

СИБИРСКИЙ ЖУРНАЛ ИНДУСТРИАЛЬНОЙ МАТЕМАТИКИ

РЕДАКЦИОННАЯ КОЛЛЕГИЯ

Главный редактор

Зам. главного редактора

Отв. секретарь

В. Л. Береснев А. Л. Карчевский

В. А. Дедок

Журнал основан в 1998 году Выходит 4 раза в год Том 25, №4(92) Октябрь - декабрь 2022 г.

ЧЛЕНЫ РЕДКОЛЛЕГИИ

Г. В. Алексеев	С. Б. Медведев
Б. Д. Аннин	Р. Г. Новиков
В. С. Белоносов	Д. Е. Пальчунов
В. Н. Белых	П. И. Плотников
Ю.С.Волков	В. Г. Романов
В. П. Ильин	Е. М. Рудой
С. И. Кабанихин	В. М. Садовский
А. Н. Карапетянц	Д. И. Свириден
М. В. Клибанов	А.С. Терсенов
С. С. Кутателадзе	В. С. Тимофеев

В. А. Левин

Іовиков Пальчунов Плотников Романов Рудой Садовский Свириденко Терсенов Тимофеев В. В. Шайдуров

Н. И. Макаренко

СОДЕРЖАНИЕ

• Аюпова Н. Б., Голубятников В. П., Минушкина Л. С. Об инвариантных поверхностях в фазовых портретах моделей кольцевых генных сетей	5
Боронина М. А., Куликов И. М., Черных И. Г., Винс Д. В. Использование комбина- ции схем Роу и Русанова для численного решения уравнений магнитной гидродинамики в задачах космической плазмы	14
Васильев В. И., Кардашевский А. М., Попов В. В. Итерационное решение ретро- спективной обратной задачи теплопроводности с неоднородными граничными условиями Дирихле	27
Демиденко Г. В. Метод решения одной биологической задачи большой размерности	42
Дудко О. В., Лаптева А. А., Рагозина В. Е. Эволюция волновой картины кусочно- линейного одноосного растяжения и сжатия разномодульного упругого стержня	54
Ермишина В. Е. Гиперболическая модель сильнонелинейных волн в двухслойных течениях неоднородной жидкости	71
Мишин А. В. Учёт обобщённой производной и коллективного влияния фаз на процесс гомо- генизации	86
Нещадим М. В. Уравнение Лиувилля и точно транзитивные представления алгебры $sl_2(\mathbb{R})$.	99
Остросаблин Н. И. Единственность решения граничных задач статических уравнений теории упругости с несимметричной матрицей модулей упругости	107
Паламарчук Е.С. Оптимальное управление в задаче долгосрочного трекинга экспоненциального процесса Орнштейна — Уленбека	116
Перцев Н. В., Бочаров Г. А., Логинов К. К. Численное моделирование динамики популяции Т-лимфоцитов в лимфоузле	136
Петраков И. Е. Контактная задача изгиба многослойной композитной пластины с учётом различных модулей упругости при растяжении и сжатии	153
Селиверстов Е. Ю. Иерархический метод установки параметров параллельных популяцион- ных метаэвристических алгоритмов оптимизации	164
Сказка В. В. Кососимметрические разностные аналоги четвёртого порядка аппроксимации первой производной	179
Скворцова М. А., Ыскак Т. Оценки решений дифференциальных уравнений с распределен- ным запаздыванием, описывающих конкуренцию нескольких видов микроорганизмов	193
Терсенов Ар. С. О существовании вязких решений анизотропных параболических уравнений с переменными показателями анизотропности	206
Чумаков Г. А., Чумакова Н. А. О локализации неустойчивого решения одной системы трёх нелинейных обыкновенных дифференциальных уравнений с малым параметром	221

новосибирск ИЗДАТЕЛЬСТВО ИНСТИТУТА МАТЕМАТИКИ

УДК 517.938

ОБ ИНВАРИАНТНЫХ ПОВЕРХНОСТЯХ В ФАЗОВЫХ ПОРТРЕТАХ МОДЕЛЕЙ КОЛЬЦЕВЫХ ГЕННЫХ СЕТЕЙ

© 2022 Н. Б. Аюпова^{1,a}, В. П. Голубятников^{1,b}, Л. С. Минушкина^{2,c}

¹Институт математики им. С. Л. Соболева СО РАН, просп. Акад. Коптюга, 4, г. Новосибирск 630090, Россия, ²Новосибирский государственный университет, ул. Пирогова, 1, г. Новосибирск 630090, Россия

E-mails: ^aayupova@math.nsc.ru, ^bgolubyatn@yandex.ru, ^cl.minushkina@g.nsu.ru

Поступила в редакцию 25.04.2022 г.; после доработки 25.04.2022 г.; принята к публикации 22.06.2022 г.

