О КОНЕЧНЫХ X-РАЗЛОЖИМЫХ ГРУППАХ ПРИ $X=\{1,m,m+1,m+2\}$ Ж. Чень, С. Го, К. П. Шум

Аннотация. Нормальная подгруппа N конечной группы G называется n-разложсимой, если она является объединением n различных классов сопряженности группы G. Исследуется строение несовершенных групп, в которых любая собственная нетривиальная нормальная подгруппа является m-разложимой, m+1-разложимой или m+2-разложимой для некоторого натурального m. В разрешимом случае приводится классификация таких групп.

 $DOI\,10.17377/smzh.2017.58.517$

Ключевые слова: разрешимая группа, класс G-сопряженности, n-разложимость.

1. Введение

Все рассматриваемые в данной работе группы конечны.

Представляет интерес изучение связей между строением группы и некоторыми арифметическими условиями на ее сопряженные классы (см., например, [1-5]). В последнее время появилась тенденция изучения строения нормальной подгруппы группы G при условии, что нормальная подгруппа является объединением «небольшого» числа классов сопряженности G (см. [6-9]). К примеру, в [10] описана структура нормальной подгруппы, являющейся объединением двух классов сопряженности G, а также изучена связь между строением группы G и строением ее нормальных подгрупп, являющихся объединением двух классов сопряженности в G. В [8,9] описано строение нормальной подгруппы, являющейся объединением трех и четырех классов сопряженности G соответственно. Кроме того, в [11-14] исследуется строение группы, у которой каждая нетривиальная нормальная подгруппа есть объединение данного числа классов сопряженности группы.

Напомним, что нормальная подгруппа N группы G называется n-разложимой в G, если N является объединением n различных классов сопряженности G. Группа G называется n-разложимой, если G не простая и каждая нетривиальная нормальная собственная подгруппа в G n-разложима. Впервые 2-разложимые нормальные подгруппы исследованы в [10], где они назывались полными нормальными подгруппами. В [15] рассмотрены 3-разложимые нормальные подгруппы. Недавно в [13, 14] было описано строение n-разложимых групп при n=7,8,9,10.

С другой стороны, если N — нормальная подгруппа группы G, то найдется натуральное число t такое, что N является объединением t различных классов сопряженности G. Для удобства обозначим $\xi(N)=t$ и положим $\mathcal{K}(G)=t$

The research of the work was partially supported by the National Natural Science Foundation of China(11371237) and Shanghai Leading Academic Discipline Project(J50101).

^{© 2017} Чень Ж., Го С., Шум К. П.

 $\{\xi(N)\mid N \leq G, N \neq G\}$. Группу G будем называть X-разложсимой, если $\mathcal{K}(G)=X$, где X — непустое множество натуральных чисел. В этом направлении в [6] описано строение несовершенных $\{1,3,4\}$ -разложимых групп. В [16] классифицированы несовершенные $\{1,2,4\}$ -группы. Недавно получена классификация несовершенных $\{1,2,3,4\}$ -групп [17]. Цель данной работы — изучить строение несовершенных $\{1,m,m+1,m+2\}$ -групп для натурального m>2.

2. Предварительные результаты

Напомним, что группа G называется cosepwehhoù, если G'=G, и G называется npumumushoù, если существует максимальная подгруппа M группы G такая, что $\mathrm{Core}_G(M) = \bigcap_{x \in G} M^x = 1$. Через $G', \Phi(G), Z(G)$ и F(G) обозначим коммутант, подгруппу Фраттини, центр и подгруппу Фиттинга группы G соответственно. Если x — элемент из G, то $x^G = \{x^g \mid g \in G\}$ — класс сопряженности G, содержащий x. Для натурального n через Z_n обозначаем циклическую группу порядка n, через D_n — диэдральную группу порядка n, через Q_n — обобщенную кватернионную группу порядка n, через d(n) — множество всех натуральных делителей n. SmallGroup(n,i) — это i-я группа порядка n в библиотеке маленьких групп GAP (см. [18]). Запись $G = N \rtimes_{\mathrm{Irr}} H$ означает, что G = NH, $N \unlhd G$ и действие H на N сопряжением неприводимо; запись $G = N \rtimes_{\mathrm{Fpf}} H$ означает, что G является группой Фробениуса с ядром N и дополнением H.

Ниже приводятся некоторые фундаментальные факты, которые будут использоваться в дальнейшем.

- **Лемма 2.1** [19, лемма 12.3]. Пусть G разрешимая группа, G' единственная минимальная нормальная подгруппа G. Тогда выполнено одно из следующих утверждений:
 - (i) G является p-группой, |G'| = p и Z(G) циклическая.
 - (ii) G группа Фробениуса с ядром G' и циклическим дополнением.

Лемма 2.2 [16, пример 2.1]. Пусть G — абелева группа порядка n. Тогда $\mathcal{K}(G) = d(n) - \{n\}$.

Лемма 2.3. Пусть m натуральное, m>2, и G — группа такая, что $\mathcal{K}(G)=\{1,m,m+1,m+2\}$. Тогда G неабелева.

ДОКАЗАТЕЛЬСТВО. Предположим, что G — абелева группа порядка n. Тогда по лемме $2.2~\mathcal{K}(G)=d(n)-\{n\}$. Поскольку 2 делит m(m+1)(m+2), то 2 делит n. Следовательно, m=2, что противоречит условию m>2.

Лемма 2.4. Пусть m натуральное, m>2, и G — группа такая, что $\mathcal{K}(G)=\{1,m,m+1,m+2\}$. Тогда G имеет единственную минимальную нормальную подгруппу.

ДОКАЗАТЕЛЬСТВО. Пусть N и M — две различные минимальные нормальные подгруппы G. Тогда [M,N]=1. По условию $\xi(M)\geq m$ и $\xi(N)\geq m$. Так как m>2, то $\xi(M\times N)>m+2$. Следовательно, $M\times N=G$.

