§ 18. Степенные ряды

18.1. Функциональный ряд вида

$$\sum_{n=0}^{\infty} c_n (z-a)^n, \tag{18.1}$$

где c_n — числовая последовательность, $a \in \mathbb{R}$ — фиксированное число, а $z \in \mathbb{R}$, называют *степенным рядом* с коэффициентами c_n .

Выполнив замену переменных z - a = x в ряде (18.1), получим ряд

$$\sum_{n=0}^{\infty} c_n x^n, \tag{18.2}$$

свойства которого равносильны свойствам ряда (18.1). Мы приведем все необходимые утверждения для ряда (18.2), их переформулировки для ряда (18.1) очевидны и могут быть сделаны читателем самостоятельно.

18.2. Утверждение **1.** Если степенной ряд (18.2) сходится при некотором $x_0 \neq 0$, то он абсолютно сходится при любом таком x, что $|x| < |x_0|$, а если он расходится при некотором $x_1 \neq 0$, то будет расходящимся при любом таком x, что $|x| > |x_1|$.

Утверждение 2. Для любого степенного ряда (18.2) существует такое число $R \geq 0$ (возможно, $R = +\infty$), что ряд (18.2) абсолютно сходится в интервале (-R,R), если $R \neq 0$. Этот интервал называют интервалом сходимости ряда (18.2).

Если R=0, то ряд (18.2) сходится в одной точке x=0.

Если R>0, то для любого $R_1\in(0,R)$ ряд (18.2) сходится абсолютно и равномерно на сегменте $[-R_1,R_1]$.

Утверждение 3. Если R — радиус сходимости степенного ряда (18.2), причем $0 < R < +\infty$, и этот ряд сходится в точке R, то он сходится равномерно на отрезке [0,R] и его сумма непрерывна на этом отрезке.

Утверждение 4. Радиус сходимости R степенного ряда (18.2) может быть найден по формуле

$$R = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|c_n|}}.$$

Если существует (конечный или бесконечный) предел $\lim_{n\to\infty}\left|\frac{c_n}{c_{n+1}}\right|$, то

$$R = \lim_{n \to \infty} \left| \frac{c_n}{c_{n+1}} \right|.$$

18.3. Задачи. Найти радиус сходимости и интервал сходимости степенных рядов, исследовать их на сходимость и абсолютную сходимость на концах интервала сходимости:

(1)
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{3n+2}\right)^n (x+2)^n;$$
 (2) $\sum_{n=1}^{\infty} \left(1-\frac{1}{n}\right)^{n^2} x^n;$

(3)
$$\sum_{n=1}^{\infty} \frac{x^n}{a^n + b^n}$$
, $a > 0$, $b > 0$; (4) $\sum_{n=1}^{\infty} \frac{a(a-1)\dots(a-(n-1))}{n!} x^n$.

18.4. Пусть f — бесконечно дифференцируемая в некоторой окрестности точки x_0 функция. Степенной ряд

$$f(x_0) + \sum_{n=1}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 (18.3)

называют pядом Tейлора функции f.

Если $x_0 = 0$, то ряд (18.3) называют рядом Маклорена.

Сходимость ряда Тейлора к значению функции f в точке x зависит от свойств функции f и может быть проанализирована путем изучения сходимости к нулю остатка в формуле Тейлора. Нас здесь будут интересовать разложения в ряд Тейлора конкретных функций.

18.5. При разложении в ряд Тейлора (или Маклорена) полезно помнить следующие разложения (в которых для удобства записи полагаем $0^0=1$):

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}, \tag{18.4}$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad x \in \mathbb{R},$$
(18.5)

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R},$$
(18.6)

$$ch x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R},$$
(18.7)

$$sh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R},$$
(18.8)

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n, \quad x \in (-1,1),$$
 (18.9)

$$\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}, \quad x \in [-1,1),$$

$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}, \quad x \in (-1,1],$$
(18.10)

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}, \quad x \in (-1, 1].$$
 (18.11)

- 18.6. Задачи. Используя формулы п. 18.5, разложить следующие функции в ряд Маклорена и найти радиусы сходимости полученных

