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Introduction

The theory of lattice-normed spaces 1s at present an actively developing area of functional analysis. Arising
from the theory of vector lattices it has acquired independence while preserving a certain continuity with
it. One can regard a lattice-normed space as a generalization of the concept of a vector lattice, an approach
that is supported by the explicit correspondence of many facts of the theories of vector lattices and lattice-
normed spaces.

On of the most important results of the study of vector lattices was their realization as spaces of
continuous functions on compact sets (cf. [1, Ch. V]). An analog of this result in the theory of lattice-normed
spaces would seem to be no less desirable. The space C(Q, X) of continuous functions on a compact set )
with values in a Banach space X is a lattice-normed space. But not all lattice-normed spaces have such a
simple structure, and a realization of the form C(Q, X) is not universal. An escape from this situation was
provided by the representation of a lattice-normed space as a space of functions assuming values not in a
fixed Banach space, but in a bundle of Banach spaces over a compact set (). In other words, the functions
u from such a lattice-normed space assume values u(¢) in a Banach space X(¢) that is different for each
point ¢ € Q). (We note that the idea of representing different objects as bundles is not new in analysis.
Evidence for this assertion can be found, for example, in [2], which in turn refers to other works in this
area.) In the theory of lattice-normed spaces the first step in this direction was taken in (3], where it was
established that an arbitrary lattice-normed space can be represented as a space of equivalence classes of
almost global sections of some Banach bundle. But such a realization has a number of deficiencies (cf. Sec.
1.5). In particular it is not unique.

In the present article we develop the result of [3] just noted, and as an application of the realization con-
structed we study the structure of the linear operators of a lattice-normed space that preserve disjointness.
Let us discuss this in more detail. In § 1 we give a list of the notation used and basic definitions. In § 2 we
study the concept of a complete Banach bundle and construct a realization of an arbitrary lattice-normed
space as a space of maximal sections of some complete Banach bundle (unique for a given lattice-normed
space). In § 3 we establish criteria for an operator on section spaces to possess a certain multiplicative
representation that is a generalization of the composition of a change of variable and multiplication by a
scalar-valued function (such transformations are also called weighted shift operators). We note that the
analogs of the results of § 3 for the case of a vector lattice can be found in [4| and [5].

The author is deeply grateful to A. G. Kusraev for attention to this work.

§ 1. Preliminary information

~ In the main we adhere to the terminology and notation of [1, 3, 6, 7]. All vector spaces in this paper are
assumed to be real. |

The basic concepts of the theory of lattice-normed spaces and Banach-Kantorovich spaces are discussed
and rather thoroughly studied in [3] and [7]. We refer the reader to [3] for explanation of the concepts of
lattice-normed spaces and Banach-Kantorovich spaces, disjoint completeness, and maximal extension of a
lattice-normed space majorized by an operator. We note that instead of the terms bo-convergence and
br-convergence used in (3| we shall use the terms o-convergence and r-convergence respectively. The vector
norms will be denoted by |-|. Two lattice-normed spaces U and V with E- and F'-valued norms are called
1somorphic if there exist a linear bijection ¢ : U — V and a linear and order isomorphism ) : £ — F
such that |o(u)| = ¥(|u|) for all v € U. Here the isomorphism ¢ will be said to be associated with .
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If in addition £ = F and 3 = idg, we shall call ¢ an E-isomorphism and the lattice-normed spaces U
and V E-isomorphic. The order projections in the norming K-space are identified with the corresponding
projections on the components of the lattice-normed space, as was done in (7|, for example. The word
projection always means order projection. '

A family of elements of a lattice-normed space is called disjoint if its elements are pairwise disjoint.
The sum ) ug of a disjoint family (u¢) is taken to mean its o-sum, i.e., the o-limit of the net of sums
of finite subfamilies. An element u of a lattice-normed space is called a fragment of the element v (and
denoted u C v) if u = v for some projection 7. The symbol (u) denotes the projection on the component
{|u|}*+, where L is the relation of disjointness. If U is a subset of a Banach-Kantorovich space, we denote
by dU (resp. dgn,U) the set of sums of all (resp. all finite) disjoint families of elements of U.

A realization of a K-space E is defined to be an order-dense ideal E of the K-space Co(Q) linearly
and order-isomorphic to E (more precisely, an isomorphism of E onto E), where @ is the Stone compact
boolean algebra of ordinal projections of the K-space FE.

If Q is an extremally disconnected compact set, then B(Q) denotes the boolean algebra of its open-
closed subsets and B(q) the set of open-closed neighborhoods of the point ¢ € ). The symbol xy denotes
the characteristic function of the set U € B(Q), and (U) denotes the projection in the K-space Coo(Q)) on
the component {xy}++. The function xg is denoted by 1. If the norming K-space of the lattice-normed
space U 1s an order-dense ideal of Cs (@), then the support of an element u € U is defined to be the set
suppu :=cl{q € Q : |u|(q) # 0}, where cl is the closure operator in a topological space. We shall say that
a certain assertion holds for almost all ¢ € QQ or almost everywhere on @ if it holds for all the elements of
some comeager set (), i.e., a subset whose complement is a set of first Baire category.

Let S be a set and ¢ a convergence on S. The subset S; C S will be called c-dense in S 1if for each
element s € S there exists a net {s,) C Sy that is c-convergent to s (we shall write s, — s). Let S; and
S2 be sets with convergences ¢; and ¢y respectively. The mapping T : §; — S is called c¢jca-continuous
(resp. sequentially c;cy-continuous) if for any net (resp. sequence) (sq) C S; the convergence sq — s in
S1 always implies the convergence T's, 2, Tsin S,. If the convergences c¢; and ¢ have the same notation
¢, then a (sequentially) c;ce-continuous mapping is called (sequentially) c-continuous.