Если G разрешима, то N и M — абелевы подгруппы и потому G абелева, что противоречит лемме 2.3.

Допустим, что G неразрешима. Пусть K — нетривиальная собственная нормальная подгруппа G такая, что $\xi(K) \neq \xi(M)$ и $\xi(K) \neq \xi(N)$. Поскольку $G = M \times N$, можно считать, что $M \nleq K$. Также имеем $G = M \times K$. Таким

образом, $K\cong G/M\cong N$. Следовательно, $N\nleq K$, поэтому $G=N\times K$. Так как G неразрешима, N и K неразрешимы, тем самым являются неабелевыми конечными простыми группами. Тогда по [20, пример I.7.9] M=N либо M=K; противоречие. (Пусть $G=N_1\times N_2$ и H— нетривиальная собственная нормальная подгруппа G. Если N_1 — неабелева простая группа и $N_2\cong N_1$, то $H=N_1$ или N_2 .)

Лемма 2.5. Пусть m натуральное, m>2, и G — группа такая, что $\mathcal{K}(G)=\{1,m,m+1,m+2\}$. Тогда порядок G не является степенью простого числа.

Доказательство. Предположим, что группа G удовлетворяет условию $\mathcal{K}(G)=\{1,m,m+1,m+2\}$ и имеет порядок p^n , где p простое, n натуральное. Рассмотрим главный ряд

$$1 = N_0 < N_1 < \dots < N_{n-1} < N_n = G$$

группы G. Тогда $|N_i|=p^i$ для $i=0,1,\ldots,n$. Поскольку $\mathscr{K}(G)=\{1,m,m+1,m+2\}$, то n=4 и, таким образом, $|G|=p^4$. Если $|Z(G)|=p^3$, то G абелева, что противоречит лемме 2.3. Поэтому |Z(G)| равно p или p^2 . Если $|Z(G)|=p^2$, то можно выбрать нормальную подгруппу N порядка p в G, содержащуюся в Z(G). Таким образом, $\xi(N)=m$ и $\xi(Z(G))=m+1$. Предположим, что $Z(G)=N\cup x^G$ для некоторого $x\in G$. Тогда $|x^G|=p^2-p$. С другой стороны, $|x^G|=1$, так как $x\in Z(G)$, поэтому $1=p^2-p$; противоречие. Если |Z(G)|=p, то Z(G)— минимальная нормальная подгруппа G. Любая минимальная нормальная подгруппа G. Любая минимальная нормальная подгруппа G содержится в Z(G), поэтому P=m. Пусть $\overline{G}=G/Z(G)$. Тогда $\mathscr{K}(\overline{G})=\{1,2,3\}$. По [7] \overline{G} изоморфна одной из групп Z_6 , D_8 , Q_8 , S_4 , $Z_5 \rtimes_{\mathrm{Fpf}} Z_4$ или $\mathrm{SL}(2,3)$. Так как G является p-группой, |G/Z(G)|=8 и m=p=2; противоречие.

Лемма 2.6. Пусть G — разрешимая группа. Тогда $G \neq G'T$ для любой собственной нормальной подгруппы T в G.

Доказательство. Предположим противное, и пусть T — собственная нормальная подгруппа G такая, что G = G'T. Тогда G/T разрешима. С другой стороны, (G/T)' = G'T/T = G/T; противоречие.

3. Разрешимый случай

В этом разделе приводится классификация разрешимых групп G с условием $\mathcal{K}(G) = \{1, m, m+1, m+2\}$. Последовательно рассматриваются три случая: $\xi(G')$ равно m, m+1 и m+2 соответственно.

Теорема 3.1. Пусть m натуральное, m>2, и G — разрешимая группа c условием $\mathscr{K}(G)=\{1,m,m+1,m+2\}$. Если $\xi(G')=m$, то $G=G'\rtimes_{\mathrm{Fpf}}H$, где G' является элементарной абелевой p-группой порядка 1+6(m-1) и $H\cong Z_6$. Обратное также верно.

Доказательство. По лемме 2.4~G' является единственной минимальной нормальной подгруппой в G. Таким образом, по леммам 2.5 и 2.1~G является группой Фробениуса с ядром G' и циклическим дополнением. С другой стороны, рассмотрим фактор-группу $\overline{G} = G/G'$, тогда $\mathscr{K}(\overline{G}) = \{1,2,3\}$. По лемме 2.2 $\{1,2,3\} = d(n) - \{n\}$, где n = |G/G'|. Следовательно, n = 6 и $G = G' \rtimes H$, где $H \cong Z_6$. Для любого $1 \neq x \in G'$ имеем $C_G(x) \leq G'$. Поскольку G' абелева, $C_G(x) = G'$ для любого $1 \neq x \in G'$. Допустим, что $|G'| = p^{\alpha}$ для некоторых

простого p и натурального α . Так как $\xi(G')=m$, то $p^{\alpha}=|G'|=1+6(m-1)$. Более того, поскольку G' минимальная нормальная в G, то H действует неприводимо на G'.

Допустим, что $G=G'\rtimes_{\mathrm{Fpf}}H$ удовлетворяет условиям теоремы. Докажем, что $\mathscr{K}(G)=\{1,m,m+1,m+2\}$. По [21, упражнение 8.5.7] любая нормальная подгруппа G содержит или содержится в G'. Поскольку H действует неприводимо на G', то G' является единственной минимальной нормальной подгруппой G. Пусть $H=\langle a\mid a^6=1\rangle$. Тогда G', $G'\langle a^3\rangle$ и $G'\langle a^2\rangle$ — это все нетривиальные нормальные подгруппы G. Так как G' элементарная абелева, для любого $1\neq x\in G'$ имеем $C_G(x)=G'$, таким образом, $\xi(G')=m$, поскольку |G'|=1+6(m-1). Так как $C_G(a^3)=H$, то $|(a^3)^G|=|G:H|=p^\alpha$, поэтому $G'\langle a^3\rangle=G'\cup (a^3)^G$. Докажем, что $G'\langle a^2\rangle=G'\cup (a^2)^G\cup (a^4)^G$. Достаточно доказать, что $a^2\neq (a^4)^g$ для всех $g\in G$. Иначе если $a^2=(a^4)^g$ для некоторого $g\in G$, то $a^2G'=(a^4)^gG'=a^4G'$, поскольку G/G' абелева, откуда $a^2=a^4g_1$ для $g_1\in G'$, что противоречит $a^2\in G'\cap H=1$. Таким образом, $\mathscr{K}(G)=\{1,m,m+1,m+2\}$, и теорема доказана.