Для кусочно-линейных динамических систем размерностей три и четыре, моделирующих функционирование простейших кольцевых генных сетей, получены достаточные условия существования инвариантных поверхностей в их фазовых портретах. Эти поверхности содержат периодические траектории рассматриваемых динамических систем.

Ключевые слова: блочно-линейные динамические системы, инвариантные области, инвариантные поверхности, отображение Пуанкаре, неподвижная точка, циклы, теорема Гробмана — Хартмана, теорема Перрона — Фробениуса.

DOI: 10.33048/SIBJIM.2022.25.401

Мы продолжаем изучение фазовых портретов динамических систем, моделирующих функционирование кольцевых генных сетей, с целью выявления циклов и других геометрических особенностей этих портретов. Следуя [1–3], где были подробно изложены все биологические интерпретации, в качестве модели, описывающей кинетику процессов взаимодействия в простейших сетях такого типа, рассмотрим динамическую систему с блочно-линейными правыми частями:

$$\frac{dx_1}{dt} = \mathsf{L}_1(x_3) - k_1 x_1, \quad \frac{dx_2}{dt} = \mathsf{L}_2(x_1) - k_2 x_2, \quad \frac{dx_3}{dt} = \mathsf{L}_3(x_2) - k_3 x_3. \tag{1}$$

Здесь коэффициенты k_i постоянны и положительны, ступенчатые функции L_i

$$\mathsf{L}_{j}(w) = \begin{cases} k_{j}a_{j} > 0 & \text{при} \quad 0 \leqslant w < 1, \\ 0 & \text{при} \quad 1 \leqslant w, \end{cases} \quad j = 1, 2, 3,$$

моделируют отрицательные связи в генной сети.

Аналогичная блочно-линейная система размерности четыре рассмотрена ниже.

В работах [4,5] было установлено, что условия $a_j > 1$, j = 1, 2, 3, необходимы и достаточны для существования периодической траектории (цикла) у системы (1); в дальнейшем будем предполагать, что эти условия выполнены. Указанный цикл кусочно-гладок, устойчив и является единственным циклом в инвариантной области, которую для полноты изложения мы опишем ниже вместе с другими основными построениями, проделанными в тех публикациях. В случае $k_1 = k_2 = k_3 = 1$ соответствующие вычислительные эксперименты для систем вида (1) были проделаны в [6].

Работа выполнена в рамках государственного задания ИМ СО РАН (проект FWNF-2022-0009).

Рассмотрим в положительном октанте \mathbb{R}^3_+ параллелепипед $Q^3 = [0, a_1] \times [0, a_2] \times [0, a_3]$. Для системы (1) область Q^3 положительно инвариантна. Это значит, что траектории всех её точек с ростом t из неё не выходят (см. [4,7]).

Одним из основных результатов настоящей работы является следующее утверждение.

Теорема 1 (об инвариантной поверхности системы (1)). Если $a_j > 1$ для всех j = 1, 2, 3, то область Q^3 содержит инвариантную поверхность Σ системы (1). Эта поверхность Σ содержит цикл, найденный в [4].

Так же, как и в [5,7], разобъём область Q^3 проходящими через точку E(1,1,1) гиперплоскостями $x_j = 1, j = 1, 2, 3$, на восемь более мелких параллелепипедов, которые будем называть блоками и обозначать бинарными мультииндексами: { $\varepsilon_1 \varepsilon_2 \varepsilon_3$ }, где $\varepsilon_j = 0$, если для всех точек рассматриваемого блока выполнено неравенство $x_j < 1$; $\varepsilon_j = 1$, если для всех точек этого блока $x_j \ge 1$. Отметим, что в условиях теоремы 1 точка E лежит во внутренности области Q^3 .

Как было установлено в [4], все траектории динамической системы (1), начинающиеся в блоке {001}, проходят через блоки разбиения в соответствии с циклической диаграммой

$$\{001\} \longrightarrow \{011\} \longrightarrow \{010\}$$

$$\uparrow \qquad \qquad \downarrow \qquad (2)$$

$$\{101\} \longleftarrow \{100\} \longleftarrow \{110\}$$

Из каждого блока этой диаграммы траектории системы (1) могут перейти только в один соседний блок: в тот, куда указывает соответствующая стрелка. В работе [8] такие блоки называются одновалентными. Аналогичным образом определяется валентность произвольного блока B: это количество всех соседних с ним блоков, в которые траектории системы (1) могут из него переходить. Все одновалентные блоки системы (1) перечислены в диаграмме (2); блоки {000} и {111} имеют валентность три, циклы системы (1) в трёхвалентные блоки не заходят.

Аналоги этой диаграммы для динамических систем биохимической кинетики других размерностей известны в литературе под названием State Transition Diagram, State Transition Graph и т. п. (см. [1,9]). В старших размерностях комбинаторная структура разбиений аналогичных Q^3 инвариантных областей и соответствующих диаграмм выглядит гораздо сложнее (см. [10–12]).

