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MEASURABILITY OF THE BANACH INDICATRIX

BY

NIKITA EVSEEV (Novosibirsk and Moscow)

Abstract. We establish the measurability of the Banach indicatrix for a measurable
mapping in a geometrically doubling metric space. This is a generalization of a known
result for continuous transformations in Euclidean space. A system of dyadic cubes in
metric space is employed to construct a sequence of measurable functions converging to
the indicatrix, and we partly follow Banach’s original proof.

1. Introduction. Given metric measure spaces X, Y , let f : X → Y
be a measurable mapping and A ⊂ X. The Banach indicatrix (multiplicity
function) is defined as N(y, f,A) = #{x ∈ A | f(x) = y}, the number
of elements of f−1(y) in A (possibly ∞). In case A = X write N(y, f) =
N(y, f,X). The question we consider is as follows: is the function N(y, f,A)
measurable?

Let us briefly discuss some results and examples. The measurability of
the multiplicity function for a continuous function f : [a, b]→ R was proved
by S. Banach in [B, Théorème 1.1], whereas [B, Théorème 1.2] states that	b
aN(y, f) dy is equal to the total variation TV(f, [a, b]). Together Théorèmes
1.1 and 1.2 are named the Banach indicatrix theorem (see [N, pp. 225–227],
[Bo, p. 406], [L, pp. 66–72], [BC, pp. 177–178]). There are further generaliza-
tions of this result—see for example [Ša, St, Ł] and the bibliography therein.

The Banach indicatrix plays a role in the change of variables formula�

A

(u ◦ f)|J(x, f)| dx =
�

Rn
u(y)N(y, f,A) dy.

In [H] the formula was obtained under minimal assumptions: the a.e. exis-
tence of approximate partial derivatives. In particular, the measurability of
N(y, f,A) was proved.

In [RR, IV.1.2] the multiplicity function of a continuous transform was
studied in detail. See also [GR, p. 272] for further investigation. The treat-
ment in the setting of metric spaces is given in [F, 2.10.10–15].
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This note aims to show the measurability of the Banach indicatrix for an
arbitrary measurable mapping (Theorem 3.1). An application of this result
appears in [E]. The proof of Lemma 3.3 is based upon ideas of the original
proof of [B, Théorème 1.1].

2. Assumptions. Though we intend to prove the assertion in a most
general setting, some requirements on the spaces involved are assumed.

Let (X, dX , µX) be a complete, separable metric space with measure.
Additionally X is supposed to be geometrically doubling : there is a constant
λ ∈ N such that every ball B(x, r) = {z ∈ X | dX(x, z) < r} can be covered
by at most λ balls B(y, r/2) of half the radius. The measure µX is a Borel
regular measure such that each ball has finite measure. Assume (Y, dY , µY )
is a separable metric measurable space.

A mapping f : X → Y is said to be µX -measurable if it is defined
µX -almost everywhere on X and f−1(E) is µX -measurable whenever E is
an open subset of Y [F, 2.3.2].

A system of dyadic cubes is exploited, which is a family

{Qkα | k ∈ Z, α ∈ Ak ⊂ N}
of Borel sets together with parameters δ ∈ (0, 1), 0 < c ≤ C < ∞ and
centres {xkα}, meeting the following properties:

(1) if l ≥ k then either Qlβ ⊂ Qkα or Qlβ ∩Qkα = ∅;
(2) for each k ∈ Z, X =

⋃
α∈Ak Q

k
α is a disjoint union;

(3) B(xkα, cδ
k) ⊂ Qkα ⊂ B(xkα, Cδ

k);
(4) if l ≥ k and Qlβ ⊂ Qkα then B(xlβ, Cδ

l) ⊂ B(xkα, Cδ
k).

This specific dyadic system in doubling quasi-metric spaces was constructed
in [HK] and generalizes the dyadic cubes in Euclidean space.

3. Establishing measurability. The main result of this paper is for-
mulated as follows.

Theorem 3.1. Let f : X → Y be a µX-measurable mapping, and A ⊂ X
be a Borel set. Then f can be redefined on a set of µX-measure zero in such
a way that the Banach indicatrix N(y, f,A) is a µY -measurable function.

Before proceeding with the proof of the theorem we mention an example
where the indicatrix of a measurable function is not measurable, illustrating
why it is sometimes necessary to redefine the function on a null set.