Теорема 3.2. Пусть m натуральное, m>2, и G — разрешимая группа c условием $\mathcal{K}(G)=\{1,m,m+1,m+2\}$. Если $\xi(G')=m+1$, то выполнено одно из следующих утверждений:

- (1) $G=F(G)
 ightarrow_{\mathrm{Fpf}}H,$ где F(G) элементарная абелева p-группа порядка 1+8(m-1) и $H\cong Q_8.$
- $(2)\ G=F(G)
 ightarrow_{
 m Fpf}\ H$, где F(G) элементарная абелева p-группа порядка 1+20(m-1) и $H\cong Z_5
 ightarrow_{
 m Fpf}\ Z_4.$

Обратное также верно.

Доказательство. Пусть N — нормальная подгруппа G такая, что $\xi(N)=m$. Тогда по лемме 2.4~N является единственной минимальной нормальной подгруппой G. Пусть K — нормальная подгруппа G такая, что $\xi(K)=m+1$. Если $K \neq G'$, то $G'K \trianglelefteq G$, $G'\cap K=N$ и $\xi(G'K)>m+2$. Следовательно, G'K=G, что противоречит лемме 2.6. Таким образом, K=G'. С другой стороны, если $M \trianglelefteq G$ такая, что $\xi(M)=m+2$, то M максимальна в G и, следовательно, $G' \leq M$. Положим $\overline{G}=G/N$. Тогда $\mathscr{K}(\overline{G})=\{1,2,3\}$ и G'/N — единственная минимальная нормальная подгруппа \overline{G} . По лемме $2.1~\overline{G}$ является p-группой для некоторого простого p, $|\overline{G'}|=p$ и $Z(\overline{G})$ циклическая либо является группой Фробениуса с ядром $\overline{G'}$ и циклическим дополнением. По $[7]~\overline{G}$ изоморфна D_8 , Q_8 или $Z_5 \rtimes_{\mathrm{Fpf}} Z_4$.

Пусть M — нормальная подгруппа G такая, что $\xi(M)=m+2$. Тогда последовательность

является главным рядом группы G. Поскольку N минимальная нормальная в G, можно считать, что $|N|=p^{\alpha}$ для некоторого простого p и натурального α .

(i) Предположим, что $\overline{G}\cong D_8$ или Q_8 . По лемме 2.5 порядок G не является степенью простого числа, поэтому $p\neq 2$. Следовательно, $|G'|=2p^\alpha, |M|=4p^\alpha$ и $|G|=8p^\alpha$. Предположим, что $G'=N\cup x^G$ для некоторого $x\in G$. Тогда $|x^G|=p^\alpha$, следовательно, $|C_G(x)|=8$. Покажем, что G' не нильпотентна. Действительно, если G' нильпотентна, то G' содержит подгруппу порядка 2, которая нормальна в G вопреки тому, что N является единственной минимальной нормальной подгруппой в G. Таким образом, N=F(G)< G'. Поскольку G разрешима, $\Phi(G)< F(G)$, откуда $\Phi(G)=1$. Отсюда вытекает, что N=F(G) имеет дополнение H в G.

Сначала рассмотрим случай $\overline{G}\cong D_8$. Тогда $H\cong G/F(G)\cong D_8$, таким образом, $H=\langle a,b\mid a^4=b^2=1,b^{-1}ab=a^{-1}\rangle$. Тем самым $Z(H)=\langle a^2\rangle$ и $F(G)Z(H)\unlhd G$. Сравнение порядков показывает, что $G'=F(G)\langle a^2\rangle$. Если найдется $1\neq t\in F(G)$ такой, что $a^2t=ta^2$, то $t\in Z(G')$. Таким образом, Z(G')=F(G). Поскольку G'/Z(G')=G'/F(G) порядка 2, G' оказывается нильпотентной; противоречие. Пусть $y\in H$ — произвольный элемент порядка 4. Тогда $y^2=a^2$ и $F(G)\langle y\rangle$ индекса 2 в G, откуда $F(G)\langle y\rangle=F(G)\cup (a^2)^G\cup y^G=G'\cup y^G$. Таким образом, $\xi(F(G)\langle y\rangle)=m+2$. Следовательно, $|C_G(y)|=4$, и, значит, $t\notin C_G(y)$ для всех $1\neq t\in F(G)$. Для любого $c\in H$ порядка 2 такого, что $c\neq a^2$, $T=\langle c,a^2\rangle$ порядка 4 и, стало быть, F(G)T — максимальная нормальна подгруппа в G. Отсюда вытекает, что $F(G)T=G'\cup c^G$. Следовательно, $|C_G(c)|=4$ и $C_G(c)=\langle a^2,c\rangle$, поэтому $c\notin C_G(t)$ для любого $1\neq t\in F(G)$. Таким образом, G является группой Фробениуса. Вместе c тем силовские подгруппы дополнения Фробениуса являются циклическими или обобщенными кватернионными; противоречие.

Рассмотрим случай $\overline{G}\cong Q_8$. Тогда $H\cong G/F(G)\cong Q_8$. Пусть $H=\langle a,b\mid a^4=b^4=1,\ a^2=b^2,\ b^{-1}ab=a^{-1}\rangle$. Рассуждая, как в предыдущем абзаце, докажем, что G является группой Фробениуса. Для любого $1\neq w\in F(G)$ имеем $C_G(w)=F(G)$, откуда $|w^G|=8$, поэтому $p^\alpha=1+8(m-1)$. Поскольку F(G) является минимальной нормальной подгруппой G, то H действует неприводимо на F(G). Наоборот, если G имеет описанное выше строение, то нетрудно заметить, что $\mathscr{K}(G)=\{1,m,m+1,m+2\}$.