Обозначим через W_1 объединение перечисленных в диаграмме (2) одновалентных блоков. Эта область, как и Q^3 , является положительно инвариантной для динамической системы (1). В работе [4] было показано, что в условиях теоремы 1 траектории всех внутренних точек области W_1 переходят из блока в блок только через внутренние точки разделяющих их граней и не проходят через рёбра разбиения Q^3 .

1. ОПИСАНИЕ ТРАЕКТОРИЙ В ОДНОВАЛЕНТНЫХ БЛОКАХ

Общие грани каждой пары соседних блоков диаграммы (2) обозначим, как и в [4], следующим образом:

$$\begin{split} F_0 &= \{101\} \cap \{001\}, & \text{здесь} \quad x_1 = 1; \quad F_1 = \{001\} \cap \{011\}, & \text{здесь} \quad x_2 = 1; \\ F_2 &= \{011\} \cap \{010\}, & \text{здесь} \quad x_3 = 1; \quad F_3 = \{010\} \cap \{110\}, & \text{здесь} \quad x_1 = 1; \\ F_4 &= \{110\} \cap \{100\}, & \text{здесь} \quad x_2 = 1; \quad F_5 = \{100\} \cap \{101\}, & \text{здесь} \quad x_3 = 1. \end{split}$$

Пусть

$$\begin{split} \varphi_0 \colon F_0 \to F_1, \quad \varphi_1 \colon F_1 \to F_2, \quad \varphi_2 \colon F_2 \to F_3, \\ \varphi_3 \colon F_3 \to F_4, \quad \varphi_4 \colon F_4 \to F_5, \quad \varphi_5 \colon F_5 \to F_0 \end{split}$$

— сдвиги точек этих граней вдоль траекторий динамической системы (1) внутри каждого из перечисленных блоков. Аналитическое описание этих траекторий в каждом таком блоке имеет очень простой вид для блочно-линейных динамических систем любой размерности (см. [8, 13, 14]).

В рассматриваемом трёхмерном случае мы получаем следующие формулы перехода траекторий с грани на грань в диаграмме (2):

$$F_{0} \to F_{1}: \qquad x_{1}^{(1)} = \left[\frac{a_{2}-1}{a_{2}-x_{2}^{(0)}}\right]^{k_{1}/k_{2}}; \qquad x_{2}^{(1)} = 1; \qquad x_{3}^{(1)} = a_{3} + (x_{3}^{(0)} - a_{3}) \left[\frac{a_{2}-1}{a_{2}-x_{2}^{(0)}}\right]^{k_{3}/k_{2}}; \qquad (3)$$

$$F_{1} \to F_{2}: \qquad x_{1}^{(2)} = x_{1}^{(1)} \cdot [x_{3}^{(1)}]^{-k_{1}/k_{3}}; \qquad x_{2}^{(2)} = a_{2} + (1-a_{2})[x_{3}^{(1)}]^{-k_{2}/k_{3}}; \qquad x_{3}^{(2)} = 1.$$

Формулы, описывающие остальные переходы φ_j с грани на грань, отличаются от этих двух только циклическими перестановками индексов; композиция всех перечисленных шести сдвигов П: $F_0 \to F_0$ является отображением последования Пуанкаре для цикла, существование которого было установлено в [4]. Обозначим через D_* точку пересечения этого цикла с гранью F_0 — это неподвижная точка отображения Пуанкаре П.

Зададим на этой грани, где $x_1 = 1, 0 \le x_2 \le 1, 1 \le x_3 \le a_3$, систему координат Oyz, для которой F_0 лежит в положительном октанте \mathbb{R}^2_+ , начало координат расположено в точке E и $y = 1 - x_2, z = x_3 - 1, 0 \le y \le 1, 0 \le z \le a_3 - 1$. Обозначим через y_*, z_* координаты точки D_* и через K^2 — прямоугольник $y_* \ge y \ge 0, z_* \ge z \ge 0$.

Пусть в такой системе координат отображение Пуанкаре П: $F_0 \to F_0$ описывается координатными функциями $\Psi = (\psi_1(y, z), \psi_2(y, z))$. Из формул (3) переходов траекторий с грани на грань и их аналогов, как и в [4,5], выводятся следующие утверждения.

Лемма 1. Справедливы утверждения:

1) для всех точек $P \in F_0$, отличных от начала координат O, выполнены неравенства $0 < \psi_1(P) < 1, 0 < \psi_2(P) < a_3 - 1$ и $\psi_i(0,0) = 0;$

2) всюду в F_0 первые производные координатных функций ψ_j строго положительны, а все их вторые производные строго отрицательны; j = 1, 2.

