An exact method

for the (*r***/***p***)–centroid problem** Ekaterina Alekseeva

jointly with Yuri Kochetov Alexander Plyasunov

Sobolev Institute of Mathematics Novosibirsk, Russia

(r/p)-centroid problem

• Input:

J is the set of users;

I is the set of potential facilities;

p is the total number of facilities opened by the Leader;

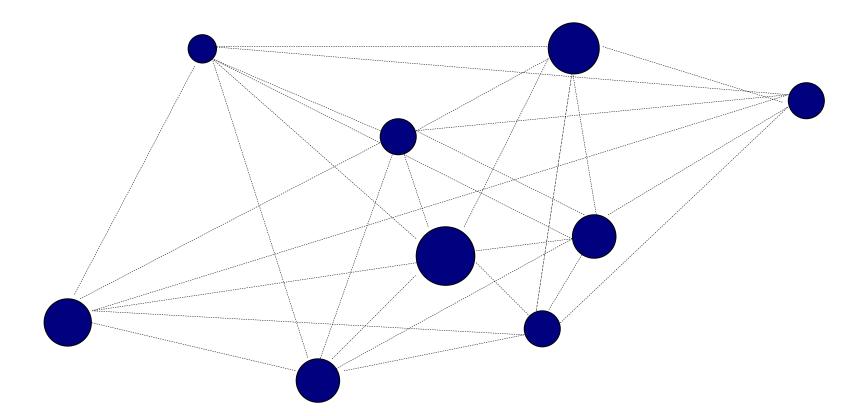
r is the total number of facilities opened by the Follower;

 w_j is the profit for servicing of the user j;

 g_{ij} is the distance between the user *j* and the facility *i*;

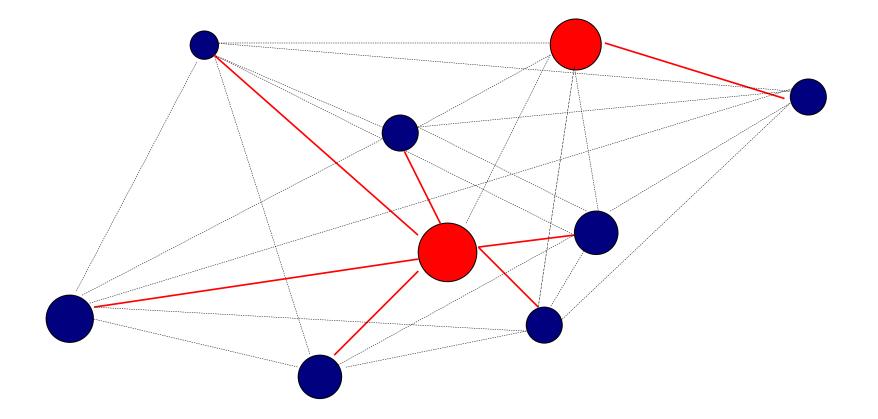
- Output: *p* facilities opened by the Leader;
- Goal: maximize the total profit for the Leader.

Example

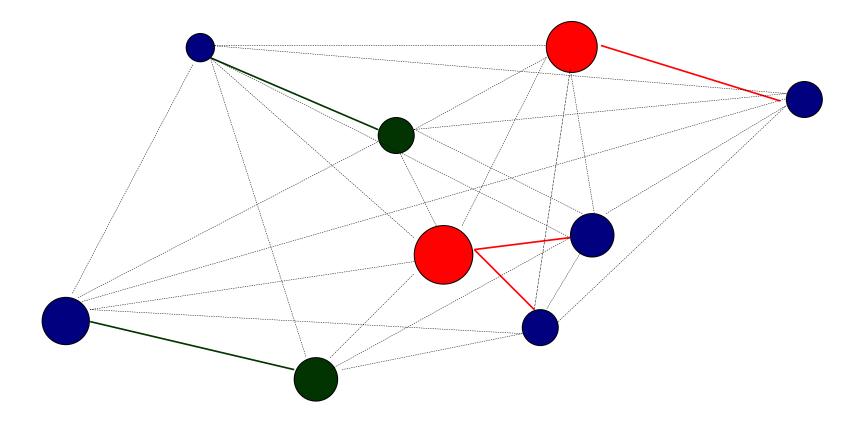


*I=J, |I|=*9

Leader has opened p facilities. Leader's market share is 100%.