(ii) Предположим, что $\overline{G}\cong Z_5
times_{\mathrm{Fpf}}Z_4$. Отсюда следует, что $|G'|=5p^{lpha},$ $|M|=10p^{\alpha}$ и $|G|=20p^{\alpha}$. Пусть $G'=N\cup x^G$ для некоторого $x\in G$. Тогда $|x^{G}| = 4p^{\alpha}$ и, таким образом, $|C_{G}(x)| = 5$. Следовательно, G' не нильпотентна. Отсюда N=F(G). Так как $\Phi(G) < F(G)$, то $\Phi(G)=1$. Стало быть, F(G)имеет дополнение H в G и $H\cong G/F(G)\cong Z_5\rtimes_{\mathrm{Fpf}} Z_4$. Пусть T — нормальная подгруппа H порядка 10. Тогда $F(G)T \subseteq G$. Поскольку F(G)T — максимальная подгруппа G, то $\xi(F(G)T) = m+2$. Можно считать M = F(G)T. Предположим, что $M=G'\cup y^G$ для некоторого $y\in G$. Тогда $|y^G|=5p^{\alpha}$, откуда $|C_G(y)|=4$. Следовательно, $C_G(y) \leq H$. Нетрудно заметить, что $M = F(G) \rtimes T$ является группой Фробениуса, поэтому $p \neq 2$. Поскольку любой элемент порядка 5 лежит в G', то $5 \nmid |C_G(t)|$ для любого $1 \neq t \in F(G)$. Если 2 делит $|C_G(t)|$, то найдется $c\in C_G(t)$ такой, что |c|=2. Пусть $K=F(G)\langle x,c
angle$, где $H'=\langle x
angle$. Тогда $|K|=10p^{lpha}$. Отсюда следует, что K=M и $M=G'\cup c^G$. Стало быть, $|c^G|=5p^{lpha}$, откуда $|C_G(c)| = 4$, что противоречит тому, что $t \in C_G(c)$. Таким образом, $C_G(t)$ является p-группой, а G — группа Фробениуса. Поскольку F(G) минимальная нормальная в G, то H действует неприводимо на F(G) и, таким образом, p^{α} 1 + 20(m-1). Наоборот, если G имеет описанное выше строение, то нетрудно заметить, что $\mathcal{K}(G) = \{1, m, m+1, m+2\}$. Теорема доказана.

Теорема 3.3. Пусть m натуральное, m>2, и G — разрешимая группа c условием $\mathcal{K}(G)=\{1,m,m+1,m+2\}$. Если $\xi(G')=m+2$, то $G=F(G)\rtimes_{\operatorname{Irr}}H$, где $H\cong SL(2,3)$ и F(G)=G'' — элементарная абелева p-группа такая, что G' является группой Фробениуса c ядром F(G) и дополнением, изоморфным Q_8 . Обратное также верно.

Доказательство. В этом случае G' — максимальная подгруппа G и, таким образом, |G/G'|=q для некоторого простого q. Для любой собственной нормальной подгруппы N в G если $N\nleq G'$, то G=G'N, поскольку G' максимальна в G, что противоречит лемме 2.6. Таким образом, $N \leq G'$. Далее

доказательство делится на два случая в зависимости от того, является G' нильпотентной или нет.

Случай 1: G' нильпотентна.

В этом случае G' — прямое произведение своих силовских подгрупп. По лемме 2.4~G имеет единственную минимальную нормальную подгруппу, следовательно, порядок G' является степенью простого числа. Пусть $|G'|=p^{\alpha}$, где p простое, α натуральное, тогда $p\neq q$ по лемме 2.5.

Докажем, что G' не абелева. Если G' абелева, то $C_G(x)$ равна G' или G для любого $x \in G'$, стало быть, $|x^G|$ равно q либо 1. Так как по лемме 2.3 G неабелева, Z(G) < G' (если Z(G) = G', то G/Z(G) циклическая и тем самым G абелева). Докажем, что Z(G) = 1. Действительно, допустим, что $Z(G) \neq 1$, и пусть N — собственная нормальная подгруппа G такая, что $\xi(N) = m$. Тогда $N \leq G'$ в силу разд. 1 и N — минимальная нормальная подгруппа G. Если $N \not\leq Z(G)$, то $N \cap Z(G) = 1$ и $NZ(G) = N \times Z(G)$. В этом случае $\xi(N \times Z(G)) \geq 2m \geq m+3$, поскольку m>2, следовательно, $N \times Z(G) = G$, что противоречит $NZ(G) \leq G'$. Стало быть, $N \leq Z(G)$. Если $\xi(Z(G)) = m+1$, то существует элемент $x \in G'$ такой, что $Z(G) = N \cup x^G$. Таким образом, Z(G) = I0 пусть Z(G) = I1, противоречие. Если Z(G) = I2, по то Z(G) = I3, поскольку Z(G) = I4, получаем Z(G) = I5, от следует, что Z(G) = I6. Поскольку Z(G) = I7, получаем Z(G) = I8, по следует, что Z(G) = I9. Поскольку Z(G) = I9, получаем Z(G) = I9. Поскольку Z(G) = I

$$1 < A < B < G' < G$$
.

Пусть $|A|=p^s$ и $|B|=p^t$ для натуральных s и t. Пусть $B=A\cup u^G$ и $G'=B\cup v^G$ для некоторых $u,v\in G$. Тогда $|u^G|=p^t-p^s$ и $|v^G|=p^\alpha-p^t$. Поэтому $p^t-p^s=p^\alpha-p^t=q$. Отсюда следует, что $2p^t=p^\alpha+p^s=p^s(p^{\alpha-s}+1)$; противоречие. Следовательно, G' неабелева.

