Siberian Advances in Mathematics
1993, v.3, N4, 8-40

BANACH BUNDLES
IN THE THEORY OF LATTICE-NORMED SPACES. II

MEASURABLE BANACH BUNDLES

A.E.Gutman

Abstract

The notions of measurable Banach bundie and lifting in a quotient space of measurable sections are
introduced and discussed. The question is studied of representing lattice-normed spaces as those of
measurable sections of Banach bundles.
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The present article continues the paper [2] and is the second part of the intended
article on Banach bundles in the theory of LNSs. References to Chapter 0 (Sections
0.1-0.5), Chapter 1, and Chapter 2 relate to [ 2 ]. Chapter O of the present article contains
the necessary definitions and some preliminary information about the objects considered
in the sequel. It continues Chapter 0 of [ 2] and, thus, starts with Section 0.6. In addition,
the article includes the new two chapters, 3 and 4. In Chapter 3, we develop the theory
of measurable Banach bundles by transferring Daniel’s scheme to the case of sections. Note
that this idea is not new (N.Dinculeanu has proposed it as early as 1966), but the author
Is not aware of any publications that realize the approach. In the same chapter, we introduce
and discuss the notion of lifting in a space of measurable sections and present the results
of applymg the theory of complete Banach bundles to the study of measurable sections.
Finally, Chapter 4 contains applications of previous chapters to various spaces of continuous
and measurable vector-functions.

In the third part of the intended article (to appear in SIBAM, 1994, v.4, N1), we
will apply the results of the first and second parts to studying disjointness-preserving
operators.

0. PREREQUISITES

Among the main objects considered in the article, there are measure spaces, liftings,
and vector lattices of measurable functions. The present chapter contains preliminary
information on the objects listed. See [2] for Sections 0.1 — 0.5.
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0.6. Measure spaces

In this section, we give some definitions and notation concerning measure spaces. In
particular, we present the notion and the basic properties of lifting in quotient spaces of
measurable functions and sets.

The two Boolean algebras are most frequently the focus of attention in the present
article; these are the algebra Clop(Q ) of clopen subsets of an extremally disconnected
compactum (), and the algebra B( Q) of equivalence classes of measurable subsets of a
measure space 2. The first algebra was treated in Section 0.2. In this section, we describe
the properties of the algebra B(Q2) and present the formulas for calculating the bounds
of its subsets. By the Stone—Ogasawara theorem, Clop( Q) is a general form of complete
Boolean algebra. Therefore, in most cases, the algebra B(Q) is isomorphic to Clop( Q)
for a suitable compactum Q. Existence of a lifting in B(Q) enables us to express the
connection between the algebras B(Q) and Clop(Q ) more explicitly by means of the
canonical immersion 7: Q- Q (see [3]: Chapter V, Section 3); the basic properties of
the latter are also discussed in the present section.

Various approaches to defining measure and integral are treated, for instance,
in [4]. In [5], measure spaces are considered from the point of view that is probably
closest to ours. The monograph [ 3] is the main source of the information about lifting.
Some properties of the Boolean algebra B( Q) are also considered in [5] and [3].

0.6.1. In the present paper, a measure space is interpreted as a triple (Q, 4, | -| ),
where a set 2, a o-algebra # of its subsets, and a measure ( = a positive countably
additive function) | -| : #(Q) - R satisfy the following conditions:

(a) if ACQ and ANKE R for all elements K€ B of finite measure then
A € A,

(b) if A€E# and |A4A| = » then there exists an element Ay, € # such that
AyCA and 0< | 4| < o=;

(c)ifAE B |A| =0, ancleCA then A, € .

We write simply Q instead of (Q,%, || ). In this case the c-algebra & is denoted by
#B( ), and its elements are called measurable subsets of Q. The symbol B ( Q) will be
used to denote the totality of all the elements of #( ) that have finite measure. As
usual, we say that a particular condition holds almost everywhere in A € B(Q), or for

almost all w €A, if it is valid for all of the elements of A aside from a negligible set
(= a set of measure zero). “Almost everywhere” means “almost everywhere in Q.” We
denote by .« ( £2) the totality of all almost everywhere defined functions that are measurable

with respect to the o-algebra Z( Q). The set of essentially bounded functions in .« ( Q)
is denoted by Z *( Q).

Any function f € .« ( Q) is usually considered to be defined everywhere on €2, assuming
f(w):= « at the points w € Q\dom f. However, in this case the meaning of the symbol

domf remains unaltered: f 'l[R]. In particular, the notations |f(w)| < ® and
| f(w)| = = read as w € domf and w & dom f respectively.

0.6.2. Let Q be a nonzero measure space. Two sets 4,B € B(Q) are said to be
equivalent (In writing 4 ~ B) if the symmetric difference 4 A B is negligible. The quotient
set B(Q)/~ is denoted by B(Q). Given an arbitrary element AEB(Q ), we let the
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symbol 4  stand for the equivalence class in B( Q) containing A. A (partial) order can
be defined on B(€2) in the following natural way: A < B if and only if the difference
A\B is negligible for some (hence, for all) representatives 4 € A and B € B. Furnished

with this order, the set B(<2) is obviously a Boolean algebra with zero @~ and unity
Q . The Boolean operations in the algebra B(Q) are defined by the formulas A~ v B =
(AUB) ,A AB =(ANB) ,and (A )" =(Q\A) , where 4,B € B(Q).

Two functions f,g € .#( €2) are said to be equivalent (we write f ~ g) if they coincide
almost everywhere. The quotient set .#(€) /~ is denoted by M( Q). Given an arbitrary
element fE€. #(Q), we let the symbol f stand for the equivalence class in M(Q)

containing f. We denote L*(Q)={f :f€2Z%(Q)}. The relations

where A, u €R and g€ .#(Q), define on each of the sets M(Q) and L*(Q) the

structure of a vector space with zero 0 and that of a commutative algebra with unity

1 . Moreover, a (partial) order can be defined on the set M( Q) in the following natural
way: f=< g if and only if f < g almost everywhere for some (hence, for all) representatives
fE T and g € g. With respect to the operations just introduced, the space M( Q) and the

space L™(Q), which is a subspace of M( Q), are vector lattices and ordered algebras. The
bounds in these lattices are calculated by the formulas f~ v g~ = (flgomg V 8 ldoms)

and f Ag =(f|domg/\g|domf)', for f,gE€.#4(Q).

0.6.3. A mapping p: LT (Q)-»2Z%(Q) is called a lifing of the quotient space

L™(Q) if, for all L,x €R and f,g€ L"(Q), the following relations are valid:
(a) p(f)Ef and domp(f) = Q;
(b) if f=g then p(f) = p(g) everywhere on Q;

(¢) p(Af+ug) =4p(T) +up(8), p(18)=p(I)p(8), p(IVEg)=p(f)Vvp(g) and
p(fAg)=p(f) Ap(g) |
(d) p(0. )=0 and p(1 ) =1 everywhere on Q.

(Some of the conditions listed above are consequences of the rest.) If f€ Z ©( Q) then

the function p(f ) is usually denoted by p(f). Since the lifting is a right-inverse of the
operation f~ f , we shall sometimes use the notation f. instead of p(f) if it cannot lead
to confusion. Similarly, the symbol f. replaces po(f).

Fix an arbitrary class A € B(Q) and denote by y, the class in L*( Q) that contains

the characteristic function of some (hence, of every) element in A. The properties of lifting
obviously imply that the values of the function p(x, ) are only 0 or 1. Denote by p( A)

the subset of 2 whose characteristic function is p(x, ). The mapping p: B(Q) = Z(Q)

thus obtained is a [lifing of the quotient algebra B(Q), i.e. for all A,BE B(Q) the
following relations are valid:

(a) p(A) EA;

(b) if A<B then p(A)Cp(B);
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(¢) P(AVB)=p(A)Up(B), p(AAB)=p(A)Np(B), and p(A~) = Q\p(A);
(d) p(@T )= and p(Q )= Q.
By analogy with the lifting of L*(Q), we shall sometimes use the notation A. for

p(A) and write p(A ) or A. instead of p(A4 ).
Two points w,, w, € Q are said t0 be p-indistinguishable if p(f)(w,) =p(f)(w,) for

every class f€ L™(Q). Obviously, w; and w, are p-indistinguishable if and only if the
relations w, €Ep(A) and w, € p(A) are equivalent for each A € B( Q).

0.6.4. We say that a family (A4g): ez of elements of B(Q) approximates a set
A € B(Q) if, for every measurable subset 45 C A of finite measure, there exists a sequence

(S§pdnenN in = such that |J ENA; NAy = Ay The measure space Q is said to
n N

possess the direct sum property if () contains a family of pairwise disjoint sets of finite
measure that approximates Q2. A o-finite measure space obviously possesses the direct sum
property.

Theorem. A measure space Q possesses the direct sum property if and only if there
exists a lifting of L*( Q).

The existence of a lifting for an arbitrary o-finite measure space was first established
by D.Maharam [9]. A complete simple proof of the last theorem can be found in [3].

0.6.5. It was already mentioned in 0.6.2 that the totality B( Q) of equivalence classes
of measurable subsets of a measure space Q is a Boolean algebra. Note that the Boolean
algebra is o-complete. The countable bounds in this algebra are calculated by the formulas

SUP, e NAp = ( UnENAn)- and inf,end, = ( nneNAn)- for 4, € B(Q).
The following theorem presents some information concerning (infinite) bounds in B( Q).
The proofs of the assertions formulated here can be found, for instance, in [ 3 | (Chapter I).
Theorem. Let Q be a nonzero measure space.
(1) A family (Ag )e e = of measurable subsets of A € B( Q) approximates the set A
if and only if sups = Az =A  in the Boolean algebra B( Q).
(2) Suppose that a family (Ag)s ez of elements in B(Q) approximates Q. Then,
given any subset A C S, the following relations are valid:
(a) AEB(Q) if and only if A NA: € B(RQ) for all § €Z;
(b) A~ QD ifand only if ANAg ~ D for all § €E;

(C) Y AEB(Q) then supg = (A NA; ) =A in the Boolean aigebra B( Q).
(3 ) If the measure space Q2 possesses the direct sum property then the Boolean algebra

B( Q) is complete.
(4) Ler p be a lifting of the quotient algebra B( Q) (see 0.6.3). Then, for every family

(At )s ez of elements of ZB(Q), the union Z := UEE‘P( Ag) and the intersection

I1 := ngezp(AE) are measurable and, moreover, £~ =sups cz A; and T1 = inf; c z Ag

0.6.6. Let p be a lifting of L*( Q). According to 0.6.4 and 0.6.5, the Boolean algebra
B( Q2 ) is complete and, in view of 0.2.2, its Stonian compactum Q is extremally disconnected.
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Lemma. The collections of meager and nowhere-dense subsets of Q coincide.

Proof. The direct sum property of Q2 (see 0.6.4) enables us to reduce the situation
to the case of finite measure considered in [ 10] (Theorem 22.2). []

For every point w € Q, denote the ultrafilter { A€ B(Q): @ €p(A)} by 7(w). The
mapping 7: Q - Q thus constructed will be called the canonical immersion of Q2 in Q
corresponding to the lifting p.

Theorem. Let p be a lifting of L*(Q), let t be the corresponding canonical immersion
of Q in the Stonian compactum Q of the Boolean algebra B(QQ), and let A~ A be the
canonical isomorphism from B( Q) onto Clop( Q )

(1) For each class A € B(Q), the equality p( A) =r'1[A] holds. In particular, the
inverse image r'l[ U] of every clopen subset U C Q is measurable.

(2) The mapping Uwr> r'l[ U]l is an isomorphism from the Boolean algebra
Clop( Q) onto B(2) which is the inverse of the isomorphism Aw> A

(3) The image t[ Q] is dense in Q.

(4) The inverse image t"l[ V'] of every open subset V CQ is measurable, and
v~ vy

(5) The mapping t: Q- Q is Borel measurable.