If X and Y are Banach spaces, we denote by L(X,Y") the Banach space of bounded linear transforma-
tions from X into Y.

One of the basic objects with which we shall work in the present article is a Banach bundle over an
extremally disconnected compact set. Banach bundles were studied in [8] as a special case of bundles of
topological vector spaces. Some of the properties of Banach bundles were studied in [3]| from the point of

view of the theory of Banach-Kantorovich spaces. To complete the picture we give the basic definitions
here.

1.1. Let X and @ be topological spaces and pr : X — @ a continuous surjective mapping. Then the
pair (X, pr ) is called a bundle over Q. The preimage pr~'(q) is called the fiber of X at the point ¢ € @) and
denoted X(g). A continuous mapping u from a nonempty subset U C @ into the space X is called a section
(over @) if u(q) € X(q) for each point ¢ € U (and we use the notation u € Cy(X)). If the set U C Q is a)
open, b) comeager, or c) equal to ), the section u is called respectively a) local (and this fact is denoted

u € Co(X)), b) almost global (u € C(X)), or ¢) global (u € C(X)).

Assume that X and @) are topological spaces and that we have the mappings

pr: X — @,

+: (z1,22) € X3, — 21 + 23 € X,
¥: (AMz) ERXxX+— Az e X,
I-1l:z€X |z €R,

where X? = {(z,,22) € X*: pr(z,) = pr(z2)}. The quintuple (X,pr,+,*, || -||) is called a Banach bundle
over @ if the following conditions are met:

(a) the pair (X, pr) is a bundle;
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(b) the mappings + and * are continuous (in the Tychonoff product topology), and +[X(q)*] C X(q)
and *[R x X(g)] C X(q) for all ¢ € Q;

(c) for each point ¢ € @ the fiber X(g) is a Banach space when endowed with the operations +|x(q)2?
*lex(q)’ and || - ||x(q), and in addition the function O : ¢ € Q@ — O(q) € X, where O(q) is the zero element

of the Banach space X(g), is continuous (it is called the zero section);

(d) for all z € X and € > 0 there exists u € Cy(X) such that ||z — u(pr(z))|| < e, i.e., the set
{u(q) : u € Cy(X), ¢ € domu} is dense in X(q) for all ¢ € Q;

(e) the set of “tubes” {T(u,e) : u € Co(X), ¢ > 0}, where T(u,e) = {z € X : pr(z) € domu, ||z —
u(pr(z))|| < ¢} forms a base for the topology of the space X.

We shall write simply X instead of (X, pr,+,*, || - ||) and use subscripts for precision where necessary:
prx, +x, and the like. We remark that the norm topology in the fiber X(¢) of the Banach bundle X
coincides with the topology induced in X(¢) from X. If u is a section, then we shall write u(q) = 0 for short

instead of u(g) = O(q).

1.2. In the case when the topological space @) is locally paracompact the set of axioms (a)—(e) in the
definition of a Banach bundle can be significantly weakened (cf. [8, 3.2]). It turns out in this case that

axiom (d) holds in a stronger form: for each point ¢ € @ the set {u(gq): u € C(X)} coincides with X(g).

1.3. Let Xy and X be Banach bundles over ). The bundle X 1s called a Banach subbundle of X if
(a) Xy 1s a topological subspace of X,

(b) prx, = (prx)‘xﬁa
(¢) Xo(q) is a Banach subspace of X(g) for all ¢ € Q.

1.4. Let X and Y be Banach bundles over P and () respectively. The mapping H : X — Y will be
called a fiberwise mapping if

(Vzi, 2 € X) (pr (1) =prizs) = pr(H(21)) =pt (H(:cg)))

In this situation we shall denote by 7y the function mapping P into @ according to the rule 74(p) =
pr(H(z)) for p € P and z € X such that pr(z) = p, i.e., 7y = pryoHopry .

The Banach bundles X and Y are called isomorphic 1t there exists a fiberwise homeomorphism H : X —
Y such that 7y : P — @ 1s also a homeomorphism and for each point p € P the restriction H ‘I(p) 1S an

isomorphism (i.e., a linear isometry) of the Banach space X(p) onto Y(7g(p)). In this case H is called an
isomorphism of X onto Y. Banach bundles X and Y over the same space @) are called Q)-isomorphic if there
exists an isomorphism H : X — Y such that 7y = idg. When this happens, H is called a Q-isomorphism

of X onto Y.

1.5. Let X be a Banach bundle over an extremally disconnected compact set ). The sections uy, uy €
C(X) are called equivalent (and we write u; ~ u3) if they coincide on domu; N domus,. The quotient set
- C(X)/ ~ becomes a lattice-normed space with Coo(Q)-valued norm in a natural way if v + u’ and Au™
are defined as the equivalence classes (¢ € domu; Ndomug — ui(q) + u2(g))™ and (¢ € domu — Au(q))™
respectively and the norm of the class u™ is defined as the (unique) function |u™| € Co(Q) that coincides
almost everywhere with the function || - ||ou for some (and hence every) element u € u™. We set |u| := |u™|
for every almost global section u € C(X). In addition the introduction of such a norm makes the vector
space C(X) into a lattice-normed space with a C(Q)-valued norm. We note that the space C(X)/ ~ is a
direct generalization of the space Coo(Q, X ) first introduced in [10, 11].