2. ДОКАЗАТЕЛЬСТВО ТЕОРЕМЫ ОБ ИНВАРИАНТНОЙ ПОВЕРХНОСТИ

Зададим на грани F_0 частичный порядок: если координаты двух точек $P_a(y_a, z_a)$ и $P_b(y_b, z_b)$ этой грани удовлетворяют неравенствам $y_a < y_b$ и $z_a < z_b$, то $P_a \prec P_b$ (см. [4]). В той же работе была установлена следующая

Лемма 2. Отображение Пуанкаре является монотонным относительно частичного порядка \prec , т. е. если $P_a \prec P_b$, то $\Phi(P_a) \prec \Phi(P_b)$.

Там же для отображения Пуанкаре была вычислена матрица Якоби $J_{\Pi}(0)$ в начале координат y = 0, z = 0; её определитель равен единице, а собственные числа λ_1, λ_2 положительны и различны. Пусть $\lambda_1 > 1 > \lambda_2$.

Теперь перейдём в систему координат OYZ, где ось OY параллельна собственному вектору матрицы $J_{\Pi}(0)$, соответствующему $\lambda_1 > 1$ и направленному из точки O во внутренность грани F_0 , а направление оси OZ соответствует собственному числу λ_2 . Все замены переменных сохраняют ориентацию на этой грани.

В окрестности точки O отображение Пуанкаре П в координатах OYZ описывается следующим образом. Если $\Pi(Y_0, Z_0) = (Y_1, Z_1)$, то $Y_1 = \lambda_1 Y_0 + G(Y_0, Z_0)$; $Z_1 = \lambda_2 Z_0 + H(Y_0, Z_0)$. Здесь функции G, H — гладкие, класса C^1 при малых |Y| и |Z| и обращаются в нуль вместе со своими первыми производными в начале координат.

Основные результаты настоящей работы сводятся к проверке условий следующего утверждения. **Лемма 8.1** [15, гл. 9]. Пусть A, C — невырожденные постоянные матрицы $(d \times d)$ $u \ (e \times e)$ соответственно, и пусть a = ||A|| < 1, $1/c = ||C^{-1}|| < 1$. Пусть отображение $\Pi: (Y_0, Z_0) \to (Y_1, Z_1)$ имеет вид

$$\Pi: Y_1 = CY_0 + Y(Y_0, Z_0), \quad Z_1 = AY_0 + Z(Y_0, Z_0),$$

где Y, Z — функции класса C¹ при малых $||Y_0||$, $||Z_0||$, обращающиеся в нуль вместе с первыми производными при $(Y_0, Z_0) = 0$. Тогда существует непрерывное взаимно однозначное отображение R: $u = \Phi(Y, Z)$, $v = \Psi(Y, Z)$ окрестности точки (u, v) = 0, при котором П переходит в линейное отображение $R\Pi R^{-1} = \ell$: $u_1 = Cu_0$, $v_1 = Av_0$.

Эта лемма и аналогичные утверждения из [16] используются в доказательстве известной теоремы Гробмана — Хартмана (см. также [17]).

В рассматриваемом нами случае трёхмерной динамической системы $d = e = 1, A = \lambda_2 < 1, C = \lambda_1 > 1$. Выберем в окрестности начала координат *Ouv* отрезок $I = [0, \nu_1]$ оси *Ou*; пусть $\nu_1 = \lambda_1 \nu_0$. Точка $N_0(\nu_0, 0) \in I$ при отображении ℓ переходит в точку $N_1(\nu_1, 0)$. Пусть точки $P_0, P_1 \in F_0$ при описанных выше заменах переменных преобразуются в точки N_0 и N_1 соответственно. Тогда $\Pi(P_0) = P_1$ и $P_0 \prec P_1$. Последовательность точек $P_k = \Pi(P_{k-1})$ содержится в прямоугольнике K^2 и при $k \to \infty$, монотонно возрастая относительно порядка \prec , стремится к неподвижной точке D_* отображения Пуанкаре (см. [4]). При этом отрезок I при замене переменных $(u, v) \to (Y, Z)$ преобразуется в дугу L_1 , соединяющую точки O и P_1 и содержащую в себе дугу L_0 , которая соединяет точки O и P_0 .

При отображении Пуанкаре дуга L_1 переходит в дугу L_2 , соединяющую O и P_2 и содержащую в себе дугу L_1 , и т. д. Объединение этой последовательности вложенных друг в друга дуг — это непрерывная дуга $L_* = \bigcup_{k=0}^{\infty} L_k$, соединяющая неподвижные точки O и D_* отображения Пуанкаре и являющаяся графиком непрерывной монотонно возрастающей функции, определённой на отрезке $[0, y_*]$. Траектории точек, лежащих на дуге L_* , образуют искомую инвариантную поверхность Σ . Теорема 1 доказана.

Из построений следует, что эта поверхность лежит в инвариантной области $W_1 \subset Q^3$, имеет с границей этой области в точности одну общую точку *E* и ограничена циклом, описанным в работе [4].