(6) The inverse image r'l[N] of every meager ( = nowhere-dense) subset N CQ is
measurable in 2 and has zero measure.

(7) Two poinis wq, w, € Q are p-indistinguishable if and only if 1(w,) =1(w>).

Proof. Assertion (1) is straightforward, (2) follows from (1), (3) follows from
(2). Starting to prove asseriion (4 ), we consider an arbitrary open subset VC Q. Let a
family (U ) g = Of clopen subsets of Q be such that V' = UEE=U5 . Then (1) implies

measurability of the inverse images r'l[ Ue | for all § € = and 0.6.5( 4 ) implies measurability

of the set r"l[ V]= UE e r'l[ Ug |. The relation supg ¢ z Uy = cl V' in the Boolean algebra

Clop( Q ), together with (2) and 0.6.5( 4 ), ensures the equivalence r"l[ V]~1t"'[c V]

Assertions (5) and (6) follow from (4), and ( 7) immediately follows from the definition
of the mapping z. [

0.7. Real-valued measurable functions

In this section, we present the basic facts about the vector lattice M( 2 ) of equivalence
classes of measurable functions on a measure space 2. Our attention is focused on the
description of bounds, order convergence, and order projections in M( Q). By the
Vulikh—-Ogasawara theorem, the vector lattice C( Q) of extended continuous functions

on an extremally disconnected compactum Q is a general form of an (extended) K-space.
Therefore, in most cases, the vector lattice M( 2) is isomorphic to C_( Q) for a suitable

compactum Q. In this section we present an explicit description of this isomorphism by
means of the canonical immersion 7: Q - Q) defined in 0.6.6. The basic properties of the

spaces M( Q) and L™( Q) are presented in [5] and [3].
All the vector spaces in this article are assumed to be given over the field R of real
numbers and are nonzero by implication.
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~ 0.7.1. If Q is a measure space then we assume that the functions f; €.#(Q) in the
pointwise envelopes Inf: o =f; and Supg ¢ = f; are defined everywhere on Q and act into
R (see 0.6.1).
Proposition. Ler Q2 be a nonzero measure space.
(1) The vector lattice M( Q) is a K -space.
(2) A sequence (f, ), en Of elements of M( Q) is order bounded from above if and
only if sup, e nfu(@w) < ® for almost all ® € Q In this case Sup, e Nfy; ESUP, e NSy -

(3) If a sequence (f, ) o-converges to f in M(Q) then f,(w)-=>f(w) for almost
all w € Q

0.7.2. The following theorem implies in particular that the vector lattices M( Q2) and
L®(Q) are K-spaces if Q is a finite or o-finite measure space.

Theorem. Suppose that the measure space 2 possesses the direct sum property and let
p be a lifting of L*( Q).

(1) The vector lartice M( Q) is an extended K-space.

(2) A family (fz )g e = of elements of M(Q ) is order bounded from above if and only
if there exists a family of representatives fe €T (§ €EZ) such that supg e z fz(w ) < » for
almost all w € Q

(3) If a set F C M( Q) consists of positive elements and is order bounded from above

then Supyc g=p(f) EsupF, where F*:={af: n€Pr(M(Q)), fEF} NL*(Q).

(4) If a family (fz)z ez Of elements of L™(Q) is order bounded in L™(Q) then
Sup e zP(f;) Esupzezly and Infpczp(fy) Einfrecz 1

Proof. The proofs of assertions (1) and (2) are presented in [ 5] (L6.10). Assertions
(3) and (4) can be deduced from [3] (Chapter III, Theorem 3). [

0.7.3. Let Q be a nonzero measure space. If A € B(Q) and fE # () then the
symbol (A4 )f denotes the pointwise product yx, f, where yx, is the characteristic function of

the set A. If A€B(Q) and f€ M(Q) then the symbol ( A)f stands for the class in
M( Q2) that contains the function (A4 )f for some (hence, for all) representatives 4 € A and

fE€ L The mapping A~ (A) is an isomorphism between the Boolean algebra B( Q) and
Pr(M(Q)).

The following proposition is a functional analog to the statement of Theorem 0.6.5( 2).

Proposition. Suppose that a family (Ag )z e = of elements of #( Q) approximates
Then, for every function f: Q - R, the following relations are valid:

(a) f€.4(Q) if and only if (Ag)}f €. (Q) for all § €E;

(b) f~0if and only if (Ag)f ~ 0 for all § € E;

(c)iffEM(Q) and f20 then supg =z ((Ag)f) =f in M(Q).

0.7.4. A Kantorovich—Pinsker space is an arbitrary K-space containing an order dense
ideal with a total set of order continuous functionals.

Theorem (A.G.Pinsker [6]). (1) If Q is a measure space possessing the dzrecr sum
property then M( Q) is a Kantorovich—Pinsker space.

(2) Every Kantorovich—Pinsker space is linearly and order isomorphic to an order dense
ideal of M( Q) for a suitable measure space Q2 with the direct sum property.
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0.7.5. Theorem. Ler Q be a measure space, let p be a lifting of L™(Q), and let
T: Q=0 be rhe corresponding canonical immersion of Q2 in the Stonian compactum Q of
the Boolean algebra B( Q) (see 0.6.6).

(1) An almost everywhere defined real-valued function e is measurable if and only if

e ~ fot for some fEC(Q).
(2) For every class e € M(Q), there exists a unique function = Co( Q) representing

eas (eet) .
(3) The mapping e~ ¢ is a linear, algebraic, and order isomorphism from M( Q) onto
Co( Q). The inverse isomorphism from C,(Q) onto M(Q) acts by the rule fr (fot) .
(4) The image of L™( Q) under the isomorphism ew e coincides with C(Q). For
every class e € L™( Q) the equah'ilyp(e)=€ﬂt holds.

Proof. Let Aw A be the canonical isomorphism from B( Q2 ) onto Clop( Q ). According

to 0.7.3 and 0.3.4, there exists a (unique) isomorphism e~ e from the extended K-space
M( Q) onto C,( Q) such that y, = x1 for all A€ B(Q). Let us form in M( Q) the totality

St( $2) of step-functions of the form z (A;)A; , where A;,€EB(Q) and ,€R. In a

i=1

similar manner, we define the set St(Q) C C(Q) of various sums 2 (U;)A;, where

i =]

U; € Clop( Q) and 4; € R. Obviously, the mapping s+ s is an isomorphism from St( Q)

onto St( Q). Since the set St( Q) is dense in L*( Q) under r-convergence with regulator
1, and since St(Q) is uniformly dense in C(Q), the image of L™(Q) under the
Isomorphism e~ e coincides with C(Q). From 0.6.6 it follows that p(s)=s°t for all
sE€St(Q). In these circumstances, we use the fact that r-convergence s, »e with

regulator 1 implies uniform convergence p(s,) = p(e), and thus arrive at the equality

p(e)= eot for all e€L”(Q).
In order to complete the proof of the theorem, it suffices to demonstrate the inclusion
eo7 € e for each class e € M( Q). According to 0.3.2, every e € M( Q) can be decomposed

( A, )e of bounded pairwise disjoint classes (A, e € L*( Q). It remains
(AT =T p((Ag)e) € e

We shall refer to the function e € C,(Q) that corresponds to a class e€ M( Q)
according to item (2) as the Stonian transform of e.

3. MEASURABLE BANACH BUNDLES

Let 2° be a continuous Banach bundle over a locally compact space Q with a fixed
Radon measure. A section u €S(Q, 2 ) is called measurable if, for every compact
K CQ, there exists a sequence of continuous sections u, € C(Q, 2°) converging to u

almost everywhere on K. Such an approach to defining measurability of sections has been
prevalent so far in the papers on Banach bundles. However, in our situation, a somewhat
different approach seems to be appropriate. In this chapter, measurable sections are defined
as the limits almost everywhere (on the subsets of finite measure) of sequences of elements

into a sum 0-2
neN

to observe that ecr = (0—2
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of some set of sections given axiomatically and called a measurability structure. Such a
way of introducing measurable sections is similar to Daniel’s construction and is formally
more general than the traditional topological approach. It is worth noting that the idea
of measurability structure has been proposed by N.Dinculeanu as early as 1966, but has
not been much studied since then.

In this chapter, we establish some elementary properties of measurable sections
obtained by means of a measurability structure, introduce and study the notion of lifting
in a quotient space of measurable sections, and state the results of applying the theory of
complete Banach bundles to the study of measurable bundles.
| Throughout the chapter, Q is a nonzero measure space (see 0.6.1).

3.1. Basic notions

In the present section, we introduce the notion of measurable Banach bundle (MBB),
which is a bundle endowed with so-called measurability structure that is a measurable analog
to continuity structure (cf. 1.1.1). We give a definition and indicate several criteria of
measurability of a section in an MBB. Studying the concept of measurability structure, we
introduce and clarify the notions of equivalent and adequate structures and describe the greatest
one among adequate measurability structures that coincides with the set of all measurable
sections of the MBB under consideration (Theorem 3.1.12). In the same section we present
general information on measurable sections and operations on them. The study of elementary
properties of MBBs is concluded by considering the space of equivalence classes of measurable
sections which appears to be an o-complete LNS in most cases (see 3.1.14).

3.1.1. Let ‘& be a Banach bundle over Q (see 0.5.1). We call a set of sections
€ CS~.(Q, ) a measurability structure in 2; if it satisfies the following three conditions:

(a) Ajcq +Ax, € % for all 1,4, €ER and ¢, ¢, € €;

(b) the pointwise norm |||c||| : dom ¢ = R of every element ¢ € ¥ is measurable;

(c) the set ¥ is stalkwise dense in ‘&

If € is a measurability structure in 2 then we call the pair (@, ¥ ) a measurable
Banach bundle (MBB) over Q. We shall usually write simply @ instead of (@, ¢ ) and
denote the measurability structure € by €, (cf. 1.1.1). Aset ¥ CS-(Q, ) satisfying
condition (a) will be called linear.-

3.1.2. Let (2, % ) be an MBB over Q. We say that s €S- ( Q, &) is a &-step-section
(or simply a step-secrion, if it is clear which measurability structure is spoken about), if

s=2?-1(A,-)c,- for some n€N, A4y, ..., A, €EB(Q), and ¢y, ..., ¢, € € A section

u€E€S-(Q,) is called ¢measurable (or simply measurable) if, for every K € &, ( Q),

there is a sequence (s, ), N Of #-step-sections such that s,(w)-=>u(w) for almost all
w € K. The set of all %measurable sections of 2 is denoted by .#(Q, 2| € ) or
(2, ) for brevity.

3.1.3. Proposition. Suppose that 2 is an MBB over Q u,vES_.(Q, ),

e: Q-=R, L,u€R
(1) If the section u is measurable then the function ||ul|| is measurable.
(2) If the funcrion e and the section u are measurable then the product eu is measurable.
(3) If the sections u and v are measurable then the sum Au + uv is measurable.
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3.1.4. Proposition. If 2" is an MBB over a o-finite measure space Q2 then measurability
of a section u € S . (Q, A’) is equivalent ro existence of a sequence (s, ), = y Of Step-sections

such that s,(w ) > u(w) for almost all w €

3.1.5. For every subset v C._w«( Q, ) of sections of an MBB 2" over Q, we shall

denote by dg,7 the totality of various mixings E‘: 1(A,- WV, where v; € v and the

measurable subsets 4; C L2 are pairwise disjoint.

Lemma. Let & be an MBB over S, let v be a countable subset of .#(Q, '), and
let u € S.(Q A). Suppose that, for every v € ¥ the function ||u - v|| is measurable and
inf, c  [|u(@) = v(w)|| =0 for almost all ® € QL Then there is a sequence of elements in
dg. ¥V that converges to u almost everywhere.

