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BANACH BUNDLES IN THE THEORY

OF LATTICE-NORMED SPACES. III

APPROXIMATING SETS AND BOUNDED OPERATORS

A.E.Gutman

Abstract

Two questions in the general theory of lattice-normed spaces (LNSs) are consid-
ered. First, the situation is studied when a subset of an LNS is order dense in the
entire LNS; the notion of order approximation is introduced and described from
various points of view. Second, the situation is studied when a linear operator
from one LNS to another is order bounded; several di�erent types of boundedness
are introduced and studied in detail.

Key words and phrases: vector lattice, lattice-normed space, order approximating
set, order bounded linear operator.

Although the present article is the third part of the intended paper on
Banach bundles in the theory of LNSs, bundles are not mentioned here at all.
Actually, this part can be regarded as a separate paper, since the questions
under consideration belong to the theory of LNSs in general. Moreover, the two
sections of this article are not interrelated. In the �rst, we study the situation
when a subset of an LNS is in a sense dense in the entire LNS (we introduce
the notion of order approximation and describe it from various points of view).
In the second section, we study the situation when a linear operator from one
LNS to another is in a sense bounded (we introduce several di�erent types of
boundedness and study them in detail).

The �rst two parts of the intended article were published in [1] and [2] and
we sometimes appeal to the material of these papers without explicit reference.
The author apologizes to the reader for an erroneous announcement of the
third part made in [2] and hopes to begin a study of disjointness-preserving
operators in the fourth part.

Before the basic presentation, we brie
y recall some general information
about bands, order projections, order convergence, and Boolean homomor-
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phisms. Note that we give only the information that was not presented in [1]
or [2].

Let E be a vector lattice. A subset of E having the form F⊥⊥ for some
F ⊂ E is called a band of E. The band F⊥⊥ is said to be generated by F .
A subset F ⊂ E is a band if and only if F⊥⊥ = F . A band F ⊂ E is called
principal if F = {e}⊥⊥ for some e ∈ E.

The image of every order projection is a band. Every order projection is
uniquely determined by its image. There are order projections onto every band
(every principal band) in a K-space (in a Kσ-space). Given an element e ∈ E,

the symbol ⟨e⟩ denotes the order projection onto the principal band {e}⊥⊥

(if such a projection exists). For e, f ∈ E, we de�ne ⟨e < f⟩ := ⟨(f − e)+⟩,
⟨e 6 f⟩ := ⟨f < e⟩⊥, ⟨e > f⟩ := ⟨f < e⟩, and ⟨e > f⟩ := ⟨f > e⟩. (We recall
that the symbols e+ and e− denote the positive part e∨0 and the negative part
(−e) ∨ 0 of an element e ∈ E and (·)⊥ stands for the complement operation
in a Boolean algebra.) It is clear that ⟨e 6 f⟩ = max{π ∈ Pr(E) : πe 6 πf}.

We assume by default that all the LNSs are d-decomposable (see 0.4.1

of [1]). We also assume that the equality {
u: u ∈ U}⊥⊥ = E holds for every

LNS U over E that we consider. It is useful to be aware of the fact that if U
is a Banach{Kantorovich space over a vector lattice E, then E is a K-space
and {

u: u ∈ U} = {e ∈ E : e > 0}.
If U is a (d-decomposable) LNS over E, then there is a natural mapping

that associates with every π ∈ Pr(E) a linear projection πU : U → U (see 0.4.1
of [1]). The set Pr(U) := {πU : π ∈ Pr(E)} endowed with the order

πU 6 ρU ⇔ πU ◦ ρU = πU

is a Boolean algebra with Boolean operations translated from Pr(E) by the
mapping π 7→ πU . More precisely, for all π, ρ ∈ Pr(E), the following relations
hold: πU ∧ ρU = (π ∧ ρ)U = πU ◦ ρU , πU ∨ ρU = (π ∨ ρ)U = πU + ρU − πU ◦ ρU ,
and (πU )

⊥ = (π⊥)U = idU − πU . The mapping π 7→ πU is an isomorphism
between the Boolean algebras Pr(E) and Pr(U); by means of the mapping we
identify the two algebras. Given an element u ∈ U , the projection ⟨

u⟩ is
denoted by ⟨u⟩.

In the sequel, we will deal with various convergences (such as o- and
r-convergences) and related notions (such as o- and r-closures, o- and r-
continuity, etc.). For the sake of convenience and in order to avoid duplication,
we present some general de�nitions now.

Let X be an arbitrary set and let c be some convergence in X. The
totality of the c-limits of all c-convergent in X nets constituted by elements
of some subset X0 ⊂ X is called the c-closure of X0. A set is called c-closed
if it coincides with the c-closure of itself. The set X0 is said to be c-dense
in X if X is the c-closure of X0. Suppose now that X1 and X2 are some
sets with convergences c1 and c2, respectively. A mapping f : X1 → X2
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is called c1-c2-continuous if c1-convergence xα → x implies c2-convergence
f(xα) → f(x) for every net (xα)α∈A in X1 and every element x ∈ X1. If the
convergences c1 and c2 have the same notation c, then any c1-c2-continuous
mapping is called c-continuous.

