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MFEASURABILITY OF THE BANACH INDICATRIX

BY

NIKITA EVSEEV (Novosibirsk and Moscow)

Abstract. We establish the measurability of the Banach indicatrix for a measurable
mapping in a geometrically doubling metric space. This is a generalization of a known
result for continuous transformations in Euclidean space. A system of dyadic cubes in
metric space is employed to construct a sequence of measurable functions converging to
the indicatrix, and we partly follow Banach’s original proof.

1. Introduction. Given metric measure spaces X, Y, let f: X — Y
be a measurable mapping and A C X. The Banach indicatriz (multiplicity
function) is defined as N(y, f,A) = #{z € A | f(x) = y}, the number
of elements of f~!(y) in A (possibly o). In case A = X write N(y, f) =
Ny, f, X). The question we consider is as follows: is the function N(y, f, A)
measurable?

Let us briefly discuss some results and examples. The measurability of
the multiplicity function for a continuous function f : [a,b] — R was proved
by S. Banach in [Bl Théoréme 1.1], whereas [Bl, Théoréme 1.2| states that
SZ Ny, f) dy is equal to the total variation TV(f, [a, b]). Together Théorémes
1.1 and 1.2 are named the Banach indicatrix theorem (see [N, pp. 225-227],
[Bol, p. 406], |L, pp. 66-72|, [BC| pp. 177-178]). There are further generaliza-
tions of this result—see for example [Sa, Stl [£] and the bibliography therein.

The Banach indicatrix plays a role in the change of variables formula

J(wo Al (@, fllde = | u(y)N(y, f, A) dy.

A R"
In [H] the formula was obtained under minimal assumptions: the a.e. exis-
tence of approximate partial derivatives. In particular, the measurability of
N(y, f, A) was proved.

In [RR] IV.1.2] the multiplicity function of a continuous transform was

studied in detail. See also |[GR) p. 272| for further investigation. The treat-
ment in the setting of metric spaces is given in [El 2.10.10-15].
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This note aims to show the measurability of the Banach indicatrix for an
arbitrary measurable mapping (Theorem . An application of this result
appears in [E]. The proof of Lemma is based upon ideas of the original
proof of [B, Théoréme 1.1].

2. Assumptions. Though we intend to prove the assertion in a most
general setting, some requirements on the spaces involved are assumed.

Let (X,dx,ux) be a complete, separable metric space with measure.
Additionally X is supposed to be geometrically doubling: there is a constant
A € N such that every ball B(x,r) ={z € X | dx(z,2) < r} can be covered
by at most A balls B(y,r/2) of half the radius. The measure px is a Borel
regular measure such that each ball has finite measure. Assume (Y, dy, uy)
is a separable metric measurable space.

A mapping f : X — Y is said to be ux-measurable if it is defined
px-almost everywhere on X and f~!(E) is pux-measurable whenever F is
an open subset of Y [E| 2.3.2].

A system of dyadic cubes is exploited, which is a family

{QF |keZ, ac A, C N}

of Borel sets together with parameters § € (0,1), 0 < ¢ < C < oo and
centres {z%}, meeting the following properties:

(1) if [ > k then either Qlﬂ C QF or Q% Nk =10,

(2) for each k € Z, X =, e 4, QF is a disjoint union;

(3) B(zk, co%) c QF c B(ak,Co%);

(4) if 1 >k and Q4 C QF then B(z}, Cd') C B(af, Co").

This specific dyadic system in doubling quasi-metric spaces was constructed
in [HK] and generalizes the dyadic cubes in Euclidean space.

3. Establishing measurability. The main result of this paper is for-
mulated as follows.

THEOREM 3.1. Let f: X =Y be a pux-measurable mapping, and A C X
be a Borel set. Then f can be redefined on a set of pux-measure zero in such
a way that the Banach indicatriz N(y, f, A) is a py-measurable function.