Now consider an order-dense ideal E in Co(Q). The symbol E[X] denotes the set {u € C(X) : |u| € E}.
Then taking account of the operations introduced above, we find that the quotient space E[X]/ ~ is a lattice-
normed space with E-valued norm (cf. (3, 5.4]). This lattice-normed space is very important, since, as shown
in (3], every lattice-normed space is isomorphic to some E[X]/ ~. But working with the space E[X]/ ~ is
somewhat complicated by the fact that its elements are not individual functions but equivalence classes of
them. Moreover complications may arise in connection with the difference between the functions || - ||ou and
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ju|. We note also that the Banach bundle X that represents an arbitrary lattice-normed space as E[X]/ ~
1s 1n general not unique (up to isomorphism). Among other things that it does the technique of complete
Banach bundles developed below removes all these difficulties.

§ 2. Complete Banach bundles and the realization

of Banach-Kantorovich spaces

2.1. A Banach bundle X over @ is called a (continuously) normed Banach bundle if the mapping || - || :
X — R is continuous. This last property of Banach bundles was studied to some extent in (8, 15.11|. We
add that a Banach bundle over an extremally disconnected compact space @) is a normed Banach bundle if
for each point ¢ € Q the set

{u(q) : u € C(X), the mapping || - ||ou is continuous at ¢}

is dense in X(q).
In what follows we shall study only normed Banach bundles over extremally disconnected compact
sets, although many of the propositions given below hold for larger classes of Banach bundles.
Throughout the following @) is an extremally disconnected compact set.

2.2. Let X be a normed Banach bundle over ). The section u of the bundle X is called bounded if the
set {||u(q)|| : ¢ € domu} is bounded.
The following properties of a bundle X are equivalent:

(1) each almost global bounded section of X can be eztended to a global section™;

(2) every section u € C(I) can be eztended to a section u € Cyom ‘u|(fI)

(3) the lattice-normed space C(X) is disjointly complete;

(4) C(X) 18 a Banach-Kantorovich space.

< (4) = (1). We take an arbitrary bounded section v € C(X). For a fixed natural number n we
construct a disjoint family (ug) C C(X) such that | > ug — u| < 1/n (here )_ ug is computed in the

maximal extension of the lattice-normed space C(X)). We use transfinite induction. Assume that for some

ordinal a we have constructed a disjoint family (ug)s<o C C(X) satisfying the relation < Z ’U-ﬁ> Z Ug—
A< ﬁ<a

< 1/n. (The one-element family {0} satisfies this relation, providing a basis for the induction.) If

supp ), ug = suppu, then the family (ug)g<o is the one sought. Otherwise we choose an arbitrary

B<L o
point g € (Suppu \ supp Y uﬁ) N {q € domu : u(q) # 0} and we take a section 4, € C(X) for which
Lo
tqa(q) = u(g). Then there exists a neighborhood U € B(q) that is disjoint from the set supp ) ug, such

B<a
that ||iq(g)—u(q)|| < 1/nforall g € U. Setting uy := (Ultig = qulUUO'Q\U’ we see that the family (ug)s<a

) ug —u| < 1/n. In addition < ) uﬁ> > < y uﬁ>.

B<a A< <L
This last inequality makes it possible to conclude from cardinality considerations that the induction process

for constructing the family (ug) must terminate at some step. (From now on we shall omit the detailed
discussion of such constructions.)

It follows from the boundedness of the section u that the family (ug) constructed is bounded. Therefore
vp := ) ug € C(X) by the o-completeness of C(X). It is easy to see that the sequence (v,) is r-Cauchy
and consequently has an r-limit v € C(X), which is obviously the desired extension of the section w.

1s disjoint and satisfies the relation < Z U ,3>
BLla

* We note that in this case every bounded section of X defined on an everywhere dense subset of () can
be extended to a global section.
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(1) = (2). For an arbitrary section u € C(X) and natural number n weset U, :=cl{qg € Q : |u|(q) < n}

and u, := (U,)u. Since 91 U, = dom |u|, the section u that coincides with @, on U, for each n is the
desired extension of the section w.
The implication (2) = (3) is obvious, and (4) follows from (3) by the r-completeness of C(X) (cf. [3,

3.3]). »

If one of the equivalent conditions (1)—(4) holds, we shall call X a complete Banach bundle. We remark
that the domain of definition of each section u € C(X) is contained in dom |u|, and consequently the section
u that occurs in property (2) has the largest domain of definition of all sections equivalent to u. Thus it is

an extension of any section of the class u™. This section @ will be denoted ext u or, more precisely, extyu.
The study of the sections ext u as canonical representatives of the classes u™ enables us to simplify our
work with the space E[X]/ ~ in the case of a complete Banach bundle X. It will be shown below (cf. Sec.
2.6) that similar canonical representatives (with maximal domain of definition) can also be exhibited in the
case of an arbitrary normed Banach bundle.

Let X be a complete Banach bundle over Q. A section u € C(X) will be called mazimal if ext u = w.
The set ext [C(X)] of all maximal sections, which we shall denote Coo(X), has a natural Banach-Kantorovich
space structure Q-isomorphic to C(X)/ ~. If E is an order-dense ideal in Cso(Q), we shall use the symbol

E(X) to denote the Banach-Kantorovich space {u € Coo(X) : |u| € E} with E-valued norm. It is obvious
that the lowering of the operator ext realizes an E-isomorphism of E[X]|/ ~ and E(X). We note that the
equality |u| = || - ||ou holds for all u € Cso(X).