Follower has opened r facilities. Leader's market share is 56%.



I=J, |I|=9, p= r=2

Mathematical Formulation

Leader Variables $x_i = \begin{cases} 1, & \text{if the Leader opens facility } i, \\ 0, & \text{otherwise,} \end{cases}$ Follower Variables $y_i = \begin{cases} 1, & \text{if the Follower opens facility } i, \\ 0, & \text{otherwise,} \end{cases}$ User Variables $u_j = \begin{cases} 1, & \text{if user } j \text{ is serviced by the Leader,} \\ 0, & \text{if user } j \text{ is serviced by the Follower.} \end{cases}$

For the given solution x_i , $i \in I$ we define the set of facilities $I_j(x) = \{i \in I \mid g_{ij} < \min_{k \in I} (g_{kj} \mid x_k = 1)\}$

which allows to "capture" the user j by the Follower.

Bilevel 0-1 Model

$$\max_{x} \sum_{j \in J} w_{j} u_{j}^{*}(x, y^{*})$$

s.t.
$$\sum_{i \in I} x_{i} = p, \quad x_{i} \in \{0, 1\}, i \in I$$

where $u_{j}^{*}(x, y^{*}), y_{i}^{*}$ is the optimal solution of the Follower problem:

$$\max_{\substack{u_j, y_i \ j \in J}} \sum_{j \in J} w_j (1 - u_j)$$

s.t.
$$1 - u_j \leq \sum_{i \in I \ j(x)} y_i, j \in J$$
$$\sum_{i \in I} y_i = r$$
$$y_i, u_j \in \{0, 1\}, i \in I, j \in J$$

Complexity Status

(r p)-centroid	NP-hard, S. Hakimi, 1990		
	\sum_{2}^{p} -hard on graph,		
	H.Noltemeier, J.Spoerhase, H.Wirth, 2007		
	NP-hard on spider	J.Spoerhase,	
	O(pn ⁴) on path	HC.Wirth,2008	
(1 p)-centroid	d $O(n^2(\log n)^2\log W)$ on		
	tree		
	NP-hard on pathwidth		
	bounded graph		
(1/1)-centroid	(1)-centroid polynomial solvable on graph and on a network P. Hansen, M. Labbé, 1988		

✓ Tabu search algorithm, $|I| = |J| = 70, p, r \le 3$

S. Benati, G. Laporte, 1994

✓ An alternating heuristic on the plane, $|J| \le 100$, $p, r \le 25$

J. Bhadury, H. A. Eiselt, J. H. Jaramillo, 2001

✓ Hybrid memetic algorithm, |I| = |J| = 100, $p = r \le 10$

E. Alekseeva, N. Kochetova, Y. Kochetov, A. Plyasunov, 2009

✓ The partial enumeration algorithm, $|I| \le 50$, $|J| \le 100$, $p, r \le 5$ C.M.C. Rodríguez, J.A.Moreno Pérez, 2008

✓ Three MIP models, $|I| = |J| \le 25$, r = 1, $p \ge 1$ (arbitrary)

F. Plastria, L.Vanhaverbeke, 2008

New reformulation as Integer Linear Program

An exact algorithm

Computational experiments on the large scale instances

Notations

Let *F* be the set of all feasible solutions of the Follower.