Из вышеизложенного следует, что 1 < Z(G') < G' и 1 < G'' < G'. Таким образом, выполнена одна из следующих возможностей:

- (i) 1 < G'' < Z(G') < G',
- (ii) 1 < Z(G') < G'' < G'
- (iii) 1 < G'' = Z(G') < G'.

Рассмотрим случай (i). Пусть $|G''|=p^s, |Z(G')|=p^t$ для натуральных s,t и $Z(G')=G''\cup w^G$ для некоторого $w\in G$. Тогда $|w^G|=p^t-p^s=q$; противоречие с тем, что p делит q.

Предположим, что выполнено условие (ii). Можно считать, что $|Z(G')|=p^s$ и $|G''|=p^t$ для натуральных s и t и $G''=Z(G')\cup x^G, G'=G''\cup y^G$ для $x,y\in G$. Тогда $|x^G|=p^t-p^s=p^s(p^{t-s}-1)$ и $|y^G|=p^\alpha-p^t=p^t(p^{\alpha-t}-1)$. Если $p^{\alpha-t}-1=1$, то $p^{\alpha-t}=2$. Отсюда следует, что G'/G'' пиклическая, следовательно, G' абелева; противоречие. Таким образом, $p^{\alpha-t}-1=q$. Если $p^{t-s}-1=1$, то t-s=1 и p=2. Отсюда следует, что $|C_G(x)|=p^{\alpha-s}q$. С другой стороны, $|C_G(x)| \ge \langle Z(G'), x \rangle$, следовательно, $|D_G(x)| \le p^{\alpha-s}q$. Поэтому $|D_G(x)| \ge p^{\alpha-s}q$. Поэтому |

 $\alpha-s=2$. Тем самым $|G'/Z(G')|=p^2$, следовательно, G'/Z(G') абелева, что противоречит условию Z(G')< G''. Таким образом, $Z(G)\neq 1$ и Z(G)=Z(G'), поскольку Z(G)< G'. Получаем, что s=1 и m=p. Рассмотрим фактор-группу $\overline{G}=G/Z(G)$. Тогда $\mathscr{K}(\overline{G})=\{1,2,3\}$ и $|\overline{G}|=p^{\alpha-1}q$. Так как Z(G')< G'', то G'/Z(G) неабелева и потому $\alpha-1\geq 3$. Из [7] следует, что $|\overline{G}|=24=2^3\cdot 3$, откуда $\alpha-1=3,q=3$. Отсюда получаем $\alpha=4$. С другой стороны, поскольку $q=p^{t-1}-1=p^{\alpha-t}-1=3$, то $t-1=\alpha-t=2$, что влечет t=3 и $\alpha=5$; противоречие.

Предположим, что выполнено условие (iii). Если Z(G') не является минимальной нормальной в G, то обозначим через N единственную минимальную нормальную подгруппу G. Тогда последовательность

является главным рядом G. Пусть $Z(G') = N \cup x^G$ для некоторого $x \in G$, и пусть $|N| = p^s$, $|Z(G')| = p^t$ для некоторых натуральных s и t. Тогда $|x^G| = |Z(G')| - |N|$ равно q или 1. Однако ни одно из равенств невозможно. Таким образом, Z(G') минимальная нормальная в G, и можно считать, что

есть главный ряд группы G. Пусть $|Z(G')| = p^s$ и $|M| = p^t$ для натуральных s,t. Рассмотрим фактор-группу $\overline{G} = G/Z(G')$. Тогда $\mathscr{K}(\overline{G}) = \{1,2,3\}$ и $|\overline{G}| = p^{\alpha-s}q$. Согласно [7] с учетом того, что $\overline{G'}$ — максимальная подгруппа в \overline{G} , получаем, что \overline{G} изоморфна S_4 или SL(2,3). Если $\overline{G} \cong S_4$, то $|\overline{G'}| = |G'/Z(G')| = 2^2 \cdot 3$. Отсюда следует, что $|G'| = 2^2 \cdot 3 \cdot 2^s = 2^\alpha$; противоречие. Если $\overline{G} \cong SL(2,3)$, то $|M| = 2^{s+1}$ и $|G'| = 2^{3+s}$. Пусть $G' = M \cup y^G$ для некоторого $y \in G$. Тогда $|y^G| = 2^{s+1} \cdot 3$. Отсюда следует, что $|C_G(y)| = 2^2$. С другой стороны, $C_G(y) \ge \langle Z(G'), y \rangle > Z(G')$, таким образом, $2^2 > 2^s$, откуда s = 1, поэтому Z(G') = Z(G) порядка 2. Таким образом, m = p = 2, что противоречит условию.

Случай 2: G' не нильпотентна.

В этом случае F(G) < G'. Пусть N — единственная минимальная нормальная подгруппа G, обозначим $\overline{G} = G/N$. Тогда так же, как в случае 1, \overline{G} изоморфна S_4 или SL(2,3). Так как G разрешима, если $\Phi(G)=1$, то N=F(G); если $\Phi(G)\neq 1$, то $1<\Phi(G)< F(G)< G'< G$ — главный ряд группы G.

