Метод ветвей и границ

В основе метода лежит принцип «разделяй и властвуй».

Пусть D — множество допустимых решений задачи

$$\min \{f(x) \mid x \in D\},\$$

и для любого подмножества $d \subseteq D$ умеем вычислять:

LB(d) — нижнюю оценку для минимума f(x), $x \in d$,

UB(d) — верхнюю оценку для минимума f(x), $x \in d$,

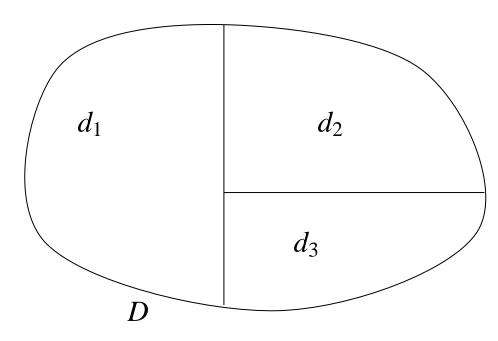
т. е.

$$LB(d) \le \min \{f(x) \mid x \in d\} \le UB(d)$$
, для любого $d \subseteq D$.

Основная идея

Пусть x^* — текущий рекорд и сначала $f(x^*) = UB(D)$. Вычисляем LB(D) и, если LB(D) = UB(D), то STOP, x^* — оптимальное решение задачи. В противном случае разбиваем D на подмножества $D = d_1 \cup \ldots \cup d_k$. Для каждого подмножества вычисляем $UB(d_i)$, $LB(d_i)$, $i = 1, \ldots, k$.

Если $f(x^*) > UB(d_i)$, то меняем рекорд. Если $LB(d_i) \ge f(x^*)$, то выбрасываем d_i , иначе дробим d_i на подмножества. Так как D — конечное множество, то процесс конечен и дает точное решение задачи.



Описание метода

На каждом шаге имеется

- рекорд x^* ;
- просмотренная часть $P \subset D$, для которой $f(x) \ge f(x^*)$, $x \in P$;
- разбиение множества $D \setminus P$ на подмножества $d_{i_1}, d_{i_2}, ..., d_{i_k}$.

Шаг состоит в следующем.

- 1. Выбрать элемент разбиения, например, $d_{i_{\iota}}$;
- 2. Вычислить $UB(d_{i_k})$. Если $f(x^*) > UB(d_{i_k})$, то сменить рекорд x^* .
- 3. Вычислить $LB(d_{i_{\iota}})$.

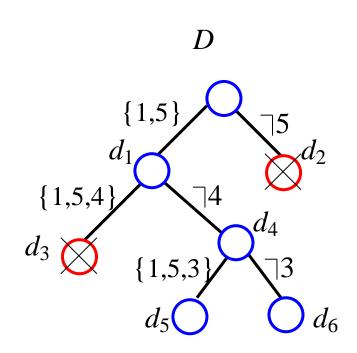
- 3.1. Если $LB(d_{i_k}) \ge f(x^*)$, то добавить d_{i_k} к P и перейти к следующему шагу.
- 3.2. Если $LB(d_{i_k}) \le f(x^*)$, но в множестве d_{i_k} удалось найти наилучший элемент \widetilde{x} : $f(\widetilde{x}) = \min\{f(x) | x \in d_{i_k}\}$, то добавить d_{i_k} к P; если $f(x^*) > f(\widetilde{x})$, то положить $x^* \coloneqq \widetilde{x}$.
- 3.3. Если $LB(d_{i_k}) \le f(x^*)$, но элемент \widetilde{x} найти не удалось, то разбиваем d_{i_k} на подмножества $d_{i_k} = d_{i_{k+1}} \cup ... \cup d_{i_{k+m}}$ и переходим к следующему шагу, имея новое разбиение для $D \setminus P$.

Метод В&Г для задачи коммивояжера

Разбиение множества D представляется в виде бинарного дерева.

Каждой вершине дерева соответствует частичный тур и список запретов.

Например, вершине d_6 соответствует частичный тур 1,5 и запреты $\{4,3\}$ на выход из города 5.



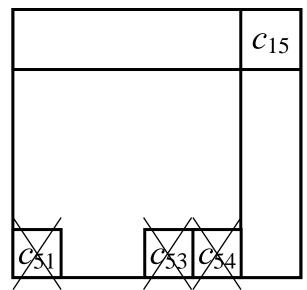
Метод В&Г для задачи коммивояжера

Примитивная нижняя оценка для вершины дерева, например, d_6 при n=5:

$$LB(d_6) = c_{15} + \sum_{i=2}^{5} a_i + \sum_{j=1}^{4} b_j.$$

Задача о назначениях:

$$LB(d_6) = c_{15} + \sum_{i=2}^5 c_{ij(i)}$$
, при $c_{53} = c_{54} = c_{51} = +\infty$.

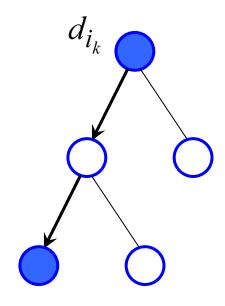


Верхняя оценка — алгоритм «Иди в ближайший».

Выбор переменной для ветвления

Основная идея — угадать оптимальное решение на подмножестве $d_{i_{\iota}}$ и ветвиться по дугам этого тура:

- для частичного тура $i_1, ..., i_k$ выбираем минимальный элемент в строке i_k матрицы $c_{ij}'' = c_{ij} a_i b_j, j \neq i_1, ..., i_k$
- для частичного тура $i_1, ..., i_k$ строим верхнюю оценку и ветвимся по дуге $(i_1, ..., i_{k+1})$.
- для частичного тура i_1, \ldots, i_k решаем задачу о назначениях и ветвимся вдоль цикла, проходящего через вершину i_k .



Выбор подмножества из разбиения $D \setminus P$

Две основные схемы:

• *многосторонняя схема ветвления*, когда выбирается подмножество d' такое, что

$$LB(d') = \min \{LB(d_i) \mid i = i_1, ..., i_k\}.$$
 Среди элементов разбиения $D \setminus P = d_{i_1} \cup ...d_{i_k}$ выбирается подмножество с наименьшей нижней границей.

• *односторонняя схема ветвления*, когда всегда выбираем последний элемент $d' = d_{i_{\iota}}$.

Первая схема требует много оперативной памяти, но в среднем просматривает меньше вершин, чем вторая. Возможна комбинация этих схем: сначала первая, пока хватает памяти, затем вторая.

Задача коммивояжера в Интернет

- TSPBIB Home Page
 http://www.ing.unlp.edu.ar/cetad/mos/TSPBIB_home.html
- The Hamiltonian Page: Hamiltonian cycle and path problems, their generalizations and variations

 http://www.ing.unlp.edu.ar/cetad/mos/Hamilton.html
- Fractal Instances of the Traveling Salesman Problem
 http://www.ing.unlp.edu.ar/cetad/mos/FRACTAL_TSP_home.html
- **DIMACS:** The Traveling Salesman Problem http://www.research.att.com/~dsj/chtsp/