For
$$y \in F$$
 define $I_j(y) = \{i \in I \mid g_{ij} < \min_{k \in I} (g_{kj} \mid y_k = 1)\}, j \in J$

the set of the Leader's facilities which allows the Leader to keep client *j* if the Follower will use the solution *y*. Introduce new variables:

$$u_{j}^{y} = \begin{cases} 1, if \ client \ j \ is \ served \ by \ the \ Leader \ when \ the \ Follower \\ uses \ solution \ y \\ 0, \ if \ user \ j \ is \ serviced \ by \ the \ Follower \ when \ the \ Follower \\ uses \ solution \ y \end{cases}$$

Integer Linear Program

$$\max_{UB, x, u} UB$$

s.t.
$$\sum_{i \in I} x_i = p$$

$$\sum_{j \in J} w_j u_j^y \ge UB, y \in F$$

$$u_j^y \le \sum_{i \in I_j(y)} x_i, j \in J, y \in F$$

$$u_j^y \in \{0, 1\}, j \in J, y \in F$$

$$x_i \in \{0, 1\}, i \in I$$

Column Generation Method for (r/p)-centroid problem

- 1. Choose an initial family F
- **2.** Find UB(F) and x(F)
- 3. Solve the Follower problem and calculate LB(F)
- 4. If UB(F) = LB(F) then stop
- 5. Add y(F) in the family F go to the step 2.

Computational Experiments

http://math.nsc.ru/AP/benchmarks/english.html

The sets I = J, |I| = |J|

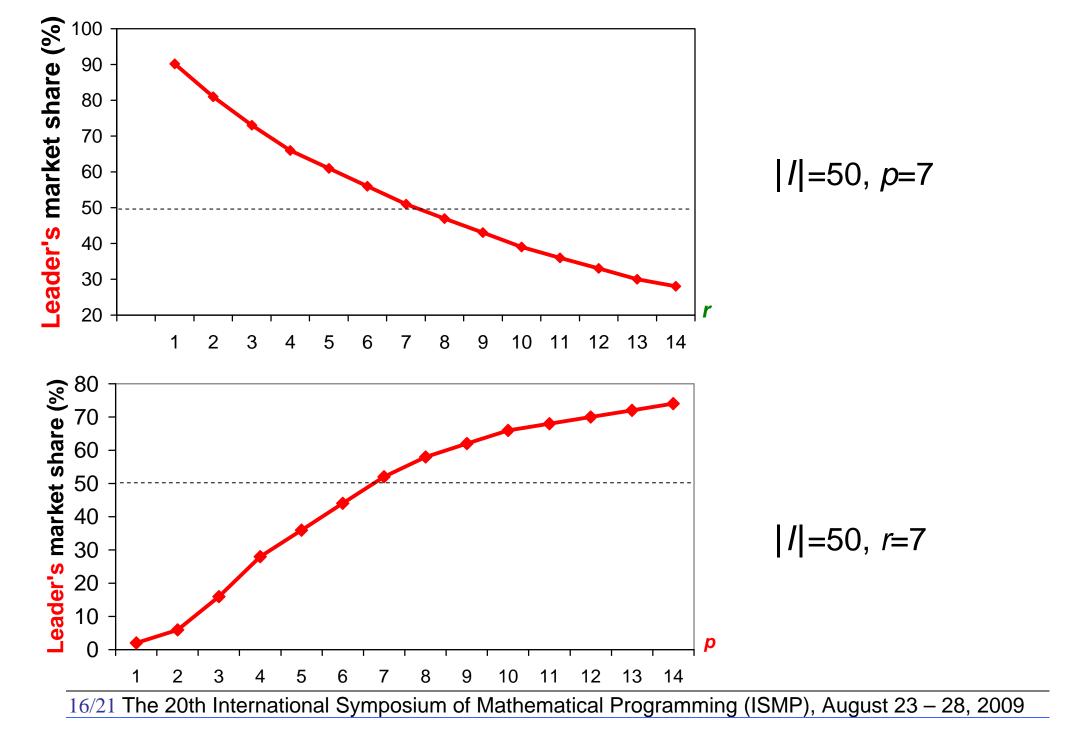
The element g_{ij} is an Euclidean distance between points $i \in I$ and $j \in J$, the points are randomly generated following the uniform distribution on a 7000*7000 square