2.3. The following lemma gives a method of constructing Banach bundles that will be used repeatedly
in what follows.

Lemma. Let U be a vector space equipped with a Hausdorff multinorm (|| - ||;);eq such that the
function g — ||ul|, 18 continuous for each u € U. Then there exist a normed Banach bundle X over Q and
e monomorphism u € U — 0 € C(X) such that for each point ¢ € Q) the set {i(q) : u € U} is dense in X(q)
and ||4(q)|| = ||ul|q for all w € U. Such a Banach bundle X is unique up to a Q-1somorphism and will be

denoted U(Q). If the following conditions hold:

(a) for any u € U and U € B(Q) there ezxists an element ug € U such that ||ug — ul||; =0 for ¢ € U
and ||uo|l, =0 for ¢ ¢ U,

(b) U s complete in the norm ||u|| = sup{||u||, : ¢ € @},
then {t: u € U} = Coo(X). We shall identify u € U and u € C'op(X).

« We define the fiber X(¢) of the future normed Banach bundle as the completion of the normed space

(U || - |l)/ker || - || and we set X := b U X(q) x {¢q}. The operations pr, +, *, and || - | are introduced in
q

the natural way. For each element u € U weset & : ¢ € Q — (u+ker| - |4,9) € X(¢) X {¢}. We endow X
with the topology having as a base of open sets

{U(u,€): U is an open subset of Q, u € U, € > 0},

where U(u,¢) = {(z,q) € X : ¢ € U, ||ia(q)—(z,q)|| < €}. It can be shown that X thereby becomes a normed
Banach bundle. It is not difficult to verify that property (a), which means that the set U := {d : u € U}
is closed under the operation of taking fragments, implies that U is dense in C(X) with the norm topology,

and then the completeness of U guarantees the equality U = C(X). The uniqueness of X is proved rather
simply and evidently requires no explanation. »

2.4. Theorem. For any Banach-Kantorovich space U with an E-valued norm and any realization E C

Coo(Q) of the K-space E there exists a complete Banach bundle X over Q, unique up to a Q-isomorphism,
such that the Banach-Kantorovich space E(X) is isomorphic to U.

< Weset V:={veml: |[v]'€ C(Q)}, where mU is a maximal extension of U and e € E — é € E is

a realization of £. We endow V with a multinorm by setting ||v||, := |v|{g) for all v € V and ¢ € Q. Then
the Banach bundle X := V(Q) is the one sought. »
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It is natural to call the space E(X) (more precisely, an isomorphism of U onto E(X)) a realization of
U and X a realization bundle for U. More precisely the complete Banach bundle X is a realization bundle
for U if there exists a realization £ C Cu(Q) of the K-space E such that the Banach-Kantorovich space

E(X) 1s 1somorphic to U. It is obvious that this is equivalent to the statement that the Banach-Kantorovich
space Coo(X) 1s isomorphic to a maximal extension of U.

2.5. We shall say that the normed Banach bundle X over Q) is densely imbedded in the normed Banach
bundle Y over @ if X is Q-isomorphic to a Banach subbundle of Y that is dense in Y.

Let E be an order-dense ideal in Co(Q) and X a Banach space. Since the lattice-normed space E(X)
(cf. [3, 6.1]) is naturally identified with E(X x Q) (cf. 2.6), where X x @ is a normed Banach bundle
with “constant” fiber, the question arises: how is the bundle X x ) connected with a realization complete

Banach bundle X for E(X)? It turns out that X x @ is densely imbedded in X. Moreover the following
theorem holds.

Theorem. Every normed Banach bundle X over Q is densely imbedded in some complete Banach
bundle X over Q, and the bundle X is unique up to a QQ-isomorphism.

< Let X be a realization bundle for C(X)/ ~ and ¢ a Coo(Q)-isomorphism of C(X)/ ~ onto Cu(X).
For each z € X we set H(z) := ¢(u~)(q), where u € C(X) is such that u(g) = z. It is not difficult to
verity that the mapping H is well-defined and that it provides an isomorphism of X onto a dense Banach

subbundle of X. »

It 1s natural to call the bundle X the completion of X. Identifying z € X and H(z) € X, we shall
assume that X C X. In justification of the term completion we give the following proposition without proof.

Let Xy be a Banach subbundle of the complete Banach bundle X. Then
(a) Xo 28 complete & Xg 18 closed in X,

(b) the completion of Xy s the smallest closed Banach subbundle' of X containing Xy, and 18 in fact
the closure of Xy in X.

2.6. The theorem of the preceding section enables us to introduce canonical representatives in the
equivalence classes of the almost global sections of an arbitrary normed Banach bundle, as was done in

Sec. 2.2 for a complete Banach bundle. We take a normed Banach bundle X and its completion X. For
an arbitrary section u € C(X) we set @ := extyu € Coo(X). It is easy to see that the section extyu :=
u‘x € C(X) will have maximal domain of definition in the class u~. In complete agreement with Sec. 2.2
we 1ntroduce the concept of a maximal section for the normed Bana,ch bundle X, as well as the Banach-

Kantorovich spaces C(X) and E(X).

2.7. We shall say that a subset V, of a lattice-normed space V is properly r-dense in 'V if for any
element v € 'V there exists a sequence (v,) C Vo that is r-convergent to v with regulator |v|.