Example 3.2. Let C ⊂ R denote the Cantor set and V ⊂ R denote the
Vitali non-measurable set. There is a bijection f : C → V . Define f̃(x) =
f(x) if x ∈ C and 0 otherwise. Then f̃ is measurable, while N(y, f) is not
(as the characteristic function of the non-measurable set V ).
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The proof of Theorem 3.1 is split into two lemmas.

Lemma 3.3. Let A ⊂ X be a Borel set and f : X → Y a µX-measurable
mapping with the following property: the image f(B) is µY -measurable when-
ever B ⊂ A is a Borel set. Then N(y, f,A) is a µY -measurable function.

Proof. Take a system {Qkα} of dyadic cubes on X, and define the family
of functions Lkα(y) = χf(Qkα∩A)(y). The functions Lkα(y) are non-negative
and µY -measurable (as the characteristic functions of µY -measurable sets
f(Qkα ∩ A)). Therefore the sum Nk(y) =

∑
α∈Ak L

k
α(y) is also measurable.

Thus the sequence {Nk(y)} of measurable functions is non-decreasing and
the pointwise limit N∗(y) = limk→∞Nk(y) exists and is a µY -measurable
function.

Note that Nk(y) is the number of the sets Qkα ∩A in which the function
f attains the value y at least once. So for each k, N(y, f,A) ≥ Nk(y) and
N(y, f,A) ≥ N∗(y).

We prove the reverse inequality. Let q be an integer such that N(y, f,A)
≥ q. Then there exist q different points x1, . . . , xq ⊂ A such that f(xj) = y.
If k is so large that x1, . . . , xq are in disjoint cubes {Qkαj}, j = 1, . . . , q, then
Nk(y) ≥ q. This shows N(y, f,A) ≤ N∗(y) and N∗(y) = N(y, f,A).

Lemma 3.4 (see also [VE, Lemma 12]). Let f : X → Y be a µX-
measurable mapping. Then there is an increasing sequence of closed sets
Tj ⊂ X such that f is continuous on every Tj and µX(X \

⋃
j Tj) = 0.

Proof. Let {Qα} be a collection of dyadic cubes of one generation such
that

X =
⋃
α

Qα is a disjoint union.

By Luzin’s theorem [F, 2.3.5], for each α there is a closed set C1
α ⊂ Qα such

that f is continuous on C1
α and µX(Qα \ C1

α) < 1. Similarly f continuous
on C2

α ⊂ Qα \ C1
α and µX((Qα \ C1

α) \ C2
α) < 1/2 and so on. This yields a

sequence {Cjα} of closed sets.
Set P jα =

⋃j
i=1C

i
α. Then P

j
α ⊂ P j+1

α and the mapping f is continuous on
each P jα. Furthermore µX(Qα \ P jα) < 1/j, and hence µX(Qα \

⋃
k P

j
α) = 0.

Now defining Tj =
⋃
α P

j
α, we get an increasing sequence of closed sets.

In particular, µX(Qα \
⋃
j Tj) = 0 since

⋃
j P

j
α ⊂

⋃
j Tj . Then X \

⋃∞
j=1 Tj =⋃

α(Qα \
⋃∞
j=1 Tj). Consequently, X \

⋃
j Tj is of µX -measure zero since it is

a countable union of negligible sets.

Proof of Theorem 3.1. Let {Tj} be a sequence of closed sets from Lem-
ma 3.4. Observe that the image of each Borel set B ⊂ Tj is µY -measurable
since f is continuous on Tj [F, 2.2.13]. This puts us in a position to apply
Lemma 3.3 to deduce that N(y, f,A∩Tj) is a µY -measurable function. The
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sequence N(y, f,A ∩ Tj) is non-decreasing, and hence

N
(
y, f,A ∩

⋃
j

Tj

)
= lim

j→∞
N(y, f,A ∩ Tj)

is a µY -measurable function.
Take a point y0 ∈ Y and redefine f(x) = y0 for x ∈ X \

⋃
j Tj .

Remark 3.5. Note that Theorem 3.1 requires that A be a Borel set.
On the other hand, one can prove an analogous assertion for a measurable
set A, but assuming that the mapping f has the Luzin N -property (because
in this case the continuous image of every measurable set is measurable and
Lemma 3.3 is applicable).
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