The profit w_j equals one for all $j \in J$ or w_j , $j \in J$ is randomly generated following the uniform distribution on a (0,200) interval

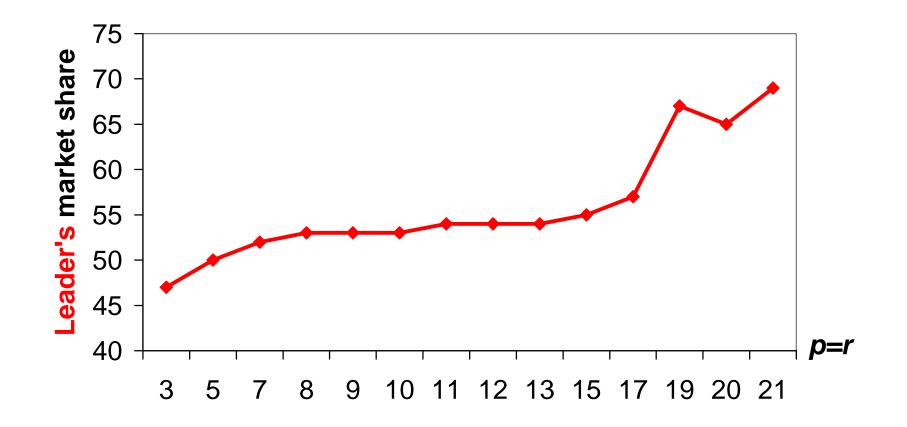
PC Pentium Intel Core 2, 1.87 GHz, RAM 2Gb, Windows XP Professional operating system, GAMS

