Открытая олимпиада НГУ по математике

(ММФ, ФФ, ФИТ), март 2005, вне Новосибирска

Вариант В1

1. Поезд, двигаясь с постоянной скоростью, проехал мимо дежурной по переезду за 45 секунд. Автомобиль, который ехал с постоянной скоростью 90 км/ч навстречу поезду по шоссе, параллельному железной дороге, миновал поезд за 20 секунд. Определить скорость движения поезда.

Ответ: 72.

2. Решить уравнение $\sqrt{\cos 2x + 2} + \frac{1}{\cos x} = 0$.

Otbet: $\pm \frac{3\pi}{4} + 2k\pi$, $k \in \mathbb{Z}$.

3. В трапеции ABCD биссектриса угла BAD при основании AD пересекает сторону CD в точке M и продолжение основания BC в точке K. Найти длину стороны CD, если известно, что $AB=8,\,BC=2,\,AM=10$ и MK=4.

Otbet: $\frac{7}{2}\sqrt{10}$.

4. Решить неравенство $\frac{1}{\sqrt{8+x} - \sqrt{8-x}} \ge \frac{5}{2x}$.

Otbet: $\left[-8, -\frac{5\sqrt{7}}{2}\right] \cup \left(0, \frac{5\sqrt{7}}{2}\right]$.

5. В правильной треугольной пирамиде SABC ребра основания ABC равны $2\sqrt{15}$, боковые ребра равны 6. Точка M на ребре BC выбрана так, что угол между плоскостями ASM и ASB равен 30° . Найти расстояние от точки C до плоскости ASM.

Otbet: $\frac{11}{14}\sqrt{35}$.

Вариант В2

1. Колонна грузовиков, двигавшаяся с постоянной скоростью, проехала мимо наблюдателя, стоявшего на обочине, за 1 минуту. Автомобиль, который ехал с постоянной скоростью $90~{\rm km/v}$ в том же направлении, обогнал колонну за $1,5~{\rm muhy}$ ты. Найти длину колонны грузовиков.

Ответ: 900.

2. Решить уравнение $\sqrt{5 - 2\cos 2x} + \frac{1}{\sin x} = 0$.

Ответ: $(-1)^{k+1}\frac{\pi}{6} + k\pi, k \in \mathbb{Z}$.

3. В трапеции ABCD биссектриса угла BAD при основании AD пересекает основание BC в точке M и продолжение стороны CD в точке K. Найти длину стороны CD, если известно, что $AB=6,\ BC=9,\ AM=10$ и MK=2.

Otbet: $5\sqrt{3}$.

4. Решить неравенство $\frac{1}{\sqrt{7+x} - \sqrt{7-x}} \le \frac{2}{x}$.

Otbet: $[-4\sqrt{3}, 0) \cup [4\sqrt{3}, 7]$.

5. В правильной четырехугольной пирамиде SABCD ребра основания ABCD равны 4, боковые ребра равны $4\sqrt{2}$. Точка M на ребре BC выбрана так, что угол между плоскостями ASM и ASB равен 30° . Найти расстояние от точки D до плоскости ASM.

Otbet: $\frac{13}{\sqrt{14}}$.

Вариант В3

1. Плот, двигаясь по течению реки, проплывал под мостом в течение 6 минут. Катер, который плыл с постоянной относительно берегов скоростью $36~{\rm km/v}$ вниз по течению, обогнал плот за $40~{\rm cekyhg}$. Найти длину плота.

Ответ: 360.

2. Решить уравнение $\sqrt{5 + 2\cos 2x} + \frac{1}{\cos x} = 0$.

Otbet: $\pm \frac{2\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$.

3. В трапеции ABCD биссектриса угла BAD при основании AD пересекает сторону CD в точке M и продолжение основания BC в точке K. Найти длину стороны CD, если известно, что $AB=12,\,AD=24,\,AM=16$ и MK=4.

Ответ: $10\sqrt{3}$.

4. Решить неравенство $\frac{1}{\sqrt{6+x}-\sqrt{6-x}} \geq \frac{2}{x}$.

Otbet: $[-6, -4\sqrt{2}] \cup (0, 4\sqrt{2}].$

5. В правильной треугольной пирамиде SABC ребра основания ABC равны 6, боковые ребра равны 4. Точка M на ребре BC выбрана так, что угол между плоскостями ASM и ASB равен 60°. Найти расстояние от точки C до плоскости ASM.

Ответ: $\frac{15}{28}\sqrt{21}$.

Вариант В4

1. Колонна грузовиков, двигавшаяся по шоссе с постоянной скоростью, проехала мимо наблюдателя, стоявшего на обочине, за 1,5 минуты. Автомобиль, который двигался с постоянной скоростью 54 км/ч навстречу, миновал колонну за 36 секунд. Определить скорость движения колонны.

Ответ: 36.

2. Решить уравнение $\sqrt{2 - \cos 2x} + \frac{1}{\sin x} = 0$.

Ответ: $(-1)^{k+1}\frac{\pi}{4} + k\pi, k \in \mathbb{Z}.$

3. В трапеции ABCD биссектриса угла BAD при основании AD пересекает основание BC в точке M и продолжение стороны CD в точке K. Найти длину стороны CD, если известно, что $AB=10,\,AD=35,\,AM=18$ и MK=3.

Otbet: $6\sqrt{7}$.

4. Решить неравенство $\frac{1}{\sqrt{9+x}-\sqrt{9-x}} \le \frac{5}{2x}$.

Otbet: $\left[-\frac{5\sqrt{11}}{2}, 0\right) \cup \left[\frac{5\sqrt{11}}{2}, 9\right]$.

5. В правильной четырехугольной пирамиде SABCD ребра основания ABCD равны 2, высота пирамиды равна $\sqrt{6}$. Точка M на ребре CD выбрана так, что угол между плоскостями ASM и ASB равен 60° . Найти расстояние от точки D до плоскости ASM.

Otbet: $\frac{6}{\sqrt{7}}$.