3. ИНВАРИАНТНАЯ ПОВЕРХНОСТЬ ЧЕТЫРЁХМЕРНОЙ СИСТЕМЫ

В работе [10] исследовалась аналогичная системе (1) блочно-линейная динамическая система размерности четыре:

$$\frac{dx_1}{dt} = \mathsf{L}_1(x_4) - k_1 x_1; \quad \frac{dx_2}{dt} = \Gamma_2(x_1) - k_2 x_2; \quad \frac{dx_3}{dt} = \Gamma_3(x_2) - k_3 x_3; \quad \frac{dx_4}{dt} = \Gamma_4(x_3) - k_4 x_4.$$
(4)

Здесь ступенчатая убывающая функция L_1 определяется так же, как и в случае системы (1), а ступенчатые функции Γ_j , j = 2, 3, 4, монотонно возрастают и определяются соотношениями

$$\Gamma_j(w) = 0 > 0$$
 при $0 \leq w < 1$; $\Gamma_j(w) = k_j a_j$ при $1 \leq w$

Упрощённая версия этой системы $(k_1 = k_2 = k_3 = k_4 = 1)$ изучалась в [1], гладкий её аналог рассматривался в [9]. Как и при рассмотрении системы (1), в дальнейшем мы предполагаем, что для всех уравнений системы (4) выполняются соотношения $a_j > 1$; здесь j = 1, 2, 3, 4. В работе [10] установлено, что параллелепипед $Q^4 = [0, a_1] \times [0, a_2] \times [0, a_3] \times [0, a_4]$ является инвариантной областью системы (4) и проходящие через точку $E_4 = (1, 1, 1, 1)$ плоскости $x_j =$ 1 разбивают его на 16 блоков, которые мы будем нумеровать бинарными мультииндексами $\{\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_4\}$, как и в трёхмерном случае. Там же была построена диаграмма

которая составлена из всех восьми одновалентных блоков разбиения области Q^4 . Обозначим их объединение через \mathcal{W}_1 . Оставшиеся восемь блоков разбиения области Q^4 имеют валентность три. Идея построения этой диаграммы фактически была описана в [9].

Композиция переходов траекторий системы (4) вдоль стрелок диаграммы (5) задаёт отображение Пуанкаре $\mathcal{P}: \mathcal{F}_0 \to \mathcal{F}_0$ трёхмерной грани, разделяющей блоки {1111} и {0111}. Как было показано в [10], это отображение монотонно относительно частичного порядка, аналогичного описанному выше порядку \prec , и внутренность грани \mathcal{F}_0 содержит в точности одну неподвижную точку \mathcal{D}_* отображения \mathcal{P} . Траектория этой точки является циклом системы (4). Указанные в диаграмме (5) переходы с грани на грань описываются формулами, аналогичными (3).

Зададим на грани \mathcal{F}_0 , где $x_1 = 1$, $1 \leq x_2 \leq a_2$, $1 \leq x_3 \leq a_3$, $1 \leq x_4 \leq a_4$, систему координат Oxyz, в которой \mathcal{F}_0 лежит в положительном октанте \mathbb{R}^3_+ , начало координат расположено в точке E_4 и

$$\begin{aligned} x &= x_2 - 1, \quad 0 \leqslant x \leqslant a_2 - 1; \\ y &= x_3 - 1, \quad 0 \leqslant y \leqslant a_3 - 1; \\ z &= x_4 - 1, \quad 0 \leqslant z \leqslant a_4 - 1. \end{aligned}$$

Пусть в такой системе координат точка \mathcal{D}_* имеет координаты (x_*, y_*, z_*) . Обозначим через K^3 параллелепипед $0 \leq x \leq x_*, 0 \leq y \leq y_*, 0 \leq z \leq z_*$ и через $J_{\mathcal{P}}$ — матрицу Якоби отображения Пуанкаре \mathcal{P} .

Как было установлено в [10], все элементы матрицы Якоби $J_{\mathcal{P}}(0)$, вычисленной при x = 0, y = 0, z = 0, положительны. Нетрудно проверить, что det $J_{\mathcal{P}}(0) = 1$.

Из теоремы Перрона — Фробениуса (см. [18]) следует, что матрица $J_{\mathcal{P}}(0)$ имеет положительное собственное число $\lambda_1 > 1$, которое является простым корнем характеристического уравнения этой матрицы и превосходит модули остальных её собственных чисел; соответствующий ему собственный вектор имеет положительные координаты. Отметим, что $\lambda_1 \lambda_2 \lambda_3 = 1$.

Для описания линеаризации отображения Пуанкаре \mathcal{P} в точке E_4 нам потребуется рассмотреть все случаи соотношений между собственными числами положительной матрицы размера 3×3 , у которой определитель равен единице.