Consider a normed Banach bundle X over ). We define the image of a subset U C Coo(X) to be

U mu= U U(g), where U(q) := {u(q): v € U, ¢ € domu}.
uclU qeQ

Theorem. The following assertions are equivalent:
(1) the image of U 18 dense in X;

(2) every global section of X passes through EJQ clU(q) almost everywhere;
q

(3) for some (and hence every) order-dense ideal E C Coo(Q) every section of E(X) passes through

U clU(qg) almost everywhere.
qEQ

(4) the uniform closure of the set dU contains E(X) for some (and hence every) order-dense ideal

E - CW(Q);

(5) dUNE(X) 13 r-dense (and hence properly r-dense) in E(X) for some (and hence every) order-dense
wdeal B C Coo(Q);

(6) danU N E(X) 23 dense with respect to convergence almost everywhere (and hence o-dense) in E(X)
for some (and hence every) order-dense ideal E C Coo(Q)).
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<4 We denote the weak form of (3) by (3') and the strong form by (3"), and we do the same with
(4)-(6). The following implications are obvious or easily verified: (6") = (6') = (3'), (8") = (') = (3),
4" = 4)=(1),3")=(3)=(1), (3") = (2) = (1). To complete the chain of implications it suffices
to prove (1) = (5") = (6”) = (3") and (1) = (4").

(1) = (8"). We fix an arbitrary section u € Coo(X). As was done in Sec. 2.2 using transfinite induction,
we can construct for each natural number n a family of sections (ug) C U and a disjoint family of projections

(mg) such that | > mpug — u| < (1/n)|ul.

The implication (1) = (4") is proved in a completely analogous manner.

(5") = (6"). We take an arbitrary order-dense ideal E and choose u € E(X). On the set V :=
danU N E(X) we introduce a pre-ordering: v; < vy & |v1 — u| > |v2 — u|. Taking the quotient space of V
with respect to the equivalence relation vy ~ vy & |v; —u| = |v, —u|, we arrive at an ordered set A :=V/ ~

filtered upward. Choosing one element v, in each class a« € A, we obtain a net (v, )qeca that o-converges to
u.

(6") = (3"). We take an arbitrary u € Co(X) and let the net (uo) C danU be o-convergent to u.
Obviously uy(q) € U(q) for all ¢ € dom u, such that uy(g) # 0. Since uq(gq) < u(g) almost everywhere, we
thus have u(q) € clU(q) for almost every ¢ € suppu. It now remains only to remark that O(q) € clU(q)
for almost every ¢ € Q. »

2.8. To conclude this section we note some curious corollaries of the last theorem. Consider a lattice-
normed space U and let U be the o-completion of it constructed in [3]. Then for any element @ € U
there ezists a net (uy) C U that 1s o-convergent to u. This was not certain previously (cf., for example, [6,
4.1.8(b)]). Moreover dU is r-dense in U and consequently the third stage of the construction of U mentioned
in [3, 3.9] is unnecessary. Finally, the theorem on the o-completion of a lattice-normed space [3, 3.10] is
simplified and acquires the following form: for an arbitrary lattice-normed space U there exists a complete
Banach bundle U, unique up to isomorphism, that contains U as an o-dense lattice-normed subspace.

§ 3. The multiplicative representation of linear operators

Throughout this section P and () are extremally disconnected compact sets.

3.1. Consider a complete Banach bundle X and a normed Banach bundle Y over the same space Q. If
U and V are subsets of Q, h: ¢ € U — h(q) € L(X(q)),Y(q)), and u € Cy(X), the symbol A ® u will denote
the mapping g € U NV — h(q)u(q) € Y(q).

We denote by H the set of all mappings h: g € Q — h(q) € L(X(¢q),Y(q)) such that the function h ® u
is continuous for any u € C(X). We endow the set H with the structure of a vector space and equip it with
a multinorm by setting ||k||, := ||h(g)|| (the operator norm) for all A € H and ¢ € . We shall show that
the function ¢ € @ — ||k||, is continuous.

« Since ||h(q)|| = sup{|hu|(q) : |u| £ 1}, where |hu| := || |[o(h®@u), the set {|hu|: |u| < 1} is bounded
in Coo(@)). We denote its least upper bound by |h|. Obviously || [[ch < |h|. It suffices to prove the opposite
inequality. Based on the fact that [|h(q)|| = |h|(¢) almost everywhere, for each 0 < € < 1 we can construct
- afamily (ug) C C(X) and a partition of unity (7¢) in the boolean algebra of projections such that for all ¢

lug| <1 and 7¢|hug| > meelhl.
Setting u. := ) miug, we see that u, € C(X) by the completeness of X and |hue| > €|h|. Therefore for each

point ¢ € @

|A(q)|| = sup |huc|(g) > sup ¢|h|(q) = |h|(q). »
0<e<1 0<e<1

Thus H satisfies the hypotheses of Lemma 2.3 and we are justified in considering the normed Banach

bundle H(Q), which we shall denote L(X,Y). Here H = C(L(X,Y)), and for each point ¢ € Q the fiber
L(X,Y)(q) is a Banach subspace of £(X(gq),Y(¢)). We introduce the notation Cyso(X,Y) for Coo(L(X,Y)).
In addition if h € Co(X,Y) and u € Coo(X), then the maximal section ext (A @ u) € Coo(Y) will be denoted
by hu. It is not difficult to verify that the following properties hold for the bundle L(X,Y).
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In addition if » € Co(X,Y) and u € Coo(X), then the maximal section ext (A @ u) € Coo(Y) will be denoted
by hu. It is not difficult to verify that the following properties hold for the bundle L(X,Y).