- (3) $(1+x)e^{-x}$; (4) $(1-x^2) \arctan x$; (5) $\frac{1}{x^2-2x-3}$; (6) $\frac{5-2x}{x^2-5x+6}$;
- (8) $\sin^3 x$
- **18.7.** Поскольку степенной ряд $\sum_{n=0}^{\infty} a_n x^n$ и ряд $\sum_{n=1}^{\infty} n a_n x^{n-1}$, составный из произволить по n=0 n=1 ленный из производных данного ряда, сходятся равномерно на каждом замкнутом промежутке, содержащемся внутри интервала сходимости данного ряда, функция $f(x) = \sum_{n=0}^{\infty} a_n x^n$ дифференцируема в этом интервале и

$$f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}, \quad \int f(x) \, dx = \sum_{n=0}^{\infty} \frac{a_n x^{n+1}}{n+1} + C.$$

Указанное обстоятельство можно использовать при разложении функции в ряд Тейлора: сначала продифференцировать или проинтегрировать ее, результат разложить в ряд, а затем вернуться к исходной функции.

18.8. Пример. Разложить в ряд Маклорена функцию

$$f(x) = \arctan \frac{1-x}{1+x}.$$

Найдем производную данной функции:

$$f'(x) = \left(\arctan \frac{1-x}{1+x}\right)' = -\frac{1}{1+x^2}.$$

Разложим производную в ряд, используя разложение (18.9):

$$-\frac{1}{1+x^2} = -\sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

Интегрируя почленно последнее равенство, имеем

$$f(x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{2n+1}}{2n+1} + C.$$
 (18.12)

Для нахождения константы C подставим в (18.12) значение x=0. Получим $f(0) = \arctan 1 = \pi/4 = C$. Подставив найденное значение константы в равенство (18.12), приходим к искомому разложению.

18.9. Задачи. 1. Разложить в ряд Маклорена следующие функции и найти радиусы сходимости рядов:

(1)
$$\arctan \frac{2x-3}{x+6}$$
; (2) $\arctan \frac{2+x^2}{2-x^2}$;
(3) $\arctan (x+\sqrt{1+x^2})$; (4) $\arctan \frac{2x}{1+x^2}$;
(5) $x \ln(x+\sqrt{x^2+2})$; (6) $\ln(x^3+\sqrt{9+x^2})$

(2)
$$\arctan \frac{2+x^2}{2-x^2}$$
;

(3)
$$arctg(x + \sqrt{1+x^2});$$

(4)
$$\arcsin \frac{2x}{1+x^2}$$

(5)
$$x \ln(x + \sqrt{x^2 + 2});$$

(6)
$$\ln(x^3 + \sqrt{9 + x^6});$$

2. Применяя почленное дифференцирование, вычислить сумму ря-

$$x + \frac{x^3}{3} + \frac{x^5}{5} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$$

3. Применяя почленное интегрирование, вычислить сумму ряда

$$\sum_{n=1}^{\infty} n^2 x^{n-1}.$$

6. Вычислить сумму ряда:

$$(1) \quad \sum_{n=1}^{\infty} \frac{x^n}{n};$$

да

(1)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$
; (2) $\sum_{n=1}^{\infty} nx^{n+1}$;

18.10. Ответы. 18.3. (1) R = 1, 0 < x < 2, при x = 0 и x = 2абсолютно расходится; (2) R = e, -e < x < e, при $x = \pm e$ расходится; (3) $R = \max(a, b), -R < x < R$, при $x = \pm R$ расходится; (4) R = 1, -1 < x < 1, при x = -1 сходится абсолютно, если $a \ge 0$, и расходится, если a < 0, при x = 1 сходится абсолютно, если $a \ge 0$, и условно, если -1 < a < 0.