1. Пусть $\lambda_1 > 1 > |\lambda_2| > |\lambda_3|$. В таком случае выполнены условия леммы 8.1 при d = 2, e = 1 и $||C|| = \lambda_1$. Рассмотрим в системе координат (u, v, w), линеаризующей отображение Пуанкаре в малой окрестности точки O, направленный вдоль оси Ou достаточно малый отрезок $[0, \nu_1]$ и на нём точку $\nu_0 = \nu_1/\lambda_1$. Здесь и ниже ось Ou соответствует максимальному собственному числу $\lambda_1 > 1$.

В этой системе координат точка $\mathcal{N}_0 = (\nu_0, 0, 0)$ при отображении Пуанкаре переходит в точку $\mathcal{N}_1(\nu_1, 0, 0)$, а отрезок $[0, \nu_0]$ — в отрезок $[0, \nu_1]$. Точно так же, как в доказательстве теоремы 1, в параллелепипеде K^3 строится монотонно возрастающая (вообще говоря, не гладкая) кривая \mathcal{L}_* , соединяющая точку E_4 с точкой \mathcal{D}_* и инвариантная относительно отображения Пуанкаре. Траектории точек этой кривой образуют в области \mathcal{W}_1 инвариантную поверхность. 2. Случай $\lambda_1 > |\lambda_2| > 1 > |\lambda_3|$ также удовлетворяет условиям леммы 8.1. Здесь d = 1, e = 2, $||A|| = |\lambda_3| < 1$, а матрица C диагонализирована в соответствии с её собственными векторами, отвечающими числам λ_1 и λ_2 .

Точно так же, как в п. 1, в грани \mathcal{F}_0 строится монотонно возрастающая кривая \mathcal{L}_* , соединяющая точку E_4 с точкой \mathcal{D}_* и инвариантная относительно отображения Пуанкаре. Эта кривая, как и выше, порождает в области \mathcal{W}_1 инвариантную поверхность.

3. Пусть $\lambda_2 = \lambda_3$. Ввиду равенства det $J_{\mathcal{P}}(0) = 1$ эти два собственных числа по модулю меньше единицы. Отметим, что при $|\lambda_2| < 1$ норма матрицы $\mathcal{J} = \begin{pmatrix} \lambda_2 & 1 \\ 0 & \lambda_2 \end{pmatrix}$ может оказаться больше единицы. Однако при достаточно большом натуральном m норма матрицы \mathcal{J}^m становится меньше единицы, и при таком m итерация \mathcal{P}^m отображения Пуанкаре может быть линеаризована в окрестности начала координат.

Так же, как и в 1 и 2, в параллелепипеде K^3 строится монотонно возрастающая кривая \mathcal{L}^m_* , соединяющая точку E_4 с точкой \mathcal{D}_* , и инвариантная относительно итерации \mathcal{P}^m . Эта кривая порождает в области \mathcal{W}_1 поверхность, инвариантную относительно *m*-й итерации отображения Пуанкаре.

Будет ли эта поверхность инвариантной относительно отображения Пуанкаре \mathcal{P} , пока неясно.

4. Возможен также случай $\lambda_1 > |\lambda_2| = 1 > |\lambda_3|$, в котором условия леммы 8.1. не выполнены. Например, собственные числа положительной матрицы $M = \begin{pmatrix} 3 & 1 & 1 \\ 1/2 & 1 & 1/2 \\ 1 & 1 & 1 \end{pmatrix}$ имеют вид $\lambda_1 = 2 + \sqrt{3} > \lambda_2 = 1 > \lambda_3 = 2 - \sqrt{3}$, и доказательство теоремы Гробмана — Хартмана, вообше говоря, не гарантирует возможность линеаризации в начале координат отображения $\mathbb{R}^3 \to \mathbb{R}^3$, для которого M является матрицей Якоби.

Из приведённого разбора вариантов вытекает следующая

Теорема 2 (об инвариантной поверхности системы (4)). Если $a_j > 1$ для всех j = 1, 2, 3, 4и вычисленная в точке E_4 матрица Якоби $J_{\mathcal{P}}(0)$ отображения Пуанкаре не имеет собственных чисел, модуль которых равен единице, то область \mathcal{W}_1 содержит инвариантную поверхность системы (4). Эта поверхность содержит цикл системы (4), описанный в [10].

Доказательства теорем 1 и 2, по-видимому, можно воспроизвести для построения инвариантых поверхностей в случае блочно-линейных динамических систем других размерностей, для которых существование, единственность и устойчивость цикла в одновалентной области вида W_1 уже установлены (см. [11, 13, 14]). Аналогичные построения инвариантных поверхностей для гладких систем размерности шесть проведены в [12].

Наличие инвариантных поверхностей в фазовых портретах нелинейных динамических систем значительно упрощает качественный анализ поведения их траекторий (см., например, [8, 19]).

Авторы искренне благодарны С. А. Кантору за полезные советы и обсуждения, а также анонимному рецензенту за критические замечания.