Proof. Suppose that aset ¥ ={v,: n€N} and a sectionu € S_.(Q, &) meet the
hypothesis of the lemma. We will construct a sequence (w, ), en Cds, ¥ by induction,
defining wy:=v; and w, . {:=(A4, W, +(Q\4, v, ., where 4, = {0 €Q: |w,(w)
—u(w)|| < ||vy+1(@)—u(w)|l }. Then the sequence of functions |||w, — u||| pointwise
decreases and ||w, —ul|] < |||v, =u||| for all n € N. Obviously, (W, ), en is the desired
sequence. [ |

3.1.6. Proposition. Ler 2 be an MBB over Q. If, for every K€ #.(Q), there is a
countable net of measurable sections of A converging to u € S.(Q, ) almost everywhere
on K, then the section u is measurable.

Proof. Fix a K€ #Bg,(Q) and suppose that a countable net (u, ), o Of elements
of % converges to u almost everywhere on K. For each element a € A, there exists a

sequence (s, ), en Of step-sections converging to u, almost everywhere on K. It is easy
to verify that the functions (K)|||s,, — u|| are measurable for all «a € A and n € N and,

in addition, inf, c onen |57 (@) —u(@)|| =0 for almost all @ € K. Now, measurability
of the section u follows from 3.1.5 and from arbitrariness of the set K€ #Z: (Q). [

3.1.7. Proposition. Ler & be an MBB over €, and let (Ag )¢ ¢ = a family approximating
2 If the fragments (Ag)u of a section u €S.-(Q, ') are measurable for all § € Z, then
the section u is measurable.

Proof. Suppose that a family (Ag )z cz and a section u meet the hypothesis of the
proposition. It suffices to fix an arbitrary element K € B4,( Q) and prove measurability
of the fragment ( K)u. According to 0.6.4, there is a sequence (§,),cn C = such that

U ENA,;- N K ~ K. It remains to use measurability of the fragments (4; N K)u and
n n n

Proposition 3.1.6. []
3.1.8. Let (4, ¢ ) be an MBB over Q. Denote by S¢( 2, 2°) the totality of various
sections of ‘2" representable as 2563(,45 }cg, where (c¢g )g ez 1s @ family of elements of

€ and (Ag)s ez is a family of pairwise disjoint measurable sets approximating Q. The
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totality of all the elements of St( Q, 2°) representable as countable sums ZnEN (A, ),

is denoted by St (2, 27). Note that 3.1.7 implies the inclusion St( Q2, 2°) C. . (Q, 27).

Proposition. (1) A section u is measurable if and only if, for every K€ ZB¢,.( Q)
there is a sequence (S, ), en C St (2, A’) converging to u uniformly on some set K, ~ K

(2) If the measure space K2 possesses the direct sum property, then a section
uES-(Qa) is measurable if and only if there exists a sequence (S, ), en C St(Q2, A7)
converging to u uniformly on some set Q, ~

Proof. Due to 3.1.6, only the necessity of the above conditions require proofs.

(1) Suppose that u € .#(Q, 2 ) and fix an arbitrary set K € B¢,( Q) and a number
n € N. By the definition of measurability in 3.1.2, there exists a sequence (s, ), e N Of
step-sections that converges to u almost everywhere on the set K. Then we have

o-lim,, , o (|llsmx —ulll| x) =0 in the K-space M(K) (see 0.7.2). According to 0.3.2,
there is a partition of unity (x,),,en in the Boolean algebra Pr( M(K)) of order
projections such that z,( |[|s;, —u|ll| x) = 1/n for all m € N. We can choose a sequence
(A )m e N Of pairwise disjoint measurable subsets of K such that {(( A4 )" ) ==, for all
m €N (see 0.7.3). Obviously, the sequence of sections » (A} ) € St (Q, )

(n € N) 1s the desired one.
(2) The direct sum property enables us to consider a family (K;): ¢z Of pairwise

disjoint measurable sets of finite measure approximating Q. If u € .#( Q, Z2°) then, in view

meN

of the already-proven assertion (1), for every § € = there is a sequence (s,f ) e N Of ele-
ments in St ( 2, 2°) satisfying the inequality |||u - s,f\ll < 1/n almost everywhere on K.
Using 0.6.5, it is easy to verify that the sequence of sections 25 . ( Kg )s,,‘,’E =

St(Q, ) (n€N) is the desired one. []
3.19. Llemma. Let & be an MBB over QL Consider v C . #(Q ) and
u€S~.(Q, ) and suppose that the functions ||u —v||| are measurable for all v € v and

inf,c 4 [[lu = V|| =0 in the K -space M( Q). Then the section u is measurable and, for

every K € B g,(Q), there is a sequence of elements of dg, v converging to u almost everywhere

on K
Proof. Suppose that @; ¥ and u meet the hypothesis of the lemma. In order to

justify measurability of the section u, it suffices to fix an arbitrary element K € B ( Q)

and show that the fragment (K )u is measurable. Since inf, = o ( [[u = V||| ) =0 in

the K-space M( K) that satisfies the countable chain condition, there is a countable subset

{vp:nE€N} C v such that inf, oy (flu = v,|ll | ) =0 (see [13]: VL.2.2). It remains

to employ 3.1.5 and 3.1.6. [
3.1.10. Corollary. Let (2,¢ ) be an MBB over L A section u€S.(Q, ) is

measurable if and only if the functions ||u —c|| are measurable for all c € ¢ and
inf, e |l —c|ll =0 in the K,-space M(Q).
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Remark. The formulated measurability criterion creates a conceptual possibility
of developing the theory of MBBs without using any measure as such. For this, we only
need a o-complete ideal of negligible sets that can be introduced “axiomatically”, without
referring to the notion of measure.

3.1.11. Let 27 be an MBB over Q. We call a subset ¥ C.#(Q, 2’ ) approximating

if, for every u € .4 (Q, '), the relation inf,c ., [lu —=v|]] =0 holds in the K -space
M( Q) (see 0.4.6).

Proposition. The following relations between measurability structures € and @ in a
Banach bundle 2 over Q are equivalent:

(1) (QA|€)=utte(QQX| D),

(2) ¢ Cu(QQA|D) and @ C 4(Q x| % );

(3) ¥ is an approximating subset of #(Q, | D );

(4) @ is an approximating subset of .4 (Q, A’ | € );

(5) the functions ||c — d|| are measurable for all c € ¢ and d € @ and, in the K, -space

M(Q) we have infyjc, |lc =d|| =0 for each c € ¢ and inf.c lc=d|| =0 for
each d € .

Proof. Use 3.1.6 and 3.1.10. [J

Measurability structures ¢ and @ satisfying one of the equivalent conditions
(1) = (5) are called equivalent. If 2" is an MBB then any measurability structure equivalent
to its original structure ¥ , Wwill be called adequare. Thus, a subset of .« ( Q, 2 ) is an

adequate measurability structure in 2 if and only if it is linear, stalkwise dense in 2~ |,
and approximating in .« ( Q, ).

-Since measurability structures are usually not encountered in explicit form, we shall
conventionally identify the MBBs (2,¢ ) and (2,2 ) with equivalent measurability

structures. The stage for such an identification has already been set by the convention of
writing ‘2" instead of (&, ¥ ) (cf. 1.1.9).

3.1.12. Theorem. Suppose that a measurability structure % in a Banach bundle @
over 2 contains all the fragments of its elements, iLe., (AW € % for all A€ B(Q) and
u € % Then the following three properties of the set % are equivalent:

(1) =_.4(Q, A| ¢ ) for some measurability structure € in 2.

(2) If a section u € S - (Q, &) is such that, for every K € B (Q ), there is a sequence
of elements of % converging to u almost everywhere on K then u € .

(3) The set % satisfies the following three conditions:

(a) if (u,)renN 5 a sequence of pairwise disjoint elements of U then

(b) if a sequence of elements in % converges to a section u €S_.(Q, 2°)

uniformly on some set A ~ QQ then u € %,
(c) if a secion u€S~.(Q ) is. such that (Ku € % for each set

K€ B, (S2) then u € %
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Proof. We will establish the chain of implications (1)=(2)=(3)=(2)=(1) in
which only the fragment (3)=(2) needs a proof: the implications (2)=(3) and
(2)=(1) are obvious and the implication (1)=(2) is an immediate consequence
of 3.1.6.

Assume conditions (3)(a)-(c) to be satisfied, consider an arbitrary section
UES-(Ra), fixa set K€ B4,(Q), and suppose that a sequence (u, ), = Ny Of elements

of % converges to u almost everywhere on K. For arbitrary n,m € N, denote by A4, the
set {w €K: ||u,(w) —u(w)| <1/m}. It is easy to verify that the sets 4, are measurable

and 4,, := URENA,: ~ K. Since the set B(K):={4AE€B(Q): ACK} ordered by

inclusion is a o-complete Boolean algebra, therefore, in view of the exhaustion
principle (0.2.1), for each n € N, there is a sequence ( B, ), e n Of pairwise disjoint elements

of #(K) such that B;, CA, for all n€N and |J __ B, =A, Setting v,:=

nEN
Z,,EN(B;')% we conclude by (3)(a) that v, € @ According to (3)(b) and

(3)(c), for proving the inclusion u € %, it remains to observe that the sequence

(Vi )m e N cOnverges to u uniformly on the intersectionﬂm ENA"' ~K [

Remark. The purpose of identifying MBBs with equivalent measurability structures
and that of omitting the symbol of the measurability structure in the notation of an MBB
(see 3.1.1, 3.1.2) is similar to that of the last theorem. Indeed, one can consider Theorem
3.1.12 to be suggestive of an approach to the definition of measurability excluding
measurability structure as a notion, i.e. an approach consisting in some explicit presentation
of the set of all measurable sections.

3.1.13. Suppose that 2 is an MBB over Q. We consider an equivalence relation
~ In the set .« (Q, ) which is the coincidence almost everywhere: u ~ v reads as
u(w)=v(w) for almost all w € Q. The coset containing an element u € .4 (Q, ) is

denoted by u . The quotient set .« ( Q, 2’ )/ ~ is made into a vector space in the natural
way: we write Au +uv = (Au+uv) for AL,u€R and u,v €.#(2, ). In addition,
for every element u €.4(Q, &)/ ~, we can define its (vector) norm |Ju | :=
llull €M(Q) (see 0.6.2). It is clear that the pair (.« (Q ) ~, | -'| ) is an LNS
over M( Q2 ); we denote it by M( Q, 2'). Note that the space M( Q, 2°) can be endowed
with the natural structure of a module over the ring M(Q) as follows: e u :=
(eu) foralle€ . «(Q)and u€.4(Q, ).

The support of a class uE M(Q, ) is the class {w €E Q: y(w):O}" € B(2)

defined by an arbitrary representative u € u. Obviously, the disjointness of elements of
the LNS M(Q, 2 ) is equivalent to the disjointness of their supports in the Boolean

algebra B(Q ). fue M(Q, 2 ) and A € B( Q) then the value ( A )u of the order projection

(A) (see 0.7.3) at the class u is the class ({4 )u) , where 4 €A and u € u.

3.1.14. Theorem. If a measure space Q2 possesses the direct sum property and if A" Is
an MBB over 2, then M(Q, ') is a BKS over M( Q).
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Proof. Decomposability of the LNS M( Q, Z°) is obvious. In view of 0.4.3, for proving
o-completeness of M( Q, Z°), it suffices to establish its d- and r-completeness.

Let (uz ): ez be a family of elements of M(Q, ') with pairwise disjoint supports

A € B(Q) (see 3.1.13). Denote by = the enrichment Z U { @ } of the set = with a new

element « and define u,:=0 and A, := (sups =z Ag )*. Fix a lifting p of L*(Q) (see

0.6.4) and denote A :=p(A;) for each § € =. In view of 0.6.5, the union UE =Ag IS

O
measurable and differs from 2 by a set of measure zero. It is easy to verify that the section

U = UE . Eu;] A, is measurable and the corresponding class 4 € M(Q, &) is the desired

sum 0—25 - HE

Now, suppose that a sequence (u, ), n Of clements of M( Q, 2°) is r-fundamental.

