COLLOQUIUM MATHEMATICUM

Online First version

MEASURABILITY OF THE BANACH INDICATRIX

BY

NIKITA EVSEEV (Novosibirsk and Moscow)

Abstract. We establish the measurability of the Banach indicatrix for a measurable mapping in a geometrically doubling metric space. This is a generalization of a known result for continuous transformations in Euclidean space. A system of dyadic cubes in metric space is employed to construct a sequence of measurable functions converging to the indicatrix, and we partly follow Banach's original proof.

1. Introduction. Given metric measure spaces X, Y, let $f: X \to Y$ be a measurable mapping and $A \subset X$. The Banach indicatrix (multiplicity function) is defined as $N(y, f, A) = \#\{x \in A \mid f(x) = y\}$, the number of elements of $f^{-1}(y)$ in A (possibly ∞). In case A = X write N(y, f) = N(y, f, X). The question we consider is as follows: is the function N(y, f, A) measurable?

Let us briefly discuss some results and examples. The measurability of the multiplicity function for a continuous function $f:[a,b]\to\mathbb{R}$ was proved by S. Banach in [B, Théorème 1.1], whereas [B, Théorème 1.2] states that $\int_a^b N(y,f)\,dy$ is equal to the total variation $\mathrm{TV}(f,[a,b])$. Together Théorèmes 1.1 and 1.2 are named the Banach indicatrix theorem (see [N, pp. 225–227], [Bo, p. 406], [L, pp. 66–72], [BC, pp. 177–178]). There are further generalizations of this result—see for example [Ša, St, Ł] and the bibliography therein.

The Banach indicatrix plays a role in the change of variables formula

$$\int_{A} (u \circ f) |J(x, f)| \, dx = \int_{\mathbb{R}^n} u(y) N(y, f, A) \, dy.$$

In [H] the formula was obtained under minimal assumptions: the a.e. existence of approximate partial derivatives. In particular, the measurability of N(y, f, A) was proved.

In [RR, IV.1.2] the multiplicity function of a continuous transform was studied in detail. See also [GR, p. 272] for further investigation. The treatment in the setting of metric spaces is given in [F, 2.10.10–15].

2010 Mathematics Subject Classification: Primary 28A20; Secondary 28A05.

Key words and phrases: Banach indicatrix, doubling metric space.

Received 3 February 2016; revised 26 June 2017.

Published online 16 April 2018.

This note aims to show the measurability of the Banach indicatrix for an arbitrary measurable mapping (Theorem 3.1). An application of this result appears in [E]. The proof of Lemma 3.3 is based upon ideas of the original proof of [B, Théorème 1.1].

2. Assumptions. Though we intend to prove the assertion in a most general setting, some requirements on the spaces involved are assumed.

Let (X, d_X, μ_X) be a complete, separable metric space with measure. Additionally X is supposed to be geometrically doubling: there is a constant $\lambda \in \mathbb{N}$ such that every ball $B(x,r) = \{z \in X \mid d_X(x,z) < r\}$ can be covered by at most λ balls B(y, r/2) of half the radius. The measure μ_X is a Borel regular measure such that each ball has finite measure. Assume (Y, d_Y, μ_Y) is a separable metric measurable space.

A mapping $f: X \to Y$ is said to be μ_X -measurable if it is defined μ_X -almost everywhere on X and $f^{-1}(E)$ is μ_X -measurable whenever E is an open subset of Y [F, 2.3.2].

A system of dyadic cubes is exploited, which is a family

$$\{Q_{\alpha}^{k} \mid k \in \mathbb{Z}, \, \alpha \in \mathcal{A}_{k} \subset \mathbb{N}\}$$

of Borel sets together with parameters $\delta \in (0,1), 0 < c \leq C < \infty$ and centres $\{x_{\alpha}^{k}\}$, meeting the following properties:

- (1) if $l \geq k$ then either $Q_{\beta}^{l} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{l} \cap Q_{\alpha}^{k} = \emptyset$;
- (2) for each $k \in \mathbb{Z}$, $X = \bigcup_{\alpha \in \mathcal{A}_k} Q_{\alpha}^k$ is a disjoint union;
- (3) $B(x_{\alpha}^{k}, c\delta^{k}) \subset Q_{\alpha}^{k} \subset B(x_{\alpha}^{k}, C\delta^{k});$ (4) if $l \geq k$ and $Q_{\beta}^{l} \subset Q_{\alpha}^{k}$ then $B(x_{\beta}^{l}, C\delta^{l}) \subset B(x_{\alpha}^{k}, C\delta^{k}).$

This specific dyadic system in doubling quasi-metric spaces was constructed in [HK] and generalizes the dyadic cubes in Euclidean space.