ЛИТЕРАТУРА

- Glass L., Pasternack J.S. Stable oscillations in mathematical models of biological control systems // J. Math. Biology. 1978. V. 6. P. 207 – 223.
- 2. Системная компьютерная биология. Новосибирск: Изд-во СО РАН, 2008.
- Likhoshvai V.A., Golubyatnikov V.P., Khlebodarova T.M. Limit cycles in models of circular gene networks regulated by negative feedback loops // BMC Bioinformatics. 2020. V. 21, N 11. Article 255; https://doi.org/10.1186/s12859-020-03598-z
- 4. Голубятников В.П., Иванов В.В., Минушкина Л.С. О существовании цикла в одной несимметричной модели кольцевой генной сети // Сиб. журн. чистой и прикл. математики. 2018. Т. 18, № 3. С. 26 32; DOI: 10.17377/PAM.2018.18.4

- Голубятников В.П., Иванов В.В. Единственность и устойчивость цикла в трёхмерных блочнолинейных моделях кольцевых генных сетей // Сиб. журн. чистой и прикл. математики. 2018.
 Т. 18, № 4. С. 19 – 28; DOI: 10.33048/pam.2018.18.402
- 6. Волокитин Е.П. О предельных циклах в простейшей модели гипотетической генной сети // Сиб. журн. индустр. математики. 2004. Т. 7, № 3. С. 57 65.
- 7. Аюпова Н.Б., Голубятников В.П. О единственности цикла в несимметричной трёхмерной модели молекулярного репрессилятора // Сиб. журн. индустр. математики. 2014. Т. 17, № 1. С. 3–7.
- 8. Голубятников В.П., Минушкина Л.С. Монотонность отображения Пуанкаре в некоторых моделях кольцевых генных сетей // Сиб. журн. индустр. математики. 2019. Т. 22, № 3. С. 39–47; DOI: 10.33048/sibjim.2019.22.304
- Hastings S., Tyson J., Webster D. Existence of periodic solutions for negative feedback cellular control systems // J. Differ. Equ. 1977. V. 25. P. 39–64.
- 10. Golubyatnikov V.P., Minushkina L.S. On uniqueness and stability of a cycle in one gene network // Siber. Electron. Math. Rep. 2021. V. 18, № 1. P. 464–473; DOI: 10.33048/semi.2021.18.032
- 11. Аюпова Н.Б., Голубятников В.П. Об одном цикле в пятимерной модели кольцевой генной сети // Сиб. журн. индустр. математики. 2021. Т. 24, № 3. С. 19–29; DOI: 10.33048/SIBJIM.2021.24.302
- 12. Кириллова Н.Е. Об инвариантных поверхностях в моделях генных сетей // Сиб. журн. индустр. математики. 2020. Т. 23, № 4. С. 69–76; https://doi.org/10.33048/SIBJIM.2020.23.405
- 13. Иванов В.В. Притягивающий предельный цикл нечётномерной кольцевой генной сети // Сиб. журн. индустр. математики. 2022. Т. 25, № 3. С. 25–32; DOI: 10.33048/SIBJIM.2022.25.301
- 14. Голубятников В.П., Иванов В.В. Циклы в нечётномерных моделях кольцевых генных сетей // Сиб. журн. индустр. математики. 2018. Т. 21, № 4. С. 28–38; DOI: 10.17377/sibjim.2018.21.403
- 15. Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970.
- 16. Гробман Д.М. Топологическая классификация окрестностей особой точки в *n*-мерном пространстве // Мат. сб. 1962. Т. 56, № 1. С. 77–94.
- 17. Минц Р.М. Исследование некоторых основных типов сложных состояний равновесия в трёхмерном пространстве // Мат. сб. 1964. Т. 63, № 2. С. 169–214.
- 18. Гантмахер Ф.Р. Теория матриц. М.: Наука, 1967.
- Hirsch M. Monotone dynamical systems with polyhedral order cones and dense periodic points // AIMS Mathematics. 2017. V. 2, N 1. P. 24 – 27.

SIBERIAN JOURNAL OF INDUSTRIAL MATHEMATICS

UDC 517.938

ON INVARIANT SURFACES IN PHASE PORTRAITS OF CIRCULAR GENE NETWORKS MODELS

© 2022 N. B. Ayupova^{1,a}, V. P. Golubyatnikov^{1,b}, L. S. Minushkina^{2,c}

¹Sobolev Institute of Mathematics SB RAS, pr. Acad. Koptyuga 4, Novosibirsk 630090, Russia, ²Novosibirsk State University, ul. Pirogova 1, Novosibirsk 630090, Russia

E-mails: ^aayupova@math.nsc.ru, ^bgolubyatn@yandex.ru, ^cl.minushkina@g.nsu.ru

Received 25.04.2022, revised 25.04.2022, accepted 22.06.2022

Abstract. For block-linear dynamical system of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions of existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.