(a) If Y is complete, then L(X,Y) is complete.

(b) If Ly —» L wn L(X,Y), then Loz, — Lz for any z,,x € X such that pr(z,) = pr(L,), pr(z) =
pr(L) and z, — z. ‘

(c) Let Q be a comeager subset of Q and h: q € Q — h(q) € L(X(q),Y(q)). Then h € C(L(X,Y)) if
and only if the mapping h @ u 13 continuous for any section u € C(X).

(d) If h € Co(X,Y), then |h| = sup{|hu|: |u| < 1} = sup{|hu]: |u| C 1}.

3.2. Consider a normed Banach bundle X over P, and suppose given a continuous mapping o : Qo — P,

where Qo € B(Q). The set

0= (| Tote) x {a}) U0} x (@\ Q)

gEQo

becomes a normed Banach bundle in a natural way, where pry-(z,q) = ¢, and the topology is defined by
the relation (z,,¢,) — (z,a) in X7 if and only if z, — z in X and ¢, — ¢ in Q). For convenience of notation
we shall identify the fiber X(o(¢q)) of the bundle H with the fiber X(o(q)) x {¢} of the bundle X for all
g € Q9. We denote the completion of X7 by o*X.

3.3. Assume that X is a normed Banach bundle over P. For an arbitrary maximal section u € C(X),
we define a function w by the formula

u(o(q)) € X7(q), ¢ € QoNo~'[domu],
w(q) :=

(OaQ) exa(Q)a q € Q\QO-.-
undefined, for other ¢ € Q.

It is clear that if 0~ ![domu] is a comeager subset of Qg, then w € Cx(0*X). In this case we shall say
that the shift operator o} is defined on the element u (v € domoy}), and denote the function w by oy u.
We denote the shift operator 0§, p mapping the order-dense ideal dom o* C Coo(P) into Coo(Q) by the
symbol o*. It is clear that u € dom o if and only if |u| € dom o™ and |o}u| = o*|ul.

3.4. Let E be an order-dense ideal in C(P), F an order-dense ideal in C (@), and X and Y complete
Banach bundles over P and @ respectively. The operator T : E(X) — F(Y) will be called multiplicative (or
a weighted shift operator) if there exist an open-closed subset Qo C @, a continuous mapping ¢ : Qg — P,
and a maximal section h € Co(0*X,Y) such that E(X) C dom o% and the equality Tu = hoJu holds for all
u € E(X). In this situation we shall write T' = ho} and call this formula (more precisely, the pair (h,0)) a
multiplicative representation of T.

We shall call the multiplicative representation T' = hoy canonical if dom o = supp h. Obviously every
multiplicative representation 7' = ho} can be converted into a canonical representation by replacing o by

cr‘v and h by (V)h, where V = dom ¢ N supp h.

3.5. Let the linear operator T : E(X) — F(Y) preserve disjointness, i.e., let it map disjoint elements
u; and up into disjoint elements Tu; and Tuy. For every set U € B(P) we set b(U) :=cl U {supp T(U)u :
u € E(X)} € B(Q). Then b : B(P) — B(b(P)) is a boolean homomorphism with T(U)u = (b(U))Tu
for all U € B(P) and u € E(X). According to [9, Ch. 1, § 11] there exists a unique continuous mapping
o : b(P) — P such that b(U) = o~ [U] for each U € B(P). We shall denote it by the symbol o7 and call
it the shift of the operator T.

3.6. Theorem. The canonical multiplicative representation T = hoX. of the operator T : E(X) — F(Y)

18 unique. Here 0 = op. (Analogously the section h will be denoted ht and called the weight of the operator
T.

« Assume that T = hoy = iz&;: are both canonical multiplicative representations of T'. It is easy
to see that domo = doma, and that (domo) = sup{(Tu) : u € E(X)}. Let us choose arbitrarily a set
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U € B(P) and a section u € E(X). We have (T(U)u) = (hox(U)u) = (67 [U])o(hoyu) = (o7 [U]){(Tu),
and consequently (o '[U])(Tu) = (67 '[U])e(Tu). Taking the supremum over all v € E(X) in these
inequalities, we find that ¢~ ![U] = 67![U] = o7 [U], and by the arbitrariness of U we arrive at the
equality o = 0 = o7.

Thus hoyu = hoku for all u € E(X). Since the image of the set of sections o%[E(X)] is dense in o*X,
by Theorem 2.7 hw = hw for all w € C(¢*X); hence h = h. »

3.7. Suppose we are given Banach-Kantorovich spaces U and V and some realizations of them u €
U u € U and v € V> 0 € V. We define the realization of the operator T : U — V to be the operator
T : U — V acting according to the rule T4 = (Tu). The operator T : U — V will be called multiplicatively

realizable if some realization of i1t 1s multiplicative.

We remark that a multiplicatively realizable operator T : E(X) — F(Y) may itself be non-multiplica-
tive, i.e., multiplicativeness in general depends on the realization of the operator.

3.8. We call the operator T' : U — V r-semicontinous if the equality inf |Tu,| = 0 holds for any
sequence (u,) C U that is r-convergent to zero.

Theorem. Assume that the linear operator T : E(X) — F(Y) preserves disjointness, and let o be a
shift of 1t. then T 1s multiplicative 1f and only if the following three conditions hold:

(a) E C domo™*;
(b) T 18 r-semicontinuous;
(c) the set {|Tu|: |u| C 1} 18 bounded in Coo(Q).