18.6. (1)
$$\sum_{n=0}^{\infty} (-1)^n (n+1) x^{n+2}$$
, $R = 1$; (2) $\sum_{n=0}^{\infty} (n+1) x^{3n}$, $R = 1$; (3) $1 + \sum_{n=2}^{\infty} \frac{(-1)^{n+1} (n-1)}{n!} x^n$, $R = \infty$; (4) $x + \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{4n^2 - 1} x^{2n+1}$, $R = 1$; (5) $\sum_{n=0}^{\infty} \frac{1}{4} ((-1)^{n+1} - 3^{-(n+1)}) x^n$, $R = 1$; (6) $\sum_{n=0}^{\infty} (2^{-(n+1)} + 3^{-(n+1)}) x^n$, $R = 2$; (7) $1 + \sum_{n=1}^{\infty} (-1)^n \frac{2^{2n-1}}{(2n)!} x^{2n}$, $R = \infty$; (8) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} 3(3^{2n} - 1)}{4(2n+1)!} x^{2n+1}$, $R = \infty$.

$$R = \infty.$$

$$\mathbf{18.9.} \quad \mathbf{1.} \quad (1) \quad -\arctan \left(\frac{1}{2} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{3^{2n+1}(2n+1)}, \quad R = 3; \quad (2) \quad \frac{\pi}{4} + \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n+1)2^{2n+1}}, \quad R = \sqrt{2}; \quad (3) \quad \frac{\pi}{4} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2(2n-1)} x^{2n-1}, \quad R = 1;$$

$$(4) \quad \sum_{n=0}^{\infty} \frac{2(-1)^n}{2n+1} x^{2n+1}, \quad R = 1; \quad (5) \quad x \ln \sqrt{2} + \frac{x^2}{\sqrt{2}} + \sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{2^{n-1/2}} \cdot \frac{(2n03)!!}{(2n-2)!!} \cdot \frac{x^{2n}}{2n-1},$$

$$R = \sqrt{2}; \quad (6) \quad \ln 3 + \frac{x^3}{2} + \sum_{n=2}^{\infty} \frac{(-1)^n (2n-1)!!}{2^n (2n-1)!!} \quad x^{6n+3}, \quad R = \frac{3}{2}$$

$$R = \sqrt{2}; (6) \ln 3 + \frac{x^3}{3} + \sum_{n=1}^{\infty} \frac{(-1)^n (2n-1)!!}{(2n)!! 3^{2n+1} (2n+1)} x^{6n+3}, R = \sqrt[3]{3}.$$

4.
$$\frac{1}{2} \ln \frac{1+x}{1-x}$$
, $|x| < 1$. **5.** $\frac{1+x}{(1-x)^3}$.

4.
$$\frac{1}{2} \ln \frac{1+x}{1-x}$$
, $|x| < 1$. **5.** $\frac{1+x}{(1-x)^3}$.
6. (1) $x, x > 0$; (2) $\frac{x^2}{(1-x)^2}$, $|x| < 1$.

§19. Интеграл Римана, зависящий от параметра

19.1. Пусть дана функция $f(x,\alpha), \alpha \in A \subset \mathbb{R}, x \in [a,b]$, интегрируемая на [a,b] как функция от x при каждом фиксированном $\alpha \in A$. Предположим, что f как функция от α непрерывна, или дифференцируема, или интегрируема на A при каждом фиксированном $x \in [a, b]$. Будет ли имеющееся у f свойство наследоваться функцией

$$I(lpha) = \int\limits_a^b f(x,lpha)\,dx,$$

представляющей собой интеграл, зависящий от параметра α ?

19.2. Утверждение. Пусть функция $f(x, \alpha)$ при каждом фиксированном $\alpha \in A$ интегрируема на [a,b] как функция от x и при $\alpha \to \alpha_0$ сходится равномерно относительно $x \in [a,b]$ к предельной функции g(x). Тогда g интегрируема на [a,b] и имеет место равенство

$$\lim_{\alpha \to \alpha_0} I(\alpha) = \lim_{\alpha \to \alpha_0} \int_a^b f(x, \alpha) \, dx = \int_a^b \lim_{\alpha \to \alpha_0} f(x, \alpha) \, dx = \int_a^b g(x) \, dx. \quad (19.1)$$