Keywords: block-linear dynamical systems, invariant domains, invariant surfaces, Poincaré map, fixed point, cycles, Grobman–Hartman theorem, Perron–Frobenius theorem.

DOI: 10.33048/SIBJIM.2022.25.401

REFERENCES

- Glass L., Pasternack J.S. Stable oscillations in mathematical models of biological control systems // J. Math. Biology, 1978, Vol. 6, pp. 207–223.
- 2. Sistemnaya komp'yuternaya biologiya [System computational biology]. Novosibirsk: SB RAS Publ., 2008 (in Russian).
- Likhoshvai V. A., Golubyatnikov V. P., Khlebodarova T. M. Limit cycles in models of circular gene networks regulated by negative feedback loops // BMC Bioinformatics, 2020, Vol. 21, No. 11, Article 255; https://doi.org/10.1186/s12859-020-03598-z
- Golubyatnikov V.P., Ivanov V.V., Minushkina L.S. O sushchestvovanii tsikla v odnoi nesimmetrichnoi modeli kol'tsevoi gennoi seti [On the existence of a cycle in an asymmetric model of a circular gene network]. Siber. Zhurn. Chistoi i Prikl. Mat., 2018, Vol. 18, No. 4, pp. 19–28 (in Russian).
- Golubyatnikov V.P., Ivanov V.V. Edinstvennost' i ustoichivost' tsikla v trekhmernykh blochno-lineinykh modelyakh kol'tsevykh gennykh setei [On the existence of a cycle in an asymmetric model of a circular gene network]. Siber. Zhurn. Chistoi i Prikl. Mat., 2018, Vol. 18, No. 3, pp. 27–35. (in Russian).
- Volokitin E.P. O predel'nykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti [On limit cycles in the simplest model of a hypothetical gene network]. Siber. Zhurn. Indust. Matematiki, 2004, Vol. 7, No. 3, pp. 57–65 (in Russian)
- Ayupova N.B., Golubyatnikov V.P. On the uniqueness of a cycle in an asymmetric three-dimensional model of a molecular repressilator. J. Appl. Indust. Math., 2014, Vol. 8, No. 2, pp. 153–157; https://doi.org/10.1134/S199047891402001X
- Golubyatnikov V.P., Minushkina L.S. Monotonicity of the Poincaré mapping in some models of circular gene networks. J. Appl. Indust. Math., 2019, Vol. 13, No. 3, pp. 472–479; https://doi.org/10.1134/S1990478919030086

English translation is published in Journal of Applied and Industrial Mathematics, 2022, Vol. 16, No. 4.

- Hastings S., Tyson J., Webster D. Existence of periodic solutions for negative feedback cellular control systems. J. Differ. Equ., 1977, Vol. 25, pp. 39–64.
- Golubyatnikov V.P., Minushkina L.S. On uniqueness and stability of a cycle in one gene network. Siber. Electron. Math. Rep., 2021. Vol. 18, No. 1, pp. 464–473; DOI: 10.33048/semi.2021.18.032
- Ayupova N.B., Golubyatnikov V.P. On a cycle in a 5-dimensional circular gene network model. J. Appl. Indust. Math., 2021, Vol. 15, No. 3, pp. 376–383; https://doi.org/10.1134/S1990478921030029
- Kirillova N.E. On invariant surfaces in gene network models. J. Appl. Indust. Math., 2020, Vol. 14, No. 4, pp. 666–671; https://doi.org/10.1134/S1990478920040055
- Ivanov V.V. Prityagivayushchii predel'nyi tsikl nechetnomernoi kol'tsevoi gennoi seti [An attracting limit cycle of an odd-dimensional circular gene network]. Siber. Zhurn. Indust. Matematiki, 2022, Vol. 25, No. 3, pp. 25–32 (in Russian).
- Golubyatnikov V.P., Ivanov V.V. Cycles in the odd-dimensional models of circular gene networks. J. Appl. Indust. Math., 2018, Vol.12, No. 4, pp. 648–657; https://doi.org/10.1134/S1990478918040051
- 15. Hartman P. Ordinary Differential Equations. N. Y.: J. Wiley & Sons, 1964.
- Grobman D.M. Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v n-mernom prostranstve [Topological classification of neighborhoods of a singularity in n-space]. Mat. Sbornik, 1962, Vol. 56, No. 1, pp. 77–94 (in Russian).
- Mints R.M. Issledovanie nekotorykh osnovnykh tipov slozhnykh sostovanii ravnovesiya v trekhmernom prostranstve [A study of certain basic types of complex equilibrium states in three-dimensional space] *Mat. Sbornik*, 1964, Vol. 63, No. 2, pp. 169–214 (in Russian).
- 18. Gantmacher F.R. The Theory of Matrices. AMS Chelsea Publ., 1959.
- Hirsch M. Monotone dynamical systems with polyhedral order cones and dense periodic points. AIMS Mathematics, 2017, Vol. 2, No. 1, pp. 24–27.