3. Establishing measurability. The main result of this paper is formulated as follows.

Theorem 3.1. Let $f: X \to Y$ be a μ_X -measurable mapping, and $A \subset X$ be a Borel set. Then f can be redefined on a set of μ_X -measure zero in such a way that the Banach indicatrix N(y, f, A) is a μ_Y -measurable function.

Before proceeding with the proof of the theorem we mention an example where the indicatrix of a measurable function is not measurable, illustrating why it is sometimes necessary to redefine the function on a null set.

EXAMPLE 3.2. Let $C \subset \mathbb{R}$ denote the Cantor set and $V \subset \mathbb{R}$ denote the Vitali non-measurable set. There is a bijection $f: C \to V$. Define f(x) =f(x) if $x \in C$ and 0 otherwise. Then \tilde{f} is measurable, while N(y,f) is not (as the characteristic function of the non-measurable set V).

The proof of Theorem 3.1 is split into two lemmas.

LEMMA 3.3. Let $A \subset X$ be a Borel set and $f: X \to Y$ a μ_X -measurable mapping with the following property: the image f(B) is μ_Y -measurable whenever $B \subset A$ is a Borel set. Then N(y, f, A) is a μ_Y -measurable function.

Proof. Take a system $\{Q_{\alpha}^k\}$ of dyadic cubes on X, and define the family of functions $L_{\alpha}^k(y) = \chi_{f(Q_{\alpha}^k \cap A)}(y)$. The functions $L_{\alpha}^k(y)$ are non-negative and μ_Y -measurable (as the characteristic functions of μ_Y -measurable sets $f(Q_{\alpha}^k \cap A)$). Therefore the sum $N_k(y) = \sum_{\alpha \in \mathcal{A}_k} L_{\alpha}^k(y)$ is also measurable. Thus the sequence $\{N_k(y)\}$ of measurable functions is non-decreasing and the pointwise limit $N^*(y) = \lim_{k \to \infty} N_k(y)$ exists and is a μ_Y -measurable function.

Note that $N_k(y)$ is the number of the sets $Q_{\alpha}^k \cap A$ in which the function f attains the value y at least once. So for each k, $N(y, f, A) \geq N_k(y)$ and $N(y, f, A) \geq N^*(y)$.

We prove the reverse inequality. Let q be an integer such that $N(y,f,A) \ge q$. Then there exist q different points $x_1,\ldots,x_q \subset A$ such that $f(x_j)=y$. If k is so large that x_1,\ldots,x_q are in disjoint cubes $\{Q_{\alpha_j}^k\},\ j=1,\ldots,q$, then $N_k(y)\ge q$. This shows $N(y,f,A)\le N^*(y)$ and $N^*(y)=N(y,f,A)$.

LEMMA 3.4 (see also [VE, Lemma 12]). Let $f: X \to Y$ be a μ_X -measurable mapping. Then there is an increasing sequence of closed sets $T_j \subset X$ such that f is continuous on every T_j and $\mu_X(X \setminus \bigcup_j T_j) = 0$.

Proof. Let $\{Q_{\alpha}\}$ be a collection of dyadic cubes of one generation such that

$$X = \bigcup_{\alpha} Q_{\alpha}$$
 is a disjoint union.

By Luzin's theorem [F, 2.3.5], for each α there is a closed set $C_{\alpha}^1 \subset Q_{\alpha}$ such that f is continuous on C_{α}^1 and $\mu_X(Q_{\alpha} \setminus C_{\alpha}^1) < 1$. Similarly f continuous on $C_{\alpha}^2 \subset Q_{\alpha} \setminus C_{\alpha}^1$ and $\mu_X((Q_{\alpha} \setminus C_{\alpha}^1) \setminus C_{\alpha}^2) < 1/2$ and so on. This yields a sequence $\{C_{\alpha}^j\}$ of closed sets.