- **19.3.** Утверждение. Пусть функция $f(x,\alpha)$ непрерывна как функция двух переменных $x \in [a,b], \ \alpha \in [c,d], \ rдe \ a,b,c,d \in \mathbb{R}.$ Тогда функция $I(\alpha) = \int\limits_a^b f(x,\alpha) \, dx$ непрерывна на промежутке [c,d].
- **19.4.** Утверждение. Пусть функции $f(x,\alpha), \frac{\partial f}{\partial \alpha}(x,\alpha)$ непрерывны как функции двух переменных $x \in [a,b], \ \alpha \in [c,d], \$ где $a,b,c,d \in \mathbb{R}.$ Тогда функция $I(\alpha) = \int\limits_a^b f(x,\alpha) \, dx$ непрерывно дифференцируема в каждой точке $\alpha \in [c,d]$ и

$$I'(\alpha) = \int_{a}^{b} \frac{\partial f}{\partial \alpha}(x, \alpha) dx.$$
 (19.2)

19.5. Утверждение. Пусть функция $f(x,\alpha)$ непрерывна как функция двух переменных $x \in [a,b], \ \alpha \in [c,d], \$ где $a,b,c,d \in \mathbb{R}.$ Тогда функция $I(\alpha) = \int\limits_a^b f(x,\alpha) \, dx$ интегрируема на промежутке [c,d] и

$$\int_{c}^{d} \left(\int_{a}^{b} f(x, \alpha) \, dx \right) d\alpha = \int_{a}^{b} \left(\int_{c}^{d} f(x, \alpha) \, d\alpha \right) dx.$$

19.6. Утверждение. Пусть функция $f(x,\alpha)$ определена, непрерывна и имеет непрерывную производную по α в прямоугольнике $x \in [a,b], \, \alpha \in [c,d], \, и$ пусть дифференцируемые на [c,d] функции φ,ψ таковы, что $a \leq \varphi(\alpha), \psi(\alpha) \leq b,$ для всех $\alpha \in [c,d]$. Тогда функция

$$I(lpha) = \int\limits_{arphi(lpha)}^{\psi(lpha)} f(x,lpha) \, dx$$

дифференцируема и имеет место равенство

$$I'(lpha) = \int\limits_{arphi(lpha)}^{\psi(lpha)} f'_{lpha}(x,lpha)\,dx + \psi'(lpha)f(\psi(lpha),lpha) - arphi'(lpha)f(arphi(lpha),lpha).$$
 (19.3)

19.7. Сформулированные выше утверждения используют для установления непрерывной зависимости интегралов от параметра, а также для нахождения самих интегралов. Последнее делается, например, так. Если, продифференцировав интеграл по параметру, мы сумели вычислить полученный интеграл, то тем самым приходим к дифференциальному уравнению относительно искомого интеграла как функции от параметра. Решая его, мы находим исходный интеграл.

19.8. Задачи.

1. С помощью дифференцирования интеграла $\int\limits_0^b \frac{dx}{x^2+\alpha^2}$ по пара-

метру α , где $\alpha > 0$, вычислить интеграл $\int\limits_0^b \frac{dx}{(x^2 + \alpha^2)^2}$.

2. Применяя дифференцирование по параметру, вычислить следующие интегралы:

(1)
$$\int_{0}^{\pi/2} \ln(a^2 \sin^2 x + b^2 \cos^2 x) dx$$
; (2) $\int_{0}^{\pi/2} \frac{\arctan(a \operatorname{tg} x)}{\operatorname{tg} x} dx$.

3. Применяя интегрирование под знаком интеграла, вычислить интеграл

$$\int_{0}^{1} \frac{x^{b} - x^{a}}{\ln x} dx \quad (a > 0, \ b > 0).$$

4*. Вычислить интеграл

$$\int_{0}^{1} \sin\left(\ln\frac{1}{x}\right) \frac{x^{b} - x^{a}}{\ln x} dx, \quad 0 < a < b.$$

19.9. Ответы. 19.8. 1. $\frac{1}{2\alpha^3} \operatorname{arctg} \frac{b}{\alpha} + \frac{b}{2\alpha^2(\alpha^2+b^2)}$. 2. (1) $\pi \ln \frac{|a|+|b|}{2}$; (2) $\frac{\pi}{2} \operatorname{sign} a \ln(1+|a|)$. 3. $\ln \frac{b+1}{a+1}$. 4. $\operatorname{arctg} \frac{b-a}{1+(a+1)(b+1)}$.