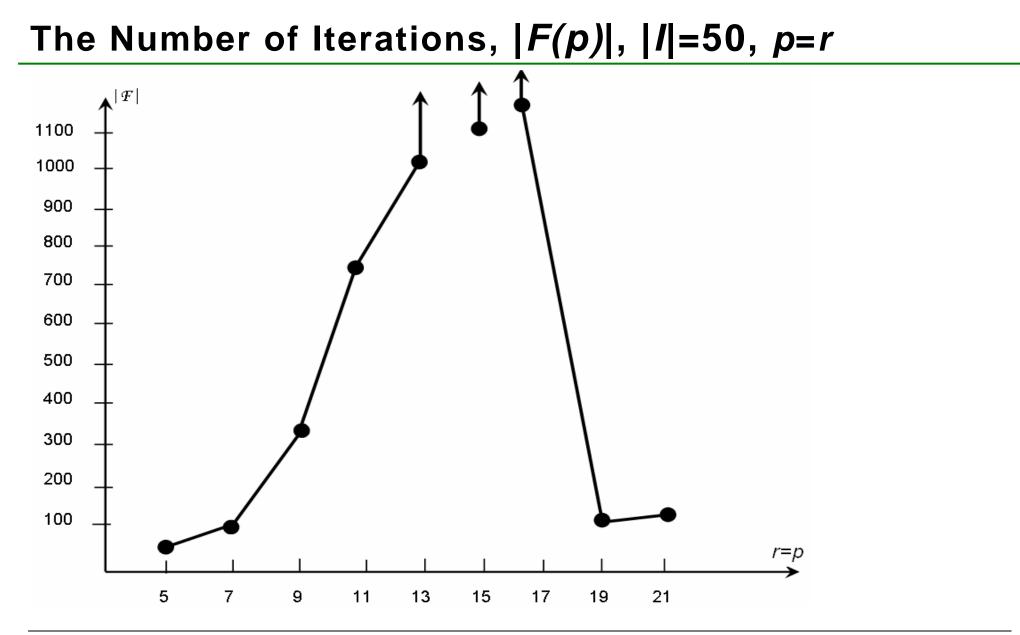
Optimal solutions, |I|=100, p=r=5

$w_j = 1, j \in J$, $j \in J$	$w_j \in (0, 200), \ j \in J$		
opt	F	time (min)	opt <i> F </i> time (min)		
47	123	120	4139 (47%) 98 65		
48	69	60	4822 (45%) 127 37		
45	231	3600	4215 (45%) 262 5460		
47	111	150	4678 (47%) 128 900		
47	106	120	4594 (44%) 190 720		
47	102	90	4483 (47%) 121 660		
47	115	180	5153 (46%) 167 2550		
48	67	42	4404 (46%) 190 720		
47	108	160	4700 (45%) 247 2520		
47	124	165	4923 (48%) 83 30		

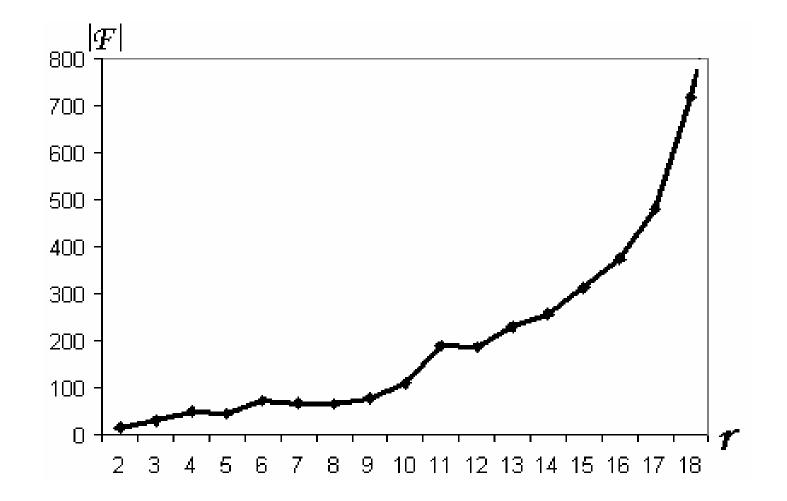


Leader's Market Share, $|I|=50, w_i \in (0, 200)$

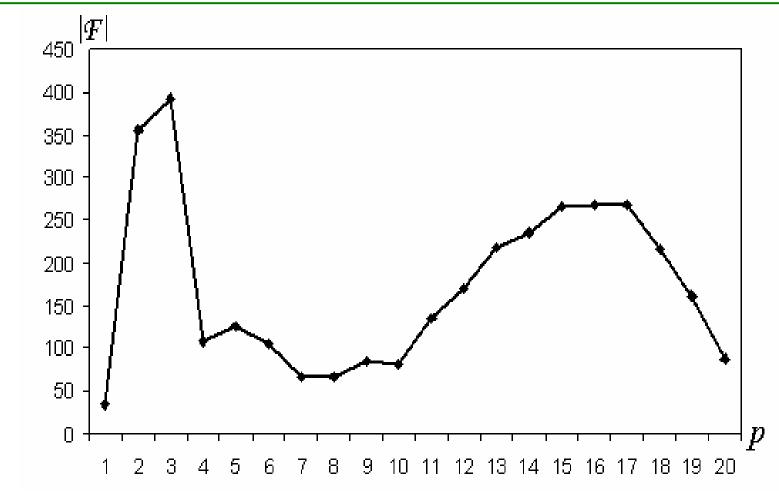




The Number of Iterations, |F(p)|, |I|=50, p=7



The Number of Iterations, |F(p)|, |I|=50, r=7



- $\checkmark \sum_{2}^{p}$ -hard problem has been studied
- ✓ A new MIP reformulation with the exp number of constraints has been suggested
- ✓ A new exact method has been proposed
- ✓ The optimal solutions for the instances with |I|=|J|=100 and p=r=5 have been found