction of two cells in the proneural cluster of the wing imaginal disk of *D. Melanogaster. Vestn. Novosib. Gos. Univ.*, Ser. Mat. Mekh. Inform., 2014, Vol. 14, No. 4, pp. 3–10 (in Russian).
- Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. *Nature*, 2000, Vol. 403, pp. 335–338; https://doi.org/10.1038/35002125
- 12. Sistemnaya komp'yuternaya biologiya [System Computational Biology]. Novosibirsk: Izd-vo SB RAS, 2008.
- Bukharina T.A., Akin'shin A.A., Golubyatnikov V.P., Furman D.P. Mathematical and numerical models of the central regulatory circuit of the morphogenesis system of drosophila. J. Appl. Ind. Math., 2020, Vol. 14, No. 2, pp. 249–255; https://doi.org/10.1134/S1990478920020040
- Glass L., Pasternack J.S. Stable oscillations in mathematical models of biological control systems. J. Math. Biology, 1978, Vol. 6, pp. 207–223.
- 15. Smith R. Orbital stability of ordinary differential equations. J. Diff. Equ., 1987, Vol. 69, pp. 265–287.
- Gaidov Yu.A., Golubyatnikov V.P. On some nonlinear dynamical systems modelling asymmetric gene networks. Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2007, Vol. 7, No. 2, pp. 19–27 (in Russian).
- Gaidov Yu.A., Golubyatnikov V.P., Mjolsness E. Topological index of a model of *p53-Mdm2* circuit. VOGiS Herald, 2009, Vol. 13, No. 1, pp. 160–162.
- Kirillova N.E. On Invariant Surfaces in Gene Network Models. J. Appl. Ind. Math., 2020, Vol. 14, pp. 666–671; https://doi.org/10.1134/S1990478920040055
- 19. Anosov D.V. Otobrazheniya okruzhnosti, vektornye polya i ikh primeneniya [Mapping of circle, vector fields and its applications]. Moscow: MCNMO, 2003 (in Russian).
- 20. Abraham R., Robbins J. Transversal Mappings and Flows. N. Y.: W. A. Benjamin Inc. 1967.
- 21. Anosov D.V. Remarks concerning hyperbolic sets. J. Math. Sci., 1996, Vol. 78, No. 5, pp. 497–529.
- Griffith J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J. Theor. Biol., 1968, Vol. 20, No. 2, pp. 202–208; DOI: 10.1016/0022-5193(68)90189-6
- Gonze D., Abou-Jaoudé W. The Goodwin model: behind the Hill function. *PLoS ONE*, 2013, Vol. 8, No. 8, article number e69573; https://doi.org/10.1371/journal.pone.0069573
- Kim J.K. Protein sequestration versus Hill-type repression in circadian clock models. *IET Syst. Biol.*, 2016, Vol. 10, No. 4, pp.125–135; DOI: 10.1049/iet-syb.2015.0090; PMID: 27444022
- Liu A.C., Tran H.G., Zhang E.E., Priest A.A., Welsh D.K., Kay S.A. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. *PLoS Genet.*, 2008, Vol. 4, No. 2, e1000023; DOI: 10.1371/journal.pgen.1000023
- Foteinou P.T., Venkataraman A., Francey L.J., Anafi R.C., Hogenesch J. B., Doyle F. J. Computational and experimental insights into the circadian effects of SIRT1. *Proc. Nat. Acad. Sci. USA*, 2018, Vol. 115, No. 45, pp. 11643–11648; DOI: 10.1073/pnas.1803410115
- Golubyatnikov V.P., Kirillova N.E. Phase portraits of two gene networks models. Math. Notes of North-East Federal University, 2012, Vol. 28, No. 1, pp. 3–11; DOI: 10.25587/SVFU.2021.68.70.001
- Smeil S. A mathematical model of two cells via Turing's equation. Lecture Appl. Math. AMS, 1974, Vol. 6, pp. 15–26.