Set $P_{\alpha}^{j} = \bigcup_{i=1}^{j} C_{\alpha}^{i}$. Then $P_{\alpha}^{j} \subset P_{\alpha}^{j+1}$ and the mapping f is continuous on each P_{α}^{j} . Furthermore $\mu_{X}(Q_{\alpha} \setminus P_{\alpha}^{j}) < 1/j$, and hence $\mu_{X}(Q_{\alpha} \setminus \bigcup_{k} P_{\alpha}^{j}) = 0$.

Now defining $T_j = \bigcup_{\alpha} P_{\alpha}^j$, we get an increasing sequence of closed sets. In particular, $\mu_X(Q_{\alpha} \setminus \bigcup_j T_j) = 0$ since $\bigcup_j P_{\alpha}^j \subset \bigcup_j T_j$. Then $X \setminus \bigcup_{j=1}^{\infty} T_j = \bigcup_{\alpha} (Q_{\alpha} \setminus \bigcup_{j=1}^{\infty} T_j)$. Consequently, $X \setminus \bigcup_j T_j$ is of μ_X -measure zero since it is a countable union of negligible sets. \blacksquare

Proof of Theorem 3.1. Let $\{T_j\}$ be a sequence of closed sets from Lemma 3.4. Observe that the image of each Borel set $B \subset T_j$ is μ_Y -measurable since f is continuous on T_j [F, 2.2.13]. This puts us in a position to apply Lemma 3.3 to deduce that $N(y, f, A \cap T_j)$ is a μ_Y -measurable function. The

sequence $N(y, f, A \cap T_j)$ is non-decreasing, and hence

$$N(y, f, A \cap \bigcup_{j} T_j) = \lim_{j \to \infty} N(y, f, A \cap T_j)$$

is a μ_Y -measurable function.

Take a point $y_0 \in Y$ and redefine $f(x) = y_0$ for $x \in X \setminus \bigcup_j T_j$.

Remark 3.5. Note that Theorem 3.1 requires that A be a Borel set. On the other hand, one can prove an analogous assertion for a measurable set A, but assuming that the mapping f has the Luzin \mathcal{N} -property (because in this case the continuous image of every measurable set is measurable and Lemma 3.3 is applicable).

Acknowledgements. This research was carried out at the Peoples' Friendship University of Russia and financially supported by the Russian Science Foundation (Grant 16-41-02004).

REFERENCES

- [B] S. Banach, Sur les lignes réctifiables et les surfaces dont l'aire est finie, Fund. Math. 7 (1925), 225–236.
- [BC] J. J. Benedetto and W. Czaja, Integration and Modern Analysis, Birkhäuser, Boston, 2009.
- [Bo] V. I. Bogachev, Measure Theory, Vol. 1, Springer, 2007.
- [E] N. A. Evseev, Composition operators in weighted Sobolev spaces on the Carnot group, Siberian Math. J. 56 (2015), 1042–1059.
- [F] H. Federer, Geometric Measure Theory, Springer, 1969.
- [GR] V. M. Gol'dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1990.
- [H] P. Hajłasz, Change-of-variables formula under the minimal assumptions, Colloq. Math. 64 (1993), 93–101.
- [HK] T. Hytönen and A. Kairema, Systems of dyadic cubes in a doubling metric space, Colloq. Math. 126 (2012), 1–33.
- [L] G. Leoni, A First Course in Sobolev Spaces, Amer. Math. Soc., Providence, RI, 2009.
- [L] R. Łochowski, On a generalisation of the Banach indicatrix theorem, Colloq. Math. 148 (2017), 301–313.
- [N] I. P. Natanson, Theory of Functions of a Real Variable, Ungar, New York, 1961.
- [RR] T. Rado and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer, 1955.
- [Sa] T. Salát, Generalization of the notion of the Banach indicatrix, Fund. Math. 73 (1971/72), 29–36.
- [St] W. Stadje, On functions with derivative of bounded variation: an analogue of Banach's indicatrix theorem, Proc. Edinburgh Math. Soc. 29 (1986), 61–68.
- [VE] S. K. Vodop'yanov and N. A. Evseev, *Isomorphisms of Sobolev spaces on Carnot groups and quasi-isometric mappings*, Siberian Math. J. 55 (2014), 817–848.

Nikita Evseev Sobolev Institute of Mathematics 630090 Novosibirsk, Russia and Novosibirsk State University 630090 Novosibirsk, Russia and Peoples' Friendship University of Russia 117198 Moscow, Russia

E-mail: evseev@math.nsc.ru