Then, for almost all w € Q, the sequence ( u,( @ ) ), e 5 is fundamental. Due to completeness
of the stalks of 2; there exisis a section u€S-.(Q,2) to which the sequence

(Uy )n e N COnverges almost everywhere. It is clear that the section u is measurable and

the corresponding class u is the desired r-limit of the sequence ( U, men L

Remark. If we do not require that the measure space Q2 possesses the direct sum
property, then M( Q, Z') becomes a countably (= sequentially) o-complete LNS over the

K, -space M(Q2) (see 0.4.3).

3.1.15. If Q is a measure space possessing the direct sum property and E is an ideal
of M(2) then the set E( 2’ ):={u€M(Q, Z): Ju] €E} endowed with the operations
induced from M(Q, ) is a BKS over E. We shall see below (Theorem 3.4.8) that the
space E(2') is a general form of a BKS over E in a certain sense (cf..2.4.2). The symbol

Z%(Q, ) stands for the set {u €. «4(Q2): ||u|l €E2*(Q)} and its elements are
called (essentially) bounded measurable sections of Z. The equivalence classes constituted
by essentially bounded sections are called bounded classes and the totality of all such classes

is denoted by L™( Q, &) . Obviously, the space L™( Q, &) coincides with E( ), where
E=L"(Q). In particular, L*(Q, ) is a BKS over L*( Q).

3.2. Examples

A short list of examples of MBBs presented in this section contains MBB with
constant stalk, measurabie subbundle and restriction of an MBB, as well as the notion of
iIsometric MBBs.

3.2.1. Let X be a Banach space. If the totality of constant functions c: Q » X is
taken as the measurability structure of the trivial Banach bundle 2 = Q x { X}, then the
set .7t ( 2, 4") consists exactly of all Bochner measurable X-valued functions defined almost
everywhere in Q. In this case we use the notation .« ( Q,X) instead of M(Q, ). Note
that the totality .« ( Q,X ) of all measurable functions is another measurability structure
In the trivial bundle Q x { X'}, equivalent to the structure of constant functions (cf. 1.2.1).
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3.2.2. Consider an MBB 2" over Q. An MBB 2, over Q is called a (measurable)
subbundle of 2, if Zy(w) is a Banach subspace of 2w ) for every point w € 2 and,
moreover, (2, Xy) =( QL A)NS-(RQ, Ay) (cf. 122). If Xy 1s a subbundle
of 2= then we make the convention that M( Q, Z,) C M(Q, '), identifying the classes
{ue (QAy): u~uyteEM(Q Xy) and {uE 4 (R A ): u ~ugt €EM(Q, ) for
each section ug € .4 (Q, ;).

Now, suppose that every stalk 2,( @ ) of a discrete Banach bundle &, is a Banach
subspace of the corresponding stalk 2(w ). If the intersection .« (Q, ) NS-(Q, X )
is stalkwise dense in ‘2, then it is a measurability structure in ‘Z,, Wwith respect to
which ‘2, becomes a measurable subbundle of 2. We say that the measurability structure
of A5 Is induced by 2. Note that the intersection .#( Q, ) NS (R, XA,) is always
stalkwise dense in &, if all the one-point subsets of Q2 are measurable.

Dually, any linear subset % C.#(Q, ") (see 3.1.1) induces a subbundle of 2, i.e.
such a subbundle 2, that % is its measurability structure: 2y(w ) =cl{u(w): u € %}
(0w €Q). -

3.2.3. Proposition. Ler A be a subbundle of an MBB Z over Q and let € and
€ be adequate measurability structures in & and ‘X respectively. The following assertions
are equivalent:

(1) every section T € .« (Q, ) assumes the values I(w ) € A(w) for almost all
w € Q;

(2) E(x)=E(Z) for every order dense ideal E C M( Q) ( the equality is understood
in terms of the inclusion M(Q, ') CM(Q, Z), see 3.2.2);

(3) E(x) =E(Z) for some order dense ideal EC M(Q);

(4) € is an approximating subset of .#( Q, A );

(S) foralltT€ ¥, we have inf.c . ||[T=cl|| =0 in the K,-space M( Q).

Proof. The implications (1)=(2)=(3) and (4)=(5) are obvious. If E is an

order dense ideal of M(Q) then the sets {u€.#(Qa): [lu]]l €E} and

{(TEe.w4(QQa): |||‘Hl|| “€E} are adequate measurability structures in 2 and &

respectively. Therefore, (3) implies (4) by 3.1.11. It remains to observe that
(5)=(1). In view of 3.1.9, from (5) it follows that each section TE ¥ assumes the

values T(w ) € Z(w ) for almost all elements w € K of every set K € B, ( 2). Hence, all
the sections T €._#(Q,Z ) have this property (see 3.1.11(1) and 3.1.2). Assertion (1)

now follows from 0.6.5. [
We call a subbundle & possessing one of the equivalent properties (1) —(5) a

dense subbundle of the MBB .

3.24. Let 27 be an MBB over Q and let D be a measurable subset of Q. If € is
the measurability structure of 2" then the set {c| p: ¢ € ¢ } is a measurability structure
in the (discrete) Banach bundle ‘2| . The MBB over D thus obtained is called the

restriction of the MBB 2 onto D and denoted by | p. Obviously, .«(D, 2| p) =
{ul p-u EJ{(Q,'.EZ‘)} (€. 1:2.9)



22 A.E.Gumman

3.2.5. Let 27 and % be MBBs over the same measure space 2. We call a mapping
H:weQw» Hw)EB(2a(w), ¥ w)) an isomerry from 2 onto ¥ if, at each point
w € Q, the operator H(w ) is a linear isometry from 2(w ) onto %(w ) and, moreover,
(L ¥)={HQu: u€ . «(Q 2) }. In the event that such a mapping H exists, the
bundles 2 and % are called isomerric. If, for each u € M(Q, 2°), we define the class

HOueM(Q, %) by HQu=(H®u) , where u is an arbitrary representative of u,
then the mapping u= H @ u is an isometry from the LNS M(Q, Z°) onto M(Q, %) .

Proposition. Ler & and % be MBBs over Q and let a mapping H associate with
each point w € Q a linear isometry H(w ) of the stalk Z(w ) onto ¥(w ). A necessary and
sufficient condition for the mapping H to be an isometry from X onto % is the existence of
an approximating subset € C . #(Q, A’) such that {H®c: c € ¥ } is an approximating
subset of (2, %).

Proof. Only necessity of the above condition needs a proof. Suppose that there is a
set & possessing the formulated property. If u € #(Q, 2°) then, for every element
cE ¥, the function |||H®u -H®c||| = |||¥ = c||| is measurable and

inf, c o 1H@u-H®cll ™ =inf, e llu—cll ™ =0

in the K -space M( €2); hence, in view of 3.1.9, measurability of A ® u follows. Measurability
of a section u €S_(Q, ) is deduced from that of H @ u in an entirely similar manner. []

3.3. Lifting in spaces of sections

[n this section we introduce and study the notion of lifting in a quotient space of
measurable sections of an MBB. Liftable measurable Banach bundles in the class of all
MBBs occupy, in a sense, the same place as complete continuous Banach bundles in the
class of all CBBs. Many corroborations of it can be found in Section 3.4; in this section,
the connection between liftable MBBs and complete CBBs is established explicitly. Theorem
3.3.4 proposes a method of constructing a liftable MBB given an arbitrary complete CBB
over the corresponding extremally disconnected compactum. Theorem 3.3.5 asserts that such
a method is universal.

Throughout the section, Q is a nonzero measure space possessing the direct sum

property.

3.3.1. Let & be an MBB over Q. Consider a lifting p: L™(Q) =2 *( Q) (see 0.6.3).
We call a mapping p,: L¥(Q, &) = Z 7 (Q, ) alifring of L*(Q, &) (associated with p)
if, for all uw € L®(Q,2) and e € L*(Q), the following relations hold:

" (a)py(u)€u and domp,(u)=Q;

(b) leg(u)lll =pClul )

(€) pa{u+v)=py(u)+pa(v)

(d) pa(eu) =p(e)py{u);

(e) the set {py{(u): uEL”(Q, 2)} is stalkwise dense in 2.
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In case there exists a lifting of L*(Q) and a lifting of L*(Q, Z°) associated with
it, we say that 2" is a liftable MBB. If it is clear which liftings are dealt with then, given

e€L”(Q) and u€L”(Q, ), we write e~ and u- instead of p(e) and p,(u),
respectively. For e€ 2*(Q) and u €2 ®(Q,2), the notation p(e ), p{u ),
(e )-, and (u )~ will be replaced by the symbols p(e), pa{(u), €~, and u-,

respectively.

3.3.2. The examples (1) and (2) below show that condition (e) in the definition
of lifting in 3.3.1 does not follow from conditions (a) = (d).

(1) Let us consider a trivial bundle 2 =[0,1] x { R} over the Lebesgue measure

space [0, 1]. We take the totality of almost everywhere vanishing functions u: [0,1] =R as
the measurability structure of ‘2. Then, choosing an arbitrary lifting of L*([0,1]), we
see that the mapping, which associates with each class u € L*([0,1],2°) the constant
zero function p,{ u ), satisfies conditions 3.3.1(a) — (d ), but not (¢e).

(2) Condition 3.3.1(e) takes account of individual properties of the lifting rather
than those of the MBB ‘2. To be more precise, there can exist two mappings p; and

p, from LT(Q, ) into Z °(Q, ) each satisfying conditions 3.3.1(a) — (d) and such
that p, satisfies (e ) as well (i.e., p, is a lifting), but p, does not. A simple example can
be obtained by considering an arbitrary liftable MBB 2~ over Q, the stalk (@ ) of which
over some negligible point @ € Q (i.e. such that {@ } ~ @) is isometric to its proper
subspace X C (@ ). In this case, if p, is a lifting of L¥(Q, &) and T is an isometry
from ‘2 (@ ) onto X, then the mapping p,: L¥(Q, 2 ) = Z*(Q, ) defined by the rule

p2(0)(@) = p(w)(@) if w=T; T(py(W)@)) if 0=

satisfies conditions 3.3.1(a) — (d), but not (e).
The technique of complete continuous Banach bundles enables us to considerably
strengthen example (2); see 3.4.9. -

3.3.3. Let p be a lifting of L™(Q) and let 2 and % be liftable MBBs .over Q. We
call the bundles & and % p-isomerric, if their liftings p,- and p, are associated with

p and there exists an isometry H from 2 onto % such that p,(H®u)=H®p,(u)

for all u € L®( Q, 2°) . We say that an MBB & is stationary with respect to p, or p-stationary,
1 Y,

if Z(w)=2(w;) and u~.(w;)=u-(w,) for all u€L®(Q, ) -and for arbitrary
p-indistinguishable points w,, w, € Q (see 0.6.3).

The following assertion enables us to assume without loss of generality that every
MBB under consideration is stationary with respect to the corresponding “scalar” lifting.

Proposition. For every MBB over Q having a lifting associated with p, there is a
p-stationary liftable MBB p-isometric to it.

Proof. Suppose that an MBB ‘2" meets the hypothesis of the proposition. Fix an
arbitrary pair of p-indistinguishable points w,, w, € Q. It suffices to construct an isometry
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i from the stalk 2(w;) onto 2(w,) such that i(u-(w;))=u-(w,) for all

u€L”(Q,2). Indeed, in this case, the stalks over indistinguishable points can be
“identified” by means of such isometries.

For each point w € Q, denote by (@ ) the subspace {u-(w): u€L®(Q, )}

of the stalk 2(w ). Let classes u,v €L (Q, Z') be such that u-(w,) =v.(w;). Then
ll..(ﬂ)z) = V..(C!Jz), since by 0.6.3 we have

lo~(@wz) =v-(w)ll = Ju=v] -(w;)
=lu-v]-(@)=lu-(@;)=v-(@)] =0.
This enables us to consider a bijection ig: @Xy(w;) = Xy(w,) defined by the rule

il u~(w;)) =u~(wy) for every class u € L™(Q, 2°) . Due to the fact that the subspaces

Xo(w ) are dense in the corresponding stalks 2w ), the isometry iy can be extended to
the desired isometry i: 2(w;) > (w5, ). [

3.3.4. Suppose that Q is the Stonian compactum of the Boolean algebra B( 2) (see
0.2.2) and 7: Q- Q is the canonical immersion of Q into Q corresponding to the lifting
p of L*(Q) (see 0.6.6).