« By condition (b) the boundedness of the set {|Tu|: |u| < 1} in Co(Q) follows from (c). We denote
the supremum of this set by f. We then set D := {p € P : (Je € E)(e(p) # 0)}. It is easy to see that
oc~1[D] is a comeager subset of domo.

1°. We shall show that the following implication holds for all points gy in the set § := o~![D] N dom f
and for each u € E(X):

u(0(go)) = 0 = Tu(go) = 0.

Indeed, assume that u(o(qp)) = 0 but T'u(qe) # 0. Then there exists a neighborhood Vj € B(go) € D and
a number A > 0 such that |

[ Tul(g) = A (3.1)

for all ¢ € V. Since o(qo) € D, there exists a neighborhood Uy € B(o(gqo)) such that yy, € E. For
each natural number n we set U,, := cl{p € P : |u|(p) < 1/n} NUy, A, := U, \ Upnsy1, up = i(A,—)u,

=1
= (Uy)u. Then @ := )  n{Ap)u € E(X), since |a| < xu,. Since |u, — uo| < (1/n)xuy,, it follows that
n=1
Un — ug, and by the r-semicontinuity of T
int \T(un == ug)l = 1. (32)

Let V € B(qo) be a neighborhood such that f(q) < f(qo) + 1 for all ¢ € V. We choose a natural number k
such that 1/k < A/2(f(q0) + 1). We shall show that the inequality

Tun|(g) < A/2 (3.3)

holds for all n at any point ¢ € VN o ™" [Ux]. Indeed if o(q) # supp u,, then relation (3.3) holds. Otherwise
o(q) € A,, for some m € [k,n] and then

Tun|(q) = |T(Am)u|(Q) = (1/m)|Tm(An)u|(q) = (1/m)|Tu|(q)
< (1/m)f(q) < (1/k)f(q) < (A/2)(f(q) +1)f(q) < (1/2).
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It follows from (3.1) and (3.3) that for each n and all ¢ € Vo NV N o~ [Ux] we have
I T(uo — un)l(g) = |Tuol(q) — [Tunl(g) 2 A — A/2=A/2,

contradicting Eq. (3.2).

2°. For each point ¢ € Q and any z € X(o(q)) we set ho(q)z := Tu(q), where u € E(X) is a section such
that u(o(q)) = z. Since |Tu|(q) < ||z||f(g) < oo, it follows that Tu(q) is defined. Moreover, by 1° above the
definition of ho(¢)z is independent of the choice of u. Thus a mapping ho : ¢ € Q — ho(q) € L(X?(q),Y(q))
is defined such that Tu(q) = ho(q)u(o(q)) for all u € E(X) and ¢ € Q@ No~![domu]. It turns out that kg
has a unique “extension” to a maximal section h € Coo(0*X,Y) such that ho(g) C h(g) for all ¢ € 2. »

3.9. Condition (¢) in Theorem 3.8 cannot be omitted. Moreover the following proposition is true.

Theorem. There exist a Banach space X (regarded as the space of mazimal sections E(X), where
X = Xx{0}, E=Rx{0}, an eztremally disconnected compact set Q, and a linear operator T : X — C(Q)
(and then obviously T preserves disjointness and E C dom o) such that

(a) T s sectionally r-continuous;

(b) there exists a subset Xo C X such that the closure of the linear span of Xo coincides with X, and
the set {|Tz|: z € Xo} 18 bounded in Coo(Q);

but the operator T 1s nevertheless not multiplicative or even multiplicatively realizable.

We omit the proof of this fact due to its cumbersomeness.

3.10. An operator T' : U — V that preserves disjointness (where U and V are Banach-Kantorovich
spaces) will be called normally defined if for some realization of it T : E(X) — F'(Y) the inclusion E C

dom o7, holds. We note that every sequentially o-continuous operator that preserves disjointness (and even

o0 o0
an operator that merely satisfies the equality T Y u, = > Tu, for any disjoint sequence (u,)), 1s normally

n=1 n=1

defined. Moreover the inclusion £ C dom o then holds for any realization T' of the operator.

We shall say that the net (uy) C U is 6-convergent (resp. 7-convergent) to u € U if (uy) is o-convergent
(resp. r-convergent) to u in a maximal extension mU. A principal ideal of the Banach-Kantorovich space U
with E-valued norm is a subspace {u € U : (3X > 0) (Ju| < Xe)}, defined by an arbitrary element e € E™.

Theorem. Let U and V be Banach-Kantorovich spaces with E- and F-valued norms respectively,
and assume that the linear operator T : U — 'V preserves disjointness. Then the following assertions are
equivalent:

(1) T s r-semicontinuous and for any net (uo)aca C U that 18 r-convergent to zero there exists an
indez & € A such that the set {|Tuqs|: a > a} s bounded in mF;

(2) T 18 r-0-continuous;
(3) T s r-F-continuous;
(4) T 18 majorized as an operator from U into mV;

(5) for any principal ideal Uy C U the operator Tluo 18 multiplicatively realizable.

Moreover 1f one of conditions (1)~(5) holds and the operator T' 1s mormally defined, then 1t s itself

multiplicatively realizable and any realization of it T : E(fX:) — F(‘gj) satisfying the condition E C domo*
18 multiplicative.

« The implications (5) = (4) = (3) = (2) = (1) are obvious.