§ 20. Несобственные интегралы, зависящие от параметра

20.8. Свойства несобственного интеграла как функции от параметра регламентируются следующими утверждениями.

Утверждение 1 (предельный переход в несобственном интеграле). Пусть функция $f(x,\alpha)$ при каждом $\alpha \in A$ интегрируема (в собственном смысле) как функция от x на каждом промежутке [a,b], где $a < b < \omega$, и в каждом таком промежутке при $\alpha \to \alpha_0$ равномерно относительно x сходится к функции g(x). Если, кроме того, интеграл

$$I(lpha) = \int\limits_{lpha}^{\omega} f(lpha,x)\,dx$$

сходится равномерно относительно α из некоторой окрестности точки α_0 , то

$$\lim_{\alpha \to \alpha_0} \int_{a}^{\omega} f(\alpha, x) dx = \int_{a}^{\omega} \lim_{\alpha \to \alpha_0} f(\alpha, x) dx.$$
 (20.2)

Утверждение 2 (непрерывность). Пусть функция $f(x,\alpha)$ непрерывна как функция двух переменных $x \in [a,\omega)$, $\alpha \in (\alpha_1,\alpha_2)$, и пусть интеграл $I(\alpha) = \int\limits_a^\omega f(x,\alpha)\,dx$ сходится равномерно относительно $\alpha \in (\alpha_1,\alpha_2)$. Тогда функция $I(\alpha)$ непрерывна на (α_1,α_2) .

Утверждение 3 (дифференцируемость). Пусть функции $f(x,\alpha)$, $\frac{\partial f}{\partial \alpha}(x,\alpha)$ непрерывны как функции двух переменных $x\in [a,\omega),\ \alpha\in \mathcal{C}$

$$(lpha_1,lpha_2)$$
, интеграл $I(lpha)=\int\limits_a^\omega f(x,lpha)\,dx$ сходится при каждом $lpha\in(lpha_1,lpha_2)$

и интеграл $\int\limits_a^\omega \frac{\partial f}{\partial \alpha}(x,\alpha)\,dx$ сходится равномерно относительно $\alpha\in(\alpha_1,\alpha_2).$

Тогда существует производная $I'(\alpha)$, которую можно найти по формуле

$$I'(\alpha) = \int_{a}^{\omega} \frac{\partial f}{\partial \alpha}(x, \alpha) dx.$$

Утверждение 4 (интегрируемость). Пусть функция $f(x,\alpha)$ непрерывна при $a \le x < \omega, \ \alpha_1 \le \alpha \le \alpha_2$ и интеграл $I(\alpha) = \int\limits_a^\omega f(x,\alpha) \, dx$ сходится равномерно относительно $\alpha \in [\alpha_1,\alpha_2]$. Тогда имеет место формула

$$\int_{\alpha_1}^{\alpha_2} \left(\int_a^{\omega} f(x, \alpha) \, dx \right) d\alpha = \int_a^{\omega} \left(\int_{\alpha_1}^{\alpha_2} f(x, \alpha) \, d\alpha \right) dx. \tag{20.3}$$

Если $f(x,\alpha) \ge 0$ при $x \in [a,\omega)$, $\alpha \in (\alpha_1,\alpha_2)$, то формула (20.3) остается справедливой в предположении, что внутренние интегралы в равенстве (20.3) являются непрерывными функциями и хотя бы одна из частей равенства (20.3) имеет смысл.

20.9. Задачи.

1. C помощью дифференцирования по параметру вычислить следующие интегралы:

(1)
$$\int_{0}^{+\infty} \frac{e^{-\alpha x^{2}} - e^{-\beta x^{2}}}{x} dx \quad (\alpha > 0, \ \beta > 0); \ (2) \quad \int_{1}^{+\infty} \frac{\arctan \alpha x}{x^{2} \sqrt{x^{2} - 1}} dx;$$

(3)
$$\int_{0}^{1} \frac{\ln(1-\alpha^{2}x^{2})}{x^{2}\sqrt{1-x^{2}}} dx (|\alpha| \le 1); \quad (4) \quad \int_{0}^{1} \frac{\ln(1-\alpha^{2}x^{2})}{\sqrt{1-x^{2}}} dx (|\alpha| \le 1).$$