Theorem. Let & = % °1, where % is a complete CBB over Q.

(1) If € is a vector subspace of C(Q, ¥ ) that is stalkwise dense in % (for instance,
if € =€ a4 ) then the set € °t is a measurability structure in &. For arbitrary subspaces
€, D CC(Q, ), stalkwise dense in %, the measurability structures % °t and @ °t are
equivalent. (In the sequel, the bundle ' = % °t is always regarded as an MBB with respect
to the measurability structure € , °71.)

(2) An almost everywhere defined section u of the bundle A" is measurable if and only
if u ~vert for some element ve C_(Q, ¥).

(3) For every class w € M(Q, '), there exists a unique section = Col @ ¥)
representing u as (u°t) .

(4) The mapping uw uis an isometry from the BKS M(Q, ) onto C_(Q, %)
associated with the isomorphism e€ M( 2 )= = Co(Q) (see 0.7.5, 0.4.2). The image of
L™(Q, ) under this isomerry is C(Q, % ). The inverse isometry from C(Q, %) onto
M(Q, ) is defined by the rule v~ (vet) and is associated with the isomorphism
e€C,(Q) (e°T) EM(Q). '

(5) The mapping u= ue°t is a lifting of L*(Q, &) associated with p. Endowed with
this lifuing, the MBB " is p-stationary.

~ Proof. (1) If ¢ is a stalkwise dense subspace of C(Q, #) and ¢ € ¥ then
llcez|ll = |[c|l| ez is a measurable function. (see 0.7.5). The remaining properties of the
set € °7 listed in the definition of measurability structure are obvious. Equivalence of the

measurability structures € °t and & °7 for arbitrary subspaces ¥, @ C C(Q, %), stalkwise
dense in %, follows from 1.5.7 and 3.1.11.
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(2) First of all, we note that, in view of 0.6.6, for every vEC_(Q, %) the
composition veort is defined almost everywhere in €. Denote the set {u €5-(Q, 27):
u~ver for some veEC,(Q, ¥)} by % and prove that % =_4(Q, X).

Let veECL(Q, ). According to 2.1.4, there exists a sequence (v, ), N Of pairwise

disjoint elements in C( Q, %) such that V=O-ZHEN n - Obviously, ver =~ anN( V, 0T ).
Thus, the inclusion % C .4 (Q, 2) holds. fvEC(Q, ¥),A€EB(Q),and A=A , then
(A)(ver) ~ (A= )ver)=(rT'[A])(ver)=(({AW)e°T,

which implies that the set % contains the fragments of all its elements. According to
3.1.12, to prove the reverse inclusion % D.#«(RQ, ), it suffices to verify conditions
3.1.12(4)(a) = (c) for the set %

(a) Let sections u,, ~ v, ° 7 be pairwise disjoint. Then the sections v,,’s are pairwise disjoint

and, hence, we have v := 0-) en"n €Cu(Q, ¥) . Tt is clear that )’ cyln T VeT
n n i

(b) Suppose that a sequence of sections u, — v,°Tr converges to a section
uE€S-(Q 2) uniformly on a set 4 ~ Q. The r-convergence |u, —u, | =0 in
M( Q) implies, by 0.7.5, the r-convergence |v, = v, | = 0in C,( Q). Due to o-completeness
of the LNS C(Q, %), there exists the r-limit vE C(Q, %) of the sequence (v, ).
Obviously, u ~ ver.

(c) Let a section u €S-(Q, ) be such that (K)u € % for every K € B4, ( Q).
The direct sum property enables us to decompose the set Q into subsets K (§€Z) of

finite measure so that sup;cz K =Q (see 0.6.5). For each { € Z, there is a section
ve € C(Q, ¥) such that (K Ju ~ vg o 7. Since the sections v;’s are pairwise disjoint, there

is v = o-zgefvE € C,(Q, ¥). The equivalence u ~ ver follows from 0.6.5.

(3) If sections v,w € C(Q, %) are connected by the relation ver ~ wer, then
|v—=w] et =0. Then 0.7.5 implies that |v —w| =0, ie., v=w. |
Assertions (4) and (5) are straightforward, except that the equality dom(:Tﬂr)=Q

for an arbitrary u € L*(Q, ') possibly needs clarification. The inequality Ju] <A that
holds for some number A implies, by 0.7.5, the inequality |u] <A Now, from 2.1.3 it
follows that dom u = Q and, hence, dom( uur) = Q. []

We refer to the section u EC,(Q, % ) associated with an element u € M( Q, 27)

according to item (3), as the Stonian transform of u (cf. 0.7.5).

3.3.5. Theorem 3.3.4 describes a method of constructing a liftable MBB given a
complete CBB over the corresponding Stonian compactum. The following result shows that
every liftable MBB can be obtained exactly in such a way.

Suppose that p is a lifting of L¥(Q) and 7: Q - Q is the corresponding canonical
immersion of €2 into the Stonian compactum Q of the Boolean algebra B( Q2).
Theorem. Ler 2 be a p-starionary MBB over Q that has a lifting associated with p.

Then there exists a complete CBB A over Q unique to within an isometry and such that

X =A°Tand u- =u°r for all w € L™(Q, 2°), where u is the Stonian rransform of u.
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Proof. Since & is p-stationary, we can define a Banach bundle % over [ Q] by

the formula %(7(w)):=2(w) and endow it with the continuity structure {u_er7!:

v

u€L™(Q,2)}. Then the Stone—C ech extension 2 of % onto Q (see 1.5.10) is the
desired CBB. Most of the necessary properties of the bundle 2  are easily verified. We
only prove completeness.

According to 1.5.10, for each class u € L™ (Q, 2°), the bounded section u.°7 €
C(7[RQ], %) can be extended to an element of C( Q,*&') that will be denoted by u. It
is easy to verify that the mapping u~ u is an isometry from the LNS L*(Q, 2°) onto
C( Q,:&') associated with the isomorphism e € L%"( Q) = C(Q). From 1.5.7 and 0.4.6
it follows that the image of L™(Q, 2°) under this isometry is o-dense in C( Q,:&'). In

view of the o-completeness of L™(Q, ), this image coincides with C( Q,ﬁ') and, hence,
the LNS C(Q, ) is o-completi as well.
Uniqueness of the bundle 2" follows from 3.3.4(4) and 24.1. []

We call the complete CBB 2" presented in the statement of the last theorem the

Stonian transform of the MBB . Note that 2" is the realization CBB for M( Q, @)
(see 2.4.4).

3.4. Applications of the theory of complete Banach bundles

A constructive connection between liftable MBBs and complete CBBs established by
Theorems 3.3.4 and 3.3.5 enables us to transfer all the basic facts of the theory of complete
CBBs to the case of MBB. The results stated in this section are obtained exactly by this
transfer. Also, we present here a criterion of measurability in terms of a lifting, describe
approximating subsets in a quotient space of measurable sections, indicate a way of
embedding a certain class of MBBs into liftable MBBs (an analog to the completion of a

CBB), list the basic properties of the measurable bundles B('Z, %) and "', and formulate

a series of results on the representation of an LNS as a space of equwalence classes of
measurable sections of a liftable MBB.

Throughout the section, Q2 iS a nonzero measure space possessing the direct sum

property, p is a lifting of L*(Q), and 7: Q - Q is the corresponding canonical immersion
of €2 into the Stonian compactum Q of the Boolean algebra B( Q). If 2" is a (p-stationary)

liftable MBB over Q and 2 is the Stonian transform of 2 then, as usual, the Stonian
transforms of classes e€M(Q) and wueE M(Q, ) are denoted by eeC,,(Q) and
A= C,,,( 0, gft‘) and their liftings are denoted by e. and u., respectively.

3.4.1. Condition (¢) in the definition of lifting in 3.3.1 is valid in a stronger form:
Proposition. If 2 is a liftable MBB over Q then, for every point w € Q, the set

{u-(w): u€L®(Q, )} coincides with Z(w ).

Proof. The claim follows from 3.3.3, 3.3.5, and 1.3.5. []

3.4.2. Proposition. Let 2 be a liftable MBB over L A section u € S(Q, ) is
measurable and belongs to the image of the lifting of L*™(Q, Z') if and only if, for every
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class vE L*(Q, Z°), the function |||u —v. || is measurable and belongs to the image of
the lifting of L™ ( Q).

Proof. Necessity of the suggested criterion is obvious; we will prove its sufficiency.
Suppose that the lifting of L*(Q, 2°) is associated with p. According to 3.3.3, we may
assume the bundle 2" to be p-stationary. Let 2" be the Stonian transform of 2. Suppose

that the function |[|u — v || belongs to the image of the lifting of L™ ( Q) for every class

vEL®(Q, ). Using 3.4.1 and the fact that 2 is p-stationary, it is easy to show that
the section u assumes equal values at p-indistinguishable points. This enables us to consider
the section v € S(7[Q], 2" ) defined by the formula v( 7(w ) ) := u( w ). The properties of
the section u ensure continuity of the functions ||v — v||| for all ve L®(Q, Z), which

means continuity of the section v. Obvious boundedness of u implies boundedness of v

and, since " is complete, the section v can be extended to V€ C(Q, 2 ). It remains to
observe that u =Ve°t and employ 3.34. [

3.4.3. Proposition. Ler E be an order dense ideal of the K-space M( Q) and let a
and % be liftable MBBs over Q (having liftings associated with p). The BKSs E( ') and
E( %) are isomerric if and only if the bundles 2 and % are isometric (p-isomertric). -

Proof. The claim follows from 3.3.3, 3.3.5, and 2.4.1. []

3.4.4. Let 2 be a liftable MBB over Q. Given an arbitrary subset Z CL™(Q, Z)
and a point w € Q, denote the set {u-(w): u€ %} by %-(w).

Theorem. The following properties of a subset % CL%(Q, ') are equivalent:
(1) every section v € . (Q, ') assumes the values v(w ) € cl %-(w ) for almost all
w € Q;

(2) for each class vE L™(Q, ) the inclusion v.(w) €cl %.(w) holds for almost
all w € Q,

(3) % is an order approximating subset of M( Q, A");

(4) {uE€.4(QA):u € x} is an approxz'mating subset of . (2, A").

Proof. The implications (1)=(2) and (3) < (4) are obvious. We will prove that
(2)=(3). Suppose that the lifting of L™(Q, ) is associated with p. According to 3.3.3,
we may assume the bundle 2 to be p-stationary. Let 2 be the Stonian transform of 4.
Denote the set {u: u€ %} CC(Q, ) by % In view of 3.3.4(4) and 157(2) = @),
to prove (3), it suffices to show that, for every class v eL®(Q, ), the section v assumes

the values J(q)Ecl ’k( q) on a dense subset of Q. If the last claim is not valid then
1frtq) & cl ?z(q) for all elements g of some nonemptv clopen subset 4 C Q. Then

v-(w)&cl%-(w) for all elements w of the set t_'[A4] of nonzero measure, which

contradicts (2 ). The implication (3 )= (1) follows from 335 and 15.7( (4)=(3)). O

Remark. By analogy to 1.5.7, the last assertion can be generalized to the case of
an arbitrary subset % CM(Q, Z ). In this case, % ~(w ) must be understood to be the
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totality of various values ((A)u)-(w), where u€M(Q, ) and A € B(Q) are such
that (AJu€L™(Q, ) (see 3.1.13).
3.4.5. Theorem. Let 2" be an MBB over 2 Suppose that € is an adequate measurability

structure in A with all the elements ¢ € € satisfying the conditions ||c||| € Z2*(Q) and
p(lllclll )= clll. Then there exisis an MBB Z over Q unique to within a p-isometry,
having a lifting p7 associated with p, and such that & is a dense subbundle of Z and

pa{c)=cforal cE¥.