Пусть сначала $\overline{G} \cong S_4$. Если $\Phi(G) = 1$, то пусть последовательность

является главным рядом группы G, и пусть $K=F(G)\cup x^G$, $G'=K\cup y^G$ для $x,y\in G$. Пусть $|F(G)|=p^\alpha$ для простого p и натурального α . Тогда $|K|=4p^\alpha$ и $|G'|=12p^\alpha$. Отсюда следует, что $|C_G(x)|=8$ и $|C_G(y)|=3$. Если p=2, то $|K|=2^{\alpha+2}$ и K нильпотентна, что противоречит условию F(G)< K. Если p=3, то $|C_G(y)|\geq 9$, что противоречит условию $|C_G(y)|=3$. Таким образом, $p\neq 2$ и $p\neq 3$. Для произвольного элемента $1\neq z\in F(G)$ группа $C_{G'}(z)$ не содержит x^g и y^h для $g,h\in G$, поэтому $C_{G'}(z)\leq F(G)$. Так как $G'/F(G)\cong A_4$, любой элемент из G'/F(G) имеет порядок 2 или 3. Поэтому G' является группой Фробениуса с ядром F(G) и дополнением, изоморфным A_4 . Получили противоречие, поскольку силовская подгруппа дополнения Фробениуса обязана быть либо циклической группой, либо обобщенной кватернионной [21, теорема 10.5.6]. Таким образом, $\Phi(G)\neq 1$, и последовательность

$$1 < \Phi(G) < F(G) < G' < G$$

является главным рядом группы G. Можно считать, что $|\Phi(G)|=p^{\alpha}$ для некоторого простого p и натурального α . Тогда $|F(G)|=4p^{\alpha},|G'|=12p^{\alpha}$ и $|G|=24p^{\alpha}$. Пусть $F(G)=\Phi(G)\cup x^G$ и $G'=F(G)\cup y^G$ для $x,y\in G$. Тогда $|C_G(x)|=8$ и $|C_G(y)|=3$. Так как G имеет единственную минимальную нормальную подгруппу, порядок F(G) является степенью простого числа и потому p=2. Поскольку $F(G)\leq C_G(\Phi(G))$, то $\Phi(G)< C_G(x)$, откуда $2^{\alpha}<8$. Отсюда следует, что α равно 1 или 2. Если $\alpha=1$, то $\Phi(G)=Z(G)$ порядка 2, поэтому m=2; противоречие. Если $\alpha=2$, то $|G|=2^5\cdot 3$ и |F(G)|=16, $|\Phi(G)|=4$. Для любого $x\in\Phi(G)$ имеем $F(G)\leq C_G(x)$, поэтому $|x^G|$ делит |G/F(G)|=6. Таким образом, $|x^G|$ равно 2, 3 или 6. Отсюда следует, что $4=1+|x_1^G|+\cdots+|x_{m-1}^G|$ и потому m=2; противоречие.

Пусть $\overline{G} \cong SL(2,3)$. Если $\Phi(G) \neq 1$, то

$$|(G/\Phi(G))'| = |G'/\Phi(G)| = 8,$$

поэтому $G'/\Phi(G)$ нильпотентна и, следовательно, G' нильпотентна по [21, теорема 5.2.15], что противоречит условию рассматриваемого случая. Следовательно, $\Phi(G)=1$ и N=F(G). Пусть

— главный ряд группы G, пусть $|F(G)|=p^{\alpha}$ для простого p и натурального α . Тогда $|K|=2p^{\alpha}$ и $|G'|=8p^{\alpha}$. Поскольку G' не нильпотентна, то $p\neq 2$. Так как $G'' \leq G$ и G'/K абелева, $G'' \leq K$. Если G'' < K, то G'' = F(G), поэтому G'/F(G) абелева, что противоречит условию $G'/F(G)\cong Q_8$. Таким образом, G''=K. Так как G=F(G)H, то $H\cong SL(2,3)$, пусть y— элемент порядка A из A такой, что A0 A2 A3. Отсюда следует, что A4. Тогда A5 A6 A7 A8 A9 A9 A9. Отсюда следует, что A9 A9, поэтому A9 является группой Фробениуса с ядром A9. Поскольку A9 — минимальная нормальная в A9, то A9 действует неприводимо на A9. Нетрудно заметить, что если A9 имеет описанное выше строение, то A4 A9 A9, и теорема доказана.

Собирая вместе результаты трех теорем, получаем следующее утверждение.

Теорема А. Если G — разрешимая группа, $\mathcal{K}(G) = \{1, m, m+1, m+2\}$ и m>2, то выполнено одно из следующих утверждений.

- (1) $G=G'\rtimes_{\mathrm{Fpf}}H,$ где G' является элементарной абелевой p-группой порядка 1+6(m-1) и $H\cong Z_6.$
- (2) $G=F(G)\rtimes_{\mathrm{Fpf}}H,$ где F(G) элементарная абелева p-группа порядка 1+8(m-1) и $H\cong Q_8.$
- $(3)\ G=F(G)
 ightarrow_{
 m Fpf}\ H$, где F(G) элементарная абелева p-группа порядка 1+20(m-1) и $H\cong Z_5
 ightarrow_{
 m Fpf}\ Z_4.$
- (4) $G=F(G)\rtimes_{\operatorname{Irr}}H$, где $H\cong SL(2,3)$ и F(G)=G''— элементарная абелева p-группа такая, что G' является группой Фробениуса c ядром F(G) и дополнением, изоморфным Q_8 .

4. Неразрешимый случай

В этом разделе рассматривается неразрешимый случай. Напомним, что по лемме $2.4\ G$ имеет единственную минимальную нормальную подгруппу.

Теорема В. Пусть m натуральное и m>2. Если G — несовершенная неразрешимая группа и $\mathcal{K}(G)=\{1,m,m+1,m+2\}$, то G' является единственной минимальной нормальной подгруппой G и $G/G'\cong Z_2\times Z_2$.

Доказательство. Пусть N — единственная минимальная нормальная подгруппа G и $\overline{G}=G/N$. Рассмотрим фактор-группу \overline{G} . Для любой нетривиальной нормальной подгруппы M в G имеем $N \leq M$, поэтому M/N — нормальная подгруппа \overline{G} . Рассмотрим следующие два случая.

(1) Не существует нормальных подгрупп M,K в G таких, что N < M < K < G.

В этом случае любая нетривиальная нормальная подгруппа \overline{G} минимальная нормальная в \overline{G} . Пусть M — нормальная подгруппа G с $\xi(M)=m+1$. Тогда M/N 2-разложима в \overline{G} . Если K — нормальная в G с $\xi(K)=m+2$, то K/N 2-или 3-разложима в \overline{G} .