2. Вычислить интеграл Эйлера — Пуассона

$$I = \int\limits_{0}^{+\infty} e^{-x^2} \, dx,$$

исходя из формулы

$$I^2 = \int\limits_0^{+\infty} e^{-x^2} \, dx \int\limits_0^{+\infty} x e^{-x^2 y^2} \, dy.$$

3. Пользуясь интегралом Эйлера — Пуассона, найти интегралы:

(1)
$$\int_{-\infty}^{+\infty} e^{-(ax^2+2bx+c)} dx \quad (a>0); \quad \textbf{(2)} \quad \int_{0}^{+\infty} e^{-(x^2+a^2/x^2)} dx \quad (a>0).$$

4. Исходя из интеграла

$$I(\alpha) = \int_{0}^{+\infty} e^{-\alpha x} \frac{\sin \beta x}{x} dx \quad (\alpha \ge 0),$$

вычислить интеграл Дирихле

$$D(\beta) = \int_{0}^{+\infty} \frac{\sin \beta x}{x} \, dx.$$

5. Вычислить uнтеграл Лапласа

$$L = \int\limits_0^{+\infty} rac{\cos lpha x}{1+x^2} \, dx.$$

6. Вычислить интеграл

$$L_1 = \int\limits_0^{+\infty} \frac{x \sin \alpha x}{1 + x^2} \, dx.$$

7. Пользуясь формулой

$$\frac{1}{\sqrt{x}} = \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} e^{-xy^2} dy \quad (x > 0),$$

вычислить интегралы Френеля

$$\int\limits_0^{+\infty} \sin x^2\,dx = \frac{1}{2}\int\limits_0^{+\infty} \frac{\sin x}{\sqrt{x}}\,dx, \quad \int\limits_0^{+\infty} \cos x^2\,dx = \frac{1}{2}\int\limits_0^{+\infty} \frac{\cos x}{\sqrt{x}}\,dx.$$

8*. Найти величины интегралов:

(1)
$$\int_{0}^{+\infty} \frac{\sin^2 x}{1+x^2} dx; \quad (2) \quad \int_{0}^{+\infty} \frac{\cos \alpha x}{(1+x^2)^2} dx;$$

(3)
$$\int_{-\infty}^{+\infty} \sin(ax^2 + 2bx + c) dx \quad (a \neq 0); \quad \text{(4)} \quad \int_{-\infty}^{+\infty} \sin x^2 \cos 2ax dx.$$

20.9. 1. 1. (1)
$$\frac{1}{2} \ln \frac{\beta}{\alpha}$$
; (2) $\frac{\pi}{2} \operatorname{sign} \alpha (1 + |\alpha| - \sqrt{1 + \alpha^2})$; (3) $-\pi (1 - \sqrt{1 - \alpha^2})$; (4) $\pi \ln \frac{1 + \sqrt{1 - \alpha^2}}{2}$. **2.** $\frac{\sqrt{\pi}}{2}$. **3.** (1) $\sqrt{\frac{\pi}{a}} e^{-(ac-b^2)/a}$; (2) $\frac{\sqrt{\pi}}{2} e^{-2a}$. **4.** $\frac{\pi}{2} \operatorname{sign} \beta$. **5.** $\frac{\pi}{2} e^{-|\alpha|}$. **6.** $\frac{\pi}{2} \operatorname{sign} \alpha e^{-|\alpha|}$. **7.** $\frac{1}{2} \sqrt{\frac{\pi}{2}}$, $\frac{1}{2} \sqrt{\frac{\pi}{2}}$. **8.** (1) $\frac{\pi}{4} (1 - e^{-2})$; (2) $\frac{\pi (1 + |\alpha|)}{4} e^{-|\alpha|}$; (3) $\sqrt{\frac{\pi}{|a|}} \sin \left(\frac{ac-b^2}{a} + \frac{\pi}{4} \operatorname{sign} a\right)$; (4) $\sqrt{\pi} \cos \left(a^2 + \frac{\pi}{4}\right)$.