Proof. Suppose that an MBB 2" and its measurability structure ¥ meet the hypothesis
of the theorem. According to 2.4.3, there is a complete CBB % over Q and an isometry

i: M(Q,&)=C,(Q, ¥) associated with the isomorphism e€L®(Q)~ e C(Q).
Denote the liftable MBB #°7 by & (see 3.3.4). To prove the theorem, it suffices to
construct an isometry H from 2 onto a dense subbundle of ‘Z such that p( H®c) =

H ®@c for all ¢ € . (In this case, the stalks of 2 can be “retouched” so that the isometry

H become the identity embedding.)
For each point w € Q, denote by 2,(w ) the dense subspace {c(w): cE€ & } of

the stalk A(w) and define a linear operator Hy(w): Xy(w ) > 2(w) as follows:

Hy(w)(w):=i(c )(t(w)), cE¥. The operator Hy(w) is properly defined and
isometric in view of the relations

li(e Y(r(@))Il = li(e (@)=l 1*(2(@))=p(lc" | (@)= |c()]
that are valid for all c € . Let H( w ) be an extension of Hy( @ ) to an isometric embedding
Z(w)>Z(w). The set {c :cE€ €} is approximating in M(Q, 2'). Consequently,
{i(c ):cE€ €} is an approximating subset of C(Q, ¥), and, since H®c =i(c )e°rt
for all c € &, the set { (H®c) :c€E€ ¥ } is approximating in M(Q, Z'). From 3.2.5 it
follows that the mapping H is an isometry from & onto a dense subbundle of 2" induced

by the linear subset { H®c: c € ¥ } C.4(Q, ) (see 3.2.2).
Uniqueness of the bundle ‘2" to within a p-isometry follows from 3.2.3 and 3.4.3. []

3.4.6. Theorem. Let & and % be MBBs over Q having liftings associated with the same

lifting of L*( Q). Then there exists a (unique) liftable MBB B( &, %) over Q such that
(a) at each point w €82 the sialk B(Z, ¥ )(w) is a Banach subspace of

B(2(w), ¥(w));
(b)ifuec u(Q ) and HE 4 ( QB( A, ¥)) then HQuE .4 (RQ, ¥);

(¢) (HOu)~-=H_-Qu- foral u€ z*(Q,2) and HEZ*(QB(a, ¥) );

(d) if a bounded mapping H: « € Q » H(w )€ B( 2(w ), ¥(w) ) is such that, for
every u€ Z°(Q, ), the section HQ®u is measurable and HQu. = (H®u)., then
HEZ*(QB(X, %)) '

Proof. The claims follow from 3.3.3, 3.3.5, and 2.2.3. []
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3.4.7. Denote by & the trivial (liftable) MBB Q2 x { R}. If 2" is a liftable MBB
over 2 then the bundle B( 2,4 ) is called the dual MBB of 2 and denoted by the

symbol 2°'. We list below the basic properties of the dual MBB that follow, due to 3.3.5,

from the analogous properties of the dual CBB. ( The notation (u| u') is used instead of
(u(-)|u'(-)), see 0.54.)
Theorem. Ler Z be a liftable MBB over L

(1) @' is a liftable MBB.

(2) If % is the Stonian transform of A then %' is the Stonian transform of A"'.

(3) At each point w € Q, the stalk Z'(w) is a Banach subspace of X (w)'. The
inclusion Z'(w) CA(w)' can be smict.

(4)Ifuc. u(Qa) and u' € 4 (Q ') then (u|lu')E. 4(Q).

(S5)Forall ue = (Q &) and u' € 2% (Q, ') we have {u|u')_={u-|u-").

(6) If a bounded mapping u: o €Q = u'(w)E€ A(w)' is such that, for every
uEZ%(Q ), the function (u|u') is measurable and (u.|u')={u|u’)_, then
uw' ez (Qa). |

(7) For arbitrary classes u € M(Q, ') and w' € M(Q, '), denote by (u| u’) the
class (u|lu' )" €M(Q), where u €u, u' €u’. Then the bilinear form (u,u’ )= (u|u’)
establishes an M( Q )-valued duality between the spaces M( Q, ') and M( Q, ' ").

(8) For every uEeM(Q, ), we have |u] =max {(u|u'): 0w EL®(Q, '),
lu'l =1}

(9) For every w EeM(Q, '), we have |u'| =sup{(u|u’'): uE€L™(Q, ),
lul =1}

(10) If W €L™(Q,X') then the equaliy |u'|-(w)=sup{{(u|lu')_(w):
u€L”(Qa), |u|l =1} holds at each point w € Q

(11) For every point w € Q the space Z''(w) norms A (w). Moreover, ||x|| =
max{(x|x'): x’ €' (w), ||x'|| <1} for all x€ A (w)

(12) If the stalk Z(w) at a point w € Q is reflexive then X'(w ) =2 (w)'

(13) Fix an arbitrary point w € Q and consider the canonical embedding xw~ x'' of
2(w) into Z(w)". Then the mapping xw>x""| 4.,y is an isometric embedding of
Z(w) into X"'(w ), where "' is the dual bundle of Z"'.

(14 ) Assume that Z(w ) C A ''(w) at each point w € Q by the convention that the
embedding (13 ) of the stalks of A" into the corresponding stalks of "' is idennical. Then
A 15 a measurable subbundle of & . | |

3.4.8. The list of facts presented below is an immediate consequence of applying
Theorem 3.3.5 to the realization results of the theory of complete CBBs (see 2.4).
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Theorem. Let Q2 be a measure space possessing the direct sum property.
(1) For every BKS % over an order dense ideal F C M(S2), there exists a liftable

MBB 2 over S, unique to within an isometry and such that the LNSs % and F( 2 ) are
Lsomerric.

(2) For every BKS % over E and every isomorphism i from the K-space E onto an
order dense ideal F C M(2), there exists a (unique to within an isometry) liftable MBB
over Q and an isometry from % onto F( ') associated with L

(3) For every BKS % over a Kantorovich — Pinsker space, there exists a measurability

structure S2 possessing the direct sum property, an order dense ideal F C M( Q2), and a liftable
MBB 2 over Q2 such that the LNSs %« and F( 2 ) are isometric.

We call the space F( ) (more precisely, the isomewry from % onto F( X)) the
(measurable) realization of the BKS %, and call & the realization MBB for % (cf. 2.4.4).

It can be shown that the realization MBB for a given BKS is unique to within an isomeiry.
(4) If an MBB & over Q is the realizaion MBB for a BKS % then the LNS

M(Q, ) is isometric to the maximal extension of .
(5) Let & be a liftable MBB over S0 Suppose that order dense ideals E and F of an

extended K-space M( Q) form a duality pair (see 0.4.4). Then the LNS E*(‘ ') is isometric
to E(-&)", where an isometry is performed by associating with each class w' € E (') the
functional |u'): wE€ E( )~ (u|u')E€F. In particular, if  is the realization MBB for
a BKS % then ' is the realization MBB for the dual BKS %".

3.4.9. In 3.3.2 we established that property (e ) of lifting (see 3.3.1) does not follow
from properties (a) — (d). Using the technique of complete CBB, we will strengthen that
assertion and show that conditions (a) — (d ) are consistent with the “stalkwise” negation
of (e); moreover, it is sO even in case the MBB under consideration is liftable.

Proposition. For every atomless measure space Q and every lifting p of L*(Q), there
exists an MBB ‘& over Q and two mappings p, and p, from L*(Q, ) to Z*(Q, o),
each satisfying conditions 3.3.1(a) — (d) and such that p, satisfies (e) as well (Le., p, is

a lifting), but the set {po(u)(w): wE€LT(Q, Q) } is not dense in A (w ) for every point
w € '

Proof. Let Q be an atomless measure space, let p be a lifting of L*(Q), and let
r: Q-0 be the corresponding canonical immersion of 2 into the Stonian compactum
Q of the Boolean algebra B( Q). Fix an arbitrary (infinite-dimensional) Hilbert space Z
and an isometry T: Z - Z, onto a proper subspace Z, C Z. Denote by X the Hilbert space

12( Q, Z) with the inner product (x,y) = zqeg(x(q),y(q)) (x,y €X). For each point

g € Q, we define a linear operator H(gq): X = X by setting ( H(g ) )(q¢):=T(x(g) ) and

(H(gx )(p):=x(q) for p #g. Obviously, the operator H(q) maps isometrically the
space X onto its proper subspace {xE€X: x(qg)€ Z,}. Let ¥ be the completion of the

trivial CBB Q x { X'}. According to 2.1.7, all the stalks of % are Hilbert spaces. Using

this fact, for each point g € Q, we can easily extend the isometry H(g ) to an isometry
H(q) of the space %(q) onto its proper subspace.
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We will show that every section v € C(Q, %) coincides with H ® v on a comeager

subset of €.

(a) First, establish that, for each x € X, the equality H( g )x = x holds for all elements
q of a comeager subset of Q. Indeed, from the definition of the operator H( g ) it is clear
that H(q )x =x for all points ¢ € Q at which x(g) = 0. It remains to observe that the set
{g€ Q:x(q) =0} is countable and, in view of the fact that the algebra B( 2 ) is atomless,
all countable subsets of Q are meager.

(b) Denote by ¥ the totality of all constant functions ¢: Q -» X and let d¢ stand

for the cyclic hull of the set € in the LNS C_(Q, %) (see 0.4.1). Due to 0.1.5, from
(a) it follows that, for every element s € d%, the section H ®s coincides with s on a

comeager subset of €.
(c) Now, let v be an arbitrary element of C(Q, ). From 1.5.7 it follows that

€ 1s an approximating subset of C( Q, % ) . Then, in view of 0.4.9, the set d¥ is uniformly
dense in C(Q, %) and, hence, there is a sequence of elements in d¥ converging to v
uniformly (= with regulator 1). Now, coincidence of the sections v and H ® v on a comeager
subset of Q follows from (b). Denote by 2 the MBB #%-°tr with the lifting

p1: ur uer (see 3.3.4). We define the second of the desired mappings by py(u):=

(A®u )et, u €LT(Q, 2 ). Most of the necessary properties of p, are easily verified.
Only the inclusion p,(u) € u needs clarification, to which end it suffices to establish
coincidence of the sections py(u) and p,(u) almost everywhere. The last claim follows
from 0.6.6 and from the fact that the sections u and H ® u coincide on a comeager subset

of 0. [
4. SPACES OF VECTOR-FUNCTIONS

Spaces of measurable and weakly measurable vector-functions are the classical examples
of Banach — Kantorovich spaces. These spaces are simple enough and the representation
by means of sections in a Banach bundle does not additionally clarify their structure.
However, such a representation is necessary for applying the general results about liftable
MBBs to spaces of vector-functions. The present chapter is devoted to studying the structure
of realization bundles for spaces of vector-functions. Also, we present here some applications
of the obtained results to establishing a connection between spaces of measurable and
continuous vector-functions, as well as to constructing various liftings in spaces of measurable
vector-functions.

In the sequel, we assume that X and Y are Banach spaces and a bilinear form
(] -): XxY->R establishes a duality between X and Y; moreover, Y norms X, i.e.,

|x|| =sup{{(x|y): yE€Y, |ly]| =1} for all x €X. Such a connection between the spaces
X and Y enables us to assume that X CY’, where x € X is identified with (x| €Y.

4.1. Measurable vector-functions

[n this section, we study the question of existence for a lifting in a space of measurable
functions. We also construct an embedding of an MBB with constant stalk into a liftable
MBB and formulate some properties, of measurable and weakly measurable vector-functions,
which result from applying the theory of MBBs.
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Throughout the section, 2 is a nonzero measure space (possessing the direct sum
property), o is a lifting of L*( Q). As before, a bilinear form ( | - ) establishes a duality
between Banach spaces X and Y such that Y norms X.