Предположим сначала, что любая нетривиальная нормальная подгруппа \overline{G} 2-разложима в \overline{G} . Тогда $\overline{G}=M/N\times K/N$, где M и K — две различные нетривиальные нормальные подгруппы G и N < M, N < M. По теореме 1 из [10] группы M/N и M/N абелевы, поэтому $\overline{G}\cong Z_2\times Z_2$ по теореме 3 из [6]. Так как M/M абелева и M/M имеет единственную минимальную нормальную подгруппу, M/M M/M абелева и M/M имеет единственную минимальную нормальную подгруппу, M/M M/M

Пусть K/N является 3-разложимой нормальной подгруппой \overline{G} . Тогда $\xi(K)=m+2$ и K/N является минимальной нормальной подгруппой \overline{G} . Из теоремы 1 в [15] следует, что K/N абелева. Если M — нормальная подгруппа G с $\xi(M)=m+1$, то $\overline{G}=M/N\times K/N$. Известно также, что \overline{G} абелева. Так как $\mathscr{K}(\overline{G})=\{1,2,3\}$, то $\overline{G}\cong Z_6$ по [7]. Пусть $\overline{G}=\langle aN\rangle$, где $a\in G$. Тогда $a^6\in N$ и 6 делит |a|. Если $T/N=\langle a^2N\rangle$, то $T=\langle a^2\rangle N$ и $T=N\cup(a^2)^G\cup(a^4)^G$. Отсюда следует, что $|(a^2)^G|+|(a^4)^G|=2|N|$. Так как $C_G(a^2)\leq C_G(a^4)$, то $|(a^4)^G|\leq |(a^2)^G|$. Если $|(a^4)^G|<|N|$, то $|(a^2)^G|>|N|$. Таким образом, $|C_G(a^2)|<6$, что является противоречием, поскольку $\langle a\rangle\leq C_G(a^2)$ и $|a|\geq 6$. Таким образом, $|(a^2)^G|=|(a^4)^G|=|N|$ и $|C_G(a^2)|=|C_G(a^4)|=6$, поэтому $C_G(a^2)=\langle a\rangle$ и |a|=6. Пусть $L/N=\langle a^3N\rangle$. Тогда |L/N|=2 и $L=N\cup(a^3)^G$. Отсюда вытекает, что $|(a^3)^G|=|N|$, поэтому $|C_G(a^3)|=6$, следовательно, $|C_G(a^3)|=\langle a\rangle$. Получаем $|C_G(a^3)|=|C_G(a$

(2) Существуют нормальные подгруппы M,K в G такие, что N < M < K < G.

Вновь положим $\overline{G}=G/N$, тогда $\mathscr{K}(\overline{G})=\{1,2,3\}$. По [7] \overline{G} изоморфна $D_8,$ $Q_8,~S_4,~Z_5\rtimes_{\mathrm{Fpf}}Z_4$ или SL(2,3).

Предположим, что $\overline{G}\cong Q_8$. Тогда N неразрешима. Стало быть, силовская 2-подгруппа N не может быть нормальной в N, и 4 делит |N|. Можно считать, что $\overline{G}=\langle aN,bN\mid a^4\in N,\ b^4\in N,\ a^2N=b^2N,\ b^{-1}abN=a^{-1}N\rangle$. Тогда $K=\langle a\rangle N$ и $T=\langle a^2\rangle N$ нормальны в G и $\xi(T)=m+1,\xi(K)=m+2$. Отсюда следует, что $T=N\cup(a^2)^G$ и $K=T\cup a^G$. Нетрудно заметить, что $|a^G|=2|N|$ и $|(a^2)^G|=|N|$. Таким образом, $|C_G(a)|=4$ и $|C_G(a^2)|=8$. Так как $\langle a\rangle \leq C_G(a)$ и 4 делит |a|, то $C_G(a)=\langle a\rangle$, тем самым |a|=4. Пусть P- силовская 2-подгруппа G такая, что $a\in P$. Тогда $Z(P)\leq C_G(a)$. Поэтому $Z(P)=\langle a^2\rangle$ и $P\leq C_G(a^2)$, стало быть, $|C_G(a^2)|\geq |P|\geq 32$; противоречие.

Если $\overline{G}\cong D_8$, то можно считать

$$\overline{G} = \langle aN, bN \mid a^4 \in N, \ b^2 \in N, \ b^{-1}abN = a^{-1}N \rangle.$$

Подгруппы $K = \langle a \rangle N$ и $T = \langle a^2 \rangle N$ нормальны в G, и $\xi(T) = m+1, \xi(K) = m+2$. Рассуждая аналогично предыдущему случаю, получим противоречие.

Если $\overline{G}\cong SL(2,3)$, то силовская 2-подгруппа $\overline{T}=T/N$ группы \overline{G} нормальна в \overline{G} и $\overline{T}\cong Q_8$. Отсюда следует, что $K/N=Z(T/N)\unlhd \overline{G}$. Пусть

$$T/N = \langle aN, bN \mid a^4 \in N, \ b^4 \in N, \ a^2N = b^2N, \ b^{-1}abN = a^{-1}N \rangle.$$

Тогда $K/N = \langle a^2 \rangle N$. По условию $K = N \cup (a^2)^G$ и $T = N \cup (a^2)^G \cup a^G$. Отсюда следует, что $|C_G(a^2)| = 24$ и $|C_G(a)| = 4$. Поскольку 4 делит |a| и $\langle a \rangle \leq C_G(a)$, то |a| = 4. Пусть L — силовская 2-подгруппа G такая, что $a \in L$. Так как $Z(L) \leq C_G(a)$, то $a^2 \in Z(L)$, поэтому $L \leq C_G(a^2)$. Поскольку 4 делит |N|, 32 делит |L|, что противоречит условию $|C_G(a^2)| = 24$.