1°. We shall prove that if the operator T is normally defined, then condition (1) implies that T is

multiplicatively realizable. To do this, as follows from 3.8, it suffices to establish that the set {ITuI
E(X) lu| © 1} is bounded in mF, where T : E(X) — F(Y) is a realization of the operator T such that
EC domoy,. We denote the set {u € E(X): |u| C 1} by W and take an arbitrary net (wqy)aes C W such

T
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that {wy : « € A} = W. We endow the product N x A (where N is the ordered set of natural numbers)
with the “lexicographic” order:

(n,a) < (n,a')o&n<n'V(n=n'&a< a).

Since the net u(, 4) := (1/n)wq is r-convergent to zero (we may assume that 1 € E C Co(P) because the
set cr,}:l ‘U{U € B(P): xu € E’}] = 0‘%1 {p € P: (Je € E)e(p) # 0)}] is dense in dom o), it follows
by condition (1) that there is an index (n,&) € N x A such that the set {|Tu(, | : (n,a) > (7,a)} is
bounded in mF'. In particular the following sets are bounded:

1 1

{|ITups1,0)|: @ € A} = v 1{|Tw.l,3,f| L a € A} = “pr 1{|T-w[ . w € W,

29, By 1° it is obvious that (1) = (5), since for any principal ideal Uy C U the operator Tluo 1S
normally defined. »

We note that if the operator T : E(X) — F(J) is multiplicative and T' = ho?. 1s a canonical multiplica-
tive representation of it, then |T'| = |h|o* and |h| = sup |Tu| = sup |Tul.
|u]<1 u|C1

Remark. Abramovich [4] gives criteria for multiplicative realizability of an operator acting on vector
lattices. If the lattices are o-complete (and consequently are Banach-Kantorovich spaces), then the result
of [4] is a special case of this last theorem. (The extra strength of assumption (1) in comparison with its

analog in (4] is easily removed.)

3.11. As follows from Theorem 3.10, if a Banach-Kantorovich space 'V is extended (i.e., coincides with
mV), then the multiplicative realizability of the operator T': U — 'V guarantees that 1t can be majorized.
Otherwise this cannot be asserted. Indeed, suppose sy 1s the vector space of sequences z : N — R that
converge to zero and s the space of all sequences. Endowing sy with the uniform norm, we obtain a Banach
space (hence a Banach-Kantorovich space) that we denote X. Endowing sy and s with coordinatewise

order, we obtain K-spaces (hence Banach-Kantorovich spaces), which we denote by Fy and F' respectively
(F, is an order-dense ideal of F'). Then the identity 1d,, will be majorized as an operator from X into F,

but not as an operator from X into Fj.

3.12. To conclude this section we note a situation in which the list of conditions for multiplicativeness
of an operator can be simplified.

Theorem. Suppose a linear operator T : E(X) — F(Y) preserving disjointness 1s such that a shift of
1t o 18 injective. Then T 18 multiplicative if and only if the following conditions hold:

(a) E C domo*;
(b) T 18 r-semicontinuous.
4 According to Theorem 3.8 it suffices to show that the set {|Tu| : |u| C 1} is bounded in C(Q).

Suppose the contrary. Without loss of generality we can assume that 1 € E and sup{|T'u|(q) : |[u|C 1} = o
for all ¢ in some comeager subset {2 C . We fix an arbitrary natural number n and construct a section

un € E(X) such that |u| C 1 and |Tun| > n. (Then (1/n)u, — 0, but inf Txun| > 1, contradicting
condition (b)). In the construction we use transfinite induction.

1°. At the zeroth step we set @y := O € E(X).

2°. Let a be a nonlimit ordinal and assume that the section #,_; € E(X) has been constructed so that
[ig—1| C 1 and |T@q—1|(g¢) > n for all ¢ € o7} [supp tig_1]. If 07} [supp tiq—1] = @, then the section @y_q is
the one desired. In the opposite case we choose an arbitrary qo € (Q \ o™ ! [suppia—1) N Q. Since ¢y € N,
we have u € E(X) such that |u| C 1 and |Tu|(go) > n. The fact that o is injective enables us to find a
neighborhood U € B(o(go)) such that |Tu|(q) > n for all ¢ € o~ [U]. We set g := tig—1+ (U \supp tiq_1)u.
It is clear that |t,| C 1 and |T'@.|(q) > n for all ¢ € o~ [supp i), and supp i, is strictly larger than w,_;.
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3°. Let a be a limit ordinal, and assume that for each 8 < a a section @z has been constructed so
that |ug C 1 and |Tug|(q) > n for all ¢ € o~ [supp @g], and that @g, C ug, for f; < B2 < a. Then setting

’U,a . — O-%lén Uﬁ, we see that Iua,l = 1 and Supp 'U,a, - Cl ﬁU supp uﬁ MOI’BOVEI‘ smce g IS 1n_]ect1ve
<o

a'l[suppﬁa] =cl U J—l[suppﬁﬁ]a
pLla

and consequently |T'uq|(q) > n for all ¢ € o~ [supp iis].
By the constant increase of supp 4, we are able to conclude from cardinality considerations that the
inductive construction terminates at some step. »

3.13. Let U and V be Banach-Kantorovich spaces with E- and F-valued norms respectively, and let
E and F be ideals in the same K-space G. The operator T': U — V is called nonezpanding if |Tu| belongs
to the component {|u|}++ of the K-space G for any u € U. The operator T': U — V is said to be a weight
operator if some realization of it T : E(X) — F(Y) acts according to the rule

Tu=hu (u€ E(X)),

where h € Co(X, Y).

The following proposition is an immediate consequence of Theorem 3.12.

Every nonezpanding r-semicontinuous linear operator 18 a weight operator and conversely.
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