4.1.1. The symbol .« ( 2, X ) stands for the set of all (Bochner) measurable functions

defined almost everywhere in € with values in the space X. We denote by M( Q,X) the
totality of equivalence classes of elements in .# ( €2, X ) with respect to the relation of co-

incidence almost everywhere. The symbol Z *(Q,X ) designates the set {u€.4(Q,X):

Nulll €2 T(Q)}; its elements are called (essentially) bounded measurable functions. The
equivalence classes constituted by essentially bounded functions are called bounded classes

and the totality of all such classes is denoted by L*( Q, X).

The set M( Q,X ) is endowed with the natural structure of an LNS over M( Q) and
that of a module over M( Q). In this case the norm |u] of a class u € M( Q, X ) contains
the pointwise norms |||u||| of all representatives u €u. If E is an ideal of M( Q) then
the set E(X):={ue€M(QX): |u]l] €EE} endowed with the operations induced from

M(Q,X) is an LNS over E. Obviously, L™(Q,X) coincides with E(X), where
E=L"(Q).

4.1.2. We say that a mapping py: L™ (Q,X) =2 %(Q,X) is a lifring of L*(Q,X)
(associated with p) if the following relations are valid for all uwel™(Q,X) and
e€L”(Q):

(a) py(u): Q=X and py(u)E€u;

() llex{(w)lll =p( lul )

(€) px(u+v)=px(u)+px(v)

(d) px(en) =p(e)ox(u);

(e) px(c ) =c for all constant functions c: Q = X.

As in the case of sections (cf. 3.3.1), we use the notation py{u ) instead of px{u ) for

UuEZ*(QX), p(e) instead of p(e ) fore € Z*(Q), and p(A4 ) instead of p(A4 ~ ) for
A€ B(NQ).

Theorem. There exists a lifting of L™ (Q,X) if and only if the measure space Q is
atomic or the Banach space X is finite-dimensional.

Proof. It is easy to verify that the formulated condition is sufficient, and so we prove
only its necessity. Let X be infinite-dimensional and let Q be not atomic. Without loss of
generality, we may assume that 2 is an atomless finite nonzero measure space. Contrary

to the claim, suppose that the space L™(Q,X) has a lifting py associated with p.

Since X is infinite-dimensional, there exists a sequence (x, ), <y Of elements of X
such that ||x,|| =1 and ||x, =x,|| =1/2 for all n,m €N, n = m. Since Q is atomless,
there exists a point wy € 2 and a sequence (A, ),en Of pairwise disjoint nonempty

measurable subsets of Q such that p(4, ) = A4, and wy, & U ~ Q. Such a sequence

A
neN "

can be constructed by induction, decomposing at step n + 1 the remainder €2\ U'fl 1Ai,-
] =



Banach Bundles in the Theory of LNSs. II 33

into two subsets 4 and B of equal measures, and taking as 4, . ; one of the sets p(A4)
or p( B) which does not contain the point w,.

Define a function u € Z *(Q,X) by setting u(w ) =x, for v €A4,. Property (d) of
the lifting p, implies that the function py{ u ) extends u. We will denote the value of
px{u) at wy by x5 and show that x, belongs to the set {x,: n € N }. Indeed, otherwise,
there is a number ¢ > O such that ||xy —x,|| = € for all » € N, which yields the contradictory
relations

0= [lpx(u) =%l (@) = Mox(u =xo)ll (@g) =p( llu =Xl o) = >0.

Thus, x, =x, for some n € N. Since ||u —x,||| = 1/2 almost everywhere on Q\A4,, we
have |[|pxdu) =x, |l =p( |lu =x,||l ) 21/2 on Q\A,. Consequently, wy €A, and we
obtain the desired contradiction. []

4.1.3. Consider the trivial measurable Banach bundle Q X { X }. As was noted in 3.2.1,
the totality .#( Q, QX {X}) of measurable sections of this bundle coincides with

(2, X). From 3.3.1 it follows that existence of a lifting in Q2 X { X' } is seldom. However,

the following theorem shows that the bundle Q2 X { X'} can be densely embedded into a
liftable MBB.

Theorem. There exists a liftable MBB " over Q unique to within a p-isometry and
such that

(1) X &5 a Banach subspace of each stalk Z(w ), w € Q;

(2) every section u €. #«(Q, ) assumes the values u(w)€X for almost all
w € Q;

(3) (QX)={uE.u(Q&):imucX}t={u|*:ue.u(Qx)}

(4) the lifuing p, is associated with p;

(5) padc ) =c for all constant functions c: Q = X.

Proof. The claims follow from 3.2.3 and 3.4.5. [
- We denote the MBB ‘2 presented in the last theorem by Xq. It is clear that the
trivial MBB Q x { X} is a dense subbundle of X, in terms of 3.2.3.

'4.1.4. Corollary. The LNS M(Q,X) is an (extended) BKS over M( Q). The bundle
Xq is the realization MBB for the space M(Q,X). If E is an ideal of M(Q2) then the

mapping u= u N _#«( QLX) is an isometry from the BKS E(Xq) onto E(X).

4.1.5. A function u defined almost everywhere in €2, with values in the space X is
called Y-weakly measurable if, for every y € Y, the real-valued function (u|y):=|y)ou is

measurable. We denote the totality of all such functions u by .#(Q,X|Y). Almost

everywhere defined X-valued functions u and v are called Y-weakly equivalent if, for every
y €Y, the functions (u|y) and (v|y) coincide almost everywhere. We use the symbol
= to denote the relation of Y-weak equivalence in the set .« ( Q,X| Y), in contrast to

the symbol ~ designating the coincidence almost everywhere. The quotient set
M(QX|Y)/ = is denoted by M(Q,X| Y). We recall that the notation M( 2, X ) was
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introduced for the quotient set .#(2,X)/ — (see 4.1.1). f u€ueEM(Q X|Y) and

y € Y then the symbol (u|y) stands for the class (u|y)™ € M( Q).
Obviously, .#(Q,X)C. «(Q,X|Y) and the inclusion may be strict. There exist

examples of weakly equivalent functions that do not coincide almost everywhere (see

[1]: IL.1). However, it is known that X '-weakly equivalent Bochner measurable X-valued
functions are equal almost everywhere (see [1]: IL.2, Corollary 7). Employing the lifting

p of L*(Q), we can easily strengthen this result:
Lemma. If functions u,v € .#(Q,X ) are Y-weakly equivalent then they coincide almost
everywhere.

Proof. For each step-function ( = a measurable finite-valued function) s = En Xa%Xi s

i =1 i

we define the step-function p(s) ~ s by the formula p(s) = Z" X A5 - Obviously,
] = I

(p(s)|y)=p((s|y)) for every y €Y.
By a standard argument, we can reduce the assertion of the lemma to the case in

which u € Z2*(Q,X), v=0. Consider a sequence (s,),en Of step-functions such that
Il s,, —ulll| =1/n for all n € N. The Y-weak equivalence u =0 implies that, for every
element y €Y and every number n € N, the inequality | (s,|y)| = ||y||/» holds almost
everywhere and, therefore, | (p(s;)|y)| = |lyll/n everywhere on Q. Consequently,
p(5,) =0 on Q. It remains to observe that p(s, ) - u almost everywhere. []

The last assertion enables us, given a function u € .#( Q,X), to identify the classes
{ve #4(QQX):v~ulteM(QX) and {vE€ . #(QX|Y):v=u}leM(Q,X|Y). In

the sequel, we denote both these classes by the same symbol u .

4.1.6. The set M(Q,X| Y) is made into a vector space in the natural way: we set
Au +uv = (A gomy +‘uv|'d°mu ) forA,u€R and u,v € 4« (RQ,X|Y). Obviously,

M(Q,X) is a vector subspace of M( Q,X|Y). From 0.7.2 it follows that, for every class
nEM(QX|Y), the set {(u|y):y€Y, |ly]| =1} is order bounded in M( Q). Taking
the least upper bound of the set {{(u|y):y€Y, |ly|| =1} in M(Q) as the norm
Ju], we make the space M(Q,X|Y) into an LNS over M(Q). If E is an ideal of
M(Q)thentheset E(X|Y):={ueM(Q,X|Y): Ju] €E} endowed with the operations

induced from M(Q,X|Y) is an LNS over E. If E=L"(Q), then the space E(X|Y) is
denoted by L™(Q,X|Y) and UL®(Q,X|Y) is denoted by 2*(Q,X|Y). Given a
u €. 4(Q,X|Y), the symbol |u| stands for an arbitrary element of the class Ju | (the

concrete choice of a representative |uj € Ju | will be insignificant when the symbol
u] is used).

4.1.7. f ueM(Q,X| Y ) then, for every class K& B( Q) of finite measure, there
exists a sequence (y,),e~n Of elements of the unit ball of Y such that (K)ju] =
sup, e n (KX u|y,) Thus, if (Ks)secz is a partition of unity in the Boolean algebra
B( Q) into classes of finite measure then, for every u € M( Q,X| Y ), there exists a family

( y,f )EEE neN Of elements of the unit ball of ¥ such that

Jul =sup; c=sup,en(KeXulys).
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From the above it follows that, for every function u € #( Q,X| Y), the inequality

lu] = |||u]|| holds almost everywhere in Q. In general, it is not possible to say more
about the connection between the functions Ju| and [||«]|||. The function ||« ||| need not
be measurable. It is possible that Ju| ~ O but ||u]||| = 1. Thus, the function Ju| and

the pointwise envelope sup {(u|y):y€Y, |yll =1} are unrelated in general. The
situation changes if we consider a lifting of L*( Q) and replace (u|y) by (u]| y)_ (see 0.6.3):

according to 0.7.2, for every function u € .#(Q,X|Y), the equality Ju] =sup { (u|y)_:
y€Y, |lyll =1} holds almost everywhere in Q.

418. If veE. 4(Q,(Xg)' ) then the function vy: w Edomv = v(w)| yEX'
obviously belongs to .#(Q,X’| X). For each element vE€M( Q, (Xgq)' ), denote by vy
the class in M(Q,X'| X) containing the functions vy for v € v.

Lemma. The mapping v~ vy is an isomerry form the LNS M( Q,(Xq)') onto

M(QX'|X).
Proof. Let us show that the linear mapping v~ vy is isometric. Fix an arbitrary

class vEM(Q,(Xg)' ). According to Theorem 3.4.7, we have |v] =sup{(u|v):
uEM(Q,Xq), |u|] =1} The inequality |vy] =< |v| is obvious. Consider an arbitrary
element u € M(Q, X ), |u] =1, and observe that

(ul v) =(u"| vg) s [u*] - Ivxl s Dl
where u”* is the class in M(Q,X) containing the functions u| X for u€u (see 4.1.3).
Arbitrariness of u provides the missing inequality |v] < | vy].
It remains to show that the mapping v~ vy is surjective. Given any element
wEM(Q,X'| X)), there is a partition of unity (K ): =z in the Boolean algebra B(Q)
such that (K;)|w| €L™(Q) for all £ €Z (see 0.3.2). Fix arbitrary § €EZ, w € (Kg)-,

and x € Xg(w); choose u € L*(Q,Xq) such that u~(w) =x (see 3.4.1); and denote
v(w ) = (u|w)_(w). It is easily verified that the presented construction soundly defines

a section v €. .#( Q, (Xg)' ) satisfying the relation (v )y=w. []

Corollary. The LNS M(Q,X'| X) is an (extended) BKS over M( Q). The bundle
(Xq)' is the realization MBB for the space M( Q,X'| X). If E is an ideal of M( Q) then
the mapping uw uy is an isometry from the BKS E( (Xq)' ) onto E(X'| X).

4.2. Connection between measurable and continuous vector-functions

The results formulated in this section are consequences of the relations of three types:

(a) between spaces of continuous vector-functions and CBBs (see Section 2.5);
(b) between spaces of measurable vector-functions and MBBs (see Section 4.1);
(c¢) between MBBs and CBBs (see Section 3.3).