Before proceeding with the proof of the theorem we mention an example
where the indicatrix of a measurable function is not measurable, illustrating
why it is sometimes necessary to redefine the function on a null set.

EXAMPLE 3.2. Let C' C R denote the Cantor set and V' C R denote the
Vitali non-measurable set. There is a bijection f : C — V. Define f (x) =
f(x) if z € C and 0 otherwise. Then f is measurable, while N(y, f) is not
(as the characteristic function of the non-measurable set V).
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The proof of Theorem [3.1] is split into two lemmas.

LEMMA 3.3. Let A C X be a Borel set and f : X —Y a pux-measurable
mapping with the following property: the image f(B) is uy -measurable when-
ever B C A is a Borel set. Then N(y, f,A) is a py-measurable function.

Proof. Take a system {Q¥} of dyadic cubes on X, and define the family
of functions L% (y) = Xf(@ktnay(y). The functions LE(y) are non-negative
and py-measurable (as the characteristic functions of py-measurable sets
f(QF N A)). Therefore the sum Ni(y) = D acA, LE(y) is also measurable.
Thus the sequence {Ng(y)} of measurable functions is non-decreasing and
the pointwise limit N*(y) = limg_,o, Ni(y) exists and is a py-measurable
function.

Note that Nj(y) is the number of the sets Q% N A in which the function
f attains the value y at least once. So for each k, N(y, f, A) > Ni(y) and
N(y, £, 4) > N*(y).

We prove the reverse inequality. Let ¢ be an integer such that N(y, f, A)
> q. Then there exist ¢ different points x1,...,24 C A such that f(z;) = y.
If k is so large that x1, ..., 2, are in disjoint cubes {Q’;]_}7 j=1,...,q, then
Ni(y) > q. This shows N(y, f,A) < N*(y) and N*(y) = N(y, f,A). =

LEMMA 3.4 (see also [VE, Lemma 12|). Let f : X — Y be a pux-
measurable mapping. Then there is an increasing sequence of closed sets
T; C X such that f is continuous on every Tj and px (X \ U; T;) = 0.

Proof. Let {Qq} be a collection of dyadic cubes of one generation such
that
X = U Q. is a disjoint union.
«

By Luzin’s theorem [E| 2.3.5], for each a there is a closed set C} C Q,, such
that f is continuous on CL and px(Qa \ CL) < 1. Similarly f continuous
on C2 C Qu \ C} and pux((Qa \ CL)\ C2?) < 1/2 and so on. This yields a
sequence {C4} of closed sets.

Set Pl = Z:l C! . Then P, c P and the mapping f is continuous on
each PJ. Furthermore 11x(Qq \ P2) < 1/j, and hence px(Qa \ U Pl =0.

Now defining 75 = |J,, P&, we get an increasing sequence of closed sets.
In particular, px(Qa \U; Tj) = 0 since {J; Pl c U; 75 Then X\ U2, T; =
Ua(Qa \UjZ, Tj). Consequently, X \ |, T} is of ux-measure zero since it is
a countable union of negligible sets. =

Proof of Theorem . Let {T;} be a sequence of closed sets from Lem-
ma @ Observe that the image of each Borel set B C T} is py-measurable

since f is continuous on 7} [F, 2.2.13]. This puts us in a position to apply
Lemma to deduce that N(y, f, ANTj}) is a py-measurable function. The
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sequence N (y, f, ANT}) is non-decreasing, and hence
N(y. £ ANJTy) = lim N(y, f,ANT
y, f ﬂU J JHEO (y, fLANT})
j

is a py-measurable function.
Take a point yo € Y and redefine f(z) =yo for z € X \ ;7. =

REMARK 3.5. Note that Theorem [3.I] requires that A be a Borel set.
On the other hand, one can prove an analogous assertion for a measurable
set A, but assuming that the mapping f has the Luzin N -property (because
in this case the continuous image of every measurable set is measurable and

Lemma is applicable).
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