Предположим, что $\overline{G}\cong S_4$. Пусть K/N — нормальная подгруппа G/N порядка 5. По условию $K=a^G$ для некоторого $a\in G$. Отсюда следует, что $|a^G|=4|N|$, таким образом, $|C_G(a)|=5$. Поэтому |a|=5, $K=N\langle a\rangle$ и a действует без неподвижных точек на N. Тогда K является группой Фробениуса с ядром N, тем самым N нильпотентна. Следовательно, G разрешима, поскольку G/N разрешима; противоречие.

Наконец, предположим, что $\overline{G}\cong Z_5\rtimes_{\mathrm{Fpf}}Z_4$. Пусть T/N — нормальная силовская 5-подгруппа G/N. Тогда $T=N\cup x^G$ для некоторого $x\in G$. Поэтому $|x^G|=|T|-|N|=4|N|$ и, следовательно, $|C_G(x)|=5$. Таким образом, порядок x равен 5, и x действует на N сопряжением без неподвижных точек. По [21, теорема 10.5.4] N нильпотентна и, стало быть, G разрешима; противоречие. Теорема доказана.

Несложно получить

Следствие С. Пусть m натуральное и m > 2. Если G несовершенная неразрешимая группа и $\mathcal{K}(G) = \{1, m, m+1, m+2\}$, то G примитивна.

Доказательство. По теореме В получаем $\Phi(G)=1$. Действительно, в противном случае G' содержится в $\Phi(G)$. Отсюда следует, что $G/\Phi(G)$ нильпотентна, тогда G нильпотентна; противоречие. Если для любой максимальной подгруппы M в G выполнено $\mathrm{Core}_G(M) \neq 1$, то $G' \leq \mathrm{Core}_G(M) \leq M$. Поэтому $G' \leq \Phi(G) = 1$; противоречие. Таким образом, найдется максимальная подгруппа M в G такая, что $\mathrm{Core}_G(M) = 1$, поэтому G примитивна.

Авторы благодарны рецензенту за ценные предложения и полезные комментарии, отраженные в заключительной версии данной статьи.

ЛИТЕРАТУРА

- Beltrán A., Felipe M. J. Structure of finite groups under certain arithmetical conditions on class sizes // J. Algebra. 2008. V. 319. P. 897–910.
- Chillag D., Herzog M. On the length of conjugacy classes of finite groups // J. Algebra. 1990.
 V. 131. P. 110–125.
- **3.** Guo X., Zhao X., Shum K. P. On p-regular G-conjugacy classes and the p-structure of normal subgroups, // Comm. Algebra. 2009. V. 37. P. 2052–2059.
- López A. V., López J. V. Classification of finite groups according to the number of conjugacy classes. II // Israel J. Math. 1986. V. 56. P. 188–221.
- Zhao X. H., Guo X. Y. On conjugacy class sizes of the p'-elements with prime power order // Algebra Colloq. 2009. V. 16, N 4. P. 541–548.
- Ashrafi A. R., Sahraei H. On finite groups whose every normal subgroup is a union of the same number of conjugacy classes // Vietnam J. Math. 2002. V. 30, N 3. P. 289–294.

- Ashrafi A. R., Venkatraman G. On finite groups whose every proper normal subgroup is a union of a given number of conjugacy classes // Proc. Indian Acad. Sci. 2004. V. 114, N 3. P. 217–224.
- 8. Riese U., Shahabi M. A. Subgroups which are the union of four conjugacy classes // Comm. Algebra. 2001. V. 29, N 2. P. 695–701.
- Shahryari M., Shahabi M. A. Subgroups which are the union of three conjugacy classes // J. Algebra. 1998. V. 207. P. 326–332.
- 10. Shi W. A class of special minimal normal subgroups (Chinese) // J. Southwest Teachers College. 1984. V. 9. P. 9–13.
- Ashrafi A. R., Sahraei H. Subgroups which are a union of a given number of conjugacy classes // Groups St. Andrews 2001 in Oxford. V. 1. (Oxford, 2001). Cambridge: Camb. Univ. Press, 2001. P. 101–109 (London Math. Soc. Lect. Note Ser.; V. 304).
- Ashrafi A. R. On decomposability of finite groups // J. Korean Math. Sci. 2004. V. 41, N 3. P. 479–487.
- Ashrafi A. R., Shi W. On 7- and 8-decomposable finite groups // Math. Slovaca. 2005. V. 55, N 3. P. 253–262.
- Ashrafi A. R., Shi W. On 9- and 10-decomposable finite groups // J. Appl. Math. Comput. 2008. V. 26. P. 169–182.
- 15. Wang J. A special class of normal subgroups (Chinese) // J. Chengdu Univ. Sci. Tech. 1987. V. 4. P. 115–119.
- **16.** Го X., Ли Дж., Шум К. П. О конечных X-разложимых группах при $X = \{1, 2, 4\}$ // Сиб. мат. журн. 2012. Т. 53, № 3. С. 558–565.
- 17. Guo X., Chen R. On finite X-decomposable groups for $X = \{1, 2, 3, 4\}$ // Bull. Iranian Math. Soc. 2014. V. 40, N 5. P. 1243–1262.
- Schonert M. et al. GAP: Groups, algorithms and programming. Lehrstuhl de fur Mathematik. Aachen: RWTH, 1992.
- 19. Isaacs I. M. Character theory of finite groups. New York: Dover, 1994.
- 20. Xu M. Introduction to finite groups (Chinese). Beijing: Science Press, 1987.
- Robinson J. S. A course in the theory of groups. New York; Berlin; Heidelberg: Springer-Verl., 1991.

Статья поступила 27 июля 2016 г.

Ruifang Chen (Чень Жуйфан) College of Mathematics and Information Science, Henan Normal University, Henan 453007, P. R. China fang119128@126.com

Xiuyun Guo (Го Сююнь) Department of Mathematics, Shanghai University, Shanghai, 200444, P. R. China xyguo@shu.edu.cn

Kar Pign Shum (Шум Кар Пинь) Institute of Mathematics, Yunnan University, Kunming 650091, P. R. China kpshum@ynu.edu.cn