The devices listed are applied here, first of all, for establishing connections between various
spaces of measurable and continuous vector-functions in terms of the so-called Stonian
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transform. The section ends with a series of incidentally-obtained facts concerning existence
for liftings of various types in spaces of measurable vector-functions.
As before, Q2 is a nonzero measure space (possessing the direct sum property), p is

a lifting of L*(Q), a form (-| - ) establishes a duality between X and Y such that Y

norms X, which enables us to consider X' as a Banach subspace of Y'. In addition, Q is
the Stonian compactum of the Boolean algebra B(€2) and r is the canonical immersion
of Q2 into Q corresponding to the lifting p. It is well to bear in mind that in this context
meager subsets of Q are nowhere-dense (see 0.6.6).

In the sequel, we assume that C(Q,X ) CC(Q,X| Y) by identifying the functions

VE Cu(Q,X) and exty) y{(v) € Cy Q,X|Y) (see 2.5.4). We recall that M(Q,X ) was
similarly embedded into M( Q,X| Y) in 4.1.5.

4.2.1. Lemma:. The CBB X, is the Stonian transform of the MBB Xq Le, we may
assume that Xq =X,°T.

Proof. The claim follows from 3.3.4, 3.3.5, and 4.1.3.

4.2.2. Theorem. (1) An X-valued function u defined almost everywhere in Q is
measurable if and only if u ~ vet for some element v € C_( Q,X).

(2) For every class u € M( 2, X ), there exists a unigue function = Col O X )
representing u as (u°t) .

(3) The mapping uw~ u is an isometry from the BKS M( ,X) onto C(Q,X)
associated with the isomorphism e€ M( Q)+ ecC »( Q) (see 0.7.5). The inverse isometry
from Co(Q,X) onto M(Q,X) is defined by the rule v~ (v°t) and is associated with
the isomorphism e € C(Q )™ (e°1) € M(Q).

Proof. The claims follow from 3.3.4, 4.1.3, 4.1.4, and 4.2.1. Other proofs of the
isometry of M(Q,X) and C(Q,X) can be found in [11] (Theorem 2.9) and in [ 8]
(Theorem 4.1.15). [

The function v € Co(Q,X) corresponding to a class ue M(Q,X ) by item (2) is
called the Stonian transform of u.

4.2.3. Lemma. Let one of the following pairs of conditions be satisfied: (1)
vECL(Q,X) and a subset Xy, CX is closed under the norm topology or (2)

VECu(Q,X|Y) and a set Xy CX is closed under the Y-weak topology. Then the image of
v is contained in X, if and only if the image of the composition v°t is contained in X,

Proof. 1If the image of v is contained in X, then the set v'l[Xo] IS not dense in

Q and, hence, there is a nonempty clopen in Q subset U C Q\v'l[Xo |]. In this case, the

function v o7 assumes values belonging to X'\ X, almost everywhere in the set r"_l[ U] of

nonzero measure. [ ]
Corollary. Let X, be a closed subset of X. The values u(w) of a function

u€. #(QX) belong to X,y for almost all w € Q if and only if the image of the Stonian

transform of the class u  is contained in X,
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4.24. Denote by Z (Q,X) (by Z4#(RQ,X)) the totality of all the functions
u €. (92 X) for which the image u[A ] of some set A ~ Q is relatively compact under

the norm topology (under the Y-weak topology). Observe that 2 (Q,X)C Z(Q,X)C
Z%(Q,X) and ZH QX' )=2%(QX"). The vector space {u : UEZHQX)}C
L®(Q,X) is denoted by Ly(Q,X); the symbol L(Q,X) stands for its subspace
{u :uez (Q,X)}.

- Corollary. Ler a funcrion u with values in the space X be defined almost everywhere
in

(1) The function u belongs to Z °(Q,X) if and only if u ~ vet for some element
v & C(Q,X) The Stonian transform uw u is an is'omegy from the LNS L(Q,X) onto
C(Q,X ) associated with the isomorphism eEM(Q)» e € C,(Q )

(2) The function u belongs to Z(Q,X) if and only if u ~ vet for some element
vECL (O, X)NC(Q,X|Y) The Stonian transform uw> u is an isometry from the LNS
&,‘i( Q,X) onto Co(Q,X)NC(Q,X|Y) associated with the isomorphism e € M( Q)+~
e € Cyu(Q)

4.2.5. Theorem (F.D.Séentilles). The spaces C(Q,X|X') and C(Q,X) coincide.
Proof. From [11] (Theorems 2.5 and 2.8) the equality Cf,( ULX|X')= C,f;( U,X)

follows for every element U € Clop( Q) such that the inverse image r"'l[ U] has finite
measure. The direct sum property possessed by Q enables us to extend the last equality

onto the entire compactum: Ci( Q,X|X')= C.f:( Q, X ). Now, the assertion of the theorem
follows from the fact that, for every function u € C(Q,X| X' ), there exists a partition

of unity (U, ), ey in the Boolean algebra Clop( Q) such that (U, Ju € Ci( Q,X|X") for
all n € N (see 0.3.2). (O

4.2.6. Corollary. An X-valued function u defined almost everywhere in Q belongs to
Z¥(RQ,X) if and only if u ~ v o1 for some element veE C(Q,X| X' ). The Stonian transform
- u is an isometry from the LNS Ly (Q,X) onto C(Q,X|X') associated with the
isomorphism e EM(Q ) e€C_(Q).

Proof. The claim follows from 4.2.4(2) and 4.25. [

4.2.7. Theorem. (1) An X '-valued function defined almost everywhere in Q2 is X-weakly
measurable if and only if it is X-weakly equivalent to the composition v ° 1t for some element

vEC (Q,X'| X).

(2) For every class u € M(Q,X '| X ), there exists a unique function u € C,(Q,X'| X)
representing u as (u°rt) .

(3) The mapping uwu is an isomewry from the BKS M(Q,X'|X) onto
Co(Q,X'| X) associated with the isomorphism ecEM(Q)»ecC,(Q) The inverse
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isbmeny from C(Q,X'|X) onto M(Q,X'| X) is defined by the rule v (vet) and is
associated with the isomorphism e € C(Q)~ (e°t1) €M(Q).
Proof. Due to 4.1.8, 4.2.1, 3.4.7(2), 3.3.4, and 2.5.10, we have the following chain
of isometries: M(Q,X'| X) =M(Q,(Xq)' ) =Cu(Q(Xp)' ) =Cu(Q,X'| X). O
The function u € C(Q,X’'| X) corresponding to a class u € M(Q, X '| X ) by item

(2) is called the Stonian rransform of u. If the class u belongs to the space M( Q,X ')
then its Stonian transforms in terms of 4.2.2 and in terms of 4.2.7 coincide ( according to

the inclusions M( QX' )CM(Q,X'| X) and C_( Q,X')CC,(IQ,X'lX)), which jus-
tifies the use of the same terms and notations for them.
4.2.8. Since M(Q,X|Y)CM(Q,Y’|Y), the Stonian transform u€C,(Q,Y’|Y)

can also be defined for elements u € M( Q, X| Y ). In particular, if u€ M(Q,X| X ') then

Y= Co(Q,X""|X"). The value E(q)EY' of the Stonian transform of a class
uEM(Q,X|Y) at a point gEdomu can be defined as follows: (y|u(q))=

(uly)*(q), y €Y. In this form, it is presented in the papers [12] and [7] for classes

ueEL(QX|X").
As 1s seen from Theorem 4.2.7, the Stonian transform is an isometric embedding of

the LNS M(Q,X| Y) into the BKS C_(Q,Y’| Y). Note that the image of this embedding
need not coincide neither with C(Q,Y’'| Y) nor with C_(Q,X| Y).

Theorem (F.D.Sentilles [12]). A class ue€ M(Q,X| X ") belongs to M( Q,X) if and
only if u'I[X ""\X']| is a meager ( = nowhere-dense) subset of Q.
Proof. The claim follows from 4.2.2 and 4.2.5. []

4.2.9. We call a function u € .« ( Q,X| Y) compact if its image is relatively compact

in the Y-weak topology. The symbol Z “(Q,X|Y) stands for the totality of all elements
in .#(Q,X|Y) that are Y-weakly equivalent to compact functions. We note that the set

Z°(Q,X'| X) coincides with 2%(Q,X’'| X) and equals the totality of all almost
everywhere defined X '-valued functions u satisfying the condition (u|x)&€ Z*(Q) for

every x € X. Only the inclusion Z “(Q,X| Y)CZ*(Q,X| Y) holds in general. We denote
the vector subspace {u :u€Z(QX|Y)}CL®(Q,X|Y) by L°(Q,X|Y).
Corollary. An X-valued function u defined almost everywhere in Q belongs to
Z (Q,X|Y) if and only if it is Y-weakly equivalent to the composition v ° T for some element
vEC(Q,X|Y). The Stonian transform uw~ u is an isometry from the LNS L°(Q,X|Y)
onto C(Q,X|Y) associated with the isomorphism e M(Q)—»e&€ C_(Q).
Proof. The claim follows from 4.2.7 and 4.2.3. []

4.2.10. Corollary (D.R.Lewis [1]: IIL4). The spaces L°(Q X|X') and Lg.(Q,X)
coincide. In other words, if the image of a weakly measurable function u: Q - X is weakly
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relatively compact, then u is weakly equivalent to a Bochner measurable function v:. Q - X
having weakly relatively compact image as well.

Proof. The claim follows from 4.2.6, 4.2.9, and 4.2.5. [
4.2.11. Given u €u€E€M(Q,X|Y) and y €Y, the function |y)ou is denoted by

(u|y) and the symbol (u|y) stands for the corresponding class (u|y)~. Let L be a
vector subspace of L*(Q,X| Y) and let Z be a Banach subspace of Y’'. We call a mapping
pr: L>2%(Q,Z|Y) aZ| Y-weak lifting of L (associated with p) if it satisfies the following

conditions:
(a) py(u): Q-2 for every u € L;

(b) (pr(u)|y)=p({u|y)) for all u€L and y EY.
If a Z| Y-weak lifting p, additionally satisfies the conditions
(c) f u€u€lL then the functions u and p; (u) coincide almost everywhere;

(d) llleL(u)lll =p(lu] ) for each u €L,
then it is called a Z| Y-sorong lifting of L. Note that every Z| Y-weak lifting p, has the
following properties:

(1) if u€u&L then the functions u and p;(u) are Y-weakly equivalent;

(2) if u, vE€ L then pL(u+v)=pL(u)+pL(v);
(3)ifu€l,e€L™(Q), and en €L, then p;(eu) =p(e)p,(u);
(4) if a function ¢: Q= X is constant and ¢ €L then p;(¢ ) =c.

4.2.12. Theorem. For every lifting p: L*(Q)=>Z*(Q) there exist a unique
X| X '-strong lifting py of the space L“(Q,X) and a unique X| Y-weak lifting px|y of the
space L°(Q,X|Y), both associated with p. Moreover, for each element u € L°(Q,X )

(respecnvely uEL(QX|Y)), the function py{ u) (reapecnvely pPx (1) ) coincides with
u°7t, where u is the Stonian transform of the class u in terms of 4.2.2 (respectively, in terms

of 4.2.8) and t is the canonical immersion of Q into Q corresponding to the lifting p.
Proof. The claim follows from 4.2.4 and 4.29. []

4.2.13. Some consequences of the last theorem are listed below.

Corollary. Suppose that Q is a measure space possessing the direct sum property, X
and Y are Banach spaces, and there is a duality between X and Y such that Y norms X.

(1) The space L°(Q,X) has an X| X '-strong lifting.

(2) The space Ly Q,X) has an X| Y-weak lifting.

(3) The space L*(Q,X"') has an X'| X-weak lifting.

(4) The space L°(Q,X|Y) has an X| Y-weak lifting.

(5) The space L*(Q,X|Y) has a Y'| Y-weak lifting.

(6) The space L™(Q,X'| X) has an X'| X-weak lifting
(7) The space L™(Q,X| X') has an X''| X '-weak lifting.

This list is of illustrative value and the results presented in it are not new. For instance,
assertions (3 ) and (4) can be easily deduced from [3] (Chapter VI, Sections 4-7).
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