Considering only countable nets in the above de�nitions results in the no-
tions of countable c-closure, countable c-closedness, countable c-density, and
countable c-continuity. By replacing nets with sequences, we obtain the no-
tions of sequential c-closure, sequential c-closedness, sequential c-density, and
sequential c-continuity.

For the future presentation, we need one more type of closure that is not
generated by o- or r-convergence. If (uξ)ξ∈� is an arbitrary family in an LNS
U and (πξ)ξ∈� is a partition of unity in the Boolean algebra Pr(U), then
the sum o-

∑
ξ∈� πξuξ (if the latter exists) is called the mixing of the family

(uξ)ξ∈� with respect to (πξ)ξ∈�. Let V be a subset of U . The totality of all
mixings of arbitrary (�nite) families in V is called the cyclic hull (the �nitely

cyclic hull) of V and denoted by mixV (by mixfin V). The cyclic hull of the
union V ∪ {0} is called the d-closure of V and denoted by dV . Similarly, the
symbol dfinV is used to denote the �nitely cyclic hull of V ∪ {0}. The set V
is called cyclic (�nitely cyclic) if mixV = V (mixfin V = V). It easy to verify
that the (�nitely) cyclic hull of a set V is the smallest (�nitely) cyclic set that
includes V . Obviously, for a set V to be �nitely cyclic, it is su�cient that it
contain the sums πv + π⊥w for all v, w ∈ V and π ∈ Pr(U).

Ring and Boolean homomorphisms will often arise in our further consid-
eration. We recall the necessary de�nitions.

Let A and B be Boolean algebras. A mapping h : A → B is called a ring

homomorphism if the following equalities hold for all a1, a2 ∈ A:

(a) h(a1 ∨ a2) = h(a1) ∨ h(a2);
(b) h(a1 ∧ a2) = h(a1) ∧ h(a2);
(c) h(a1\a2) = h(a1)\h(a2),

where x\y stands for x ∧ y⊥. We observe that (a) is a consequence of (b)
and (c), as well as (b) is a consequence of (a) and (c). Every ring homomor-
phism h : A → B preserves the order, i.e., a1 6 a2 implies h(a1) 6 h(a2) for
all a1, a2 ∈ A.

A ring homomorphism h : A → B is called a Boolean homomorphism if
h(1) = 1. Obviously, a mapping h : A → B is a Boolean homomorphism
if and only if it satis�es one of the conditions (a) or (b) and, in addition,

h(a⊥) = h(a)⊥ for all a ∈ A. Every ring homomorphism h : A → B is a
Boolean homomorphism into the Boolean algebra Bh(1) = {b ∈ B : b 6 h(1)}.
The image h[A] of the homomorphism h is a Boolean subalgebra of Bh(1).

A mapping h : A → B is called a Boolean isomorphism of A onto B if it
possesses any of the following equivalent properties:
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(1) h is a bijective Boolean homomorphism;

(2) h is a bijection and both h and h−1 are Boolean homomorphisms;

(3) h is a bijection and both h and h−1 preserve the order;
(4) h is a Boolean homomorphism, h[A] = B, and h−1(0) = {0};
(5) h is a Boolean homomorphism, h[A] = B, and h−1(1) = {1}.

Algebras A and B are said to be isomorphic if there exists a Boolean isomor-
phism of A onto B.

We conclude the introduction with some description of Boolean homomor-
phisms. Such a description is especially convenient in studying disjointness-
preserving operators.

Proposition. Let A and B be Boolean algebras. A mapping h : A → B
is a Boolean homomorphism if and only if, for every partition (a1, a2, a3) of

unity in A, the triple
(
h(a1), h(a2), h(a3)

)
is a partition of unity in B.

Proof. Necessity is obvious; thus, we only prove su�ciency. Suppose
that the mapping h preserves triple partitions. By applying this property of
h to the triple (0, 0, 1), we obtain the equality h(0) = 0. By considering

the triple (a, a⊥, 0), we conclude that h(a⊥) = h(a)⊥ for every a ∈ A. It
remains to establish the relation h(a1 ∨ a2) = h(a1) ∨ h(a2). First, we prove
this equality for disjoint a1 and a2. For this purpose, it is su�cient to apply
the partition preservation property of h to the triples

(
a1, a2, (a1 ∨ a2)

⊥) and(
a1∨a2, (a1∨a2)

⊥, 0
)
. Finally, taking arbitrary elements a1, a2 ∈ A and using

the above-established facts, we obtain

h(a1 ∨ a2) = h
(
(a1\a2) ∨ (a1 ∧ a2) ∨ (a2\a1)

)
= h(a1\a2) ∨ h(a1 ∧ a2) ∨ h(a2\a1)

=
(
h(a1\a2) ∨ h(a1 ∧ a2)

)
∨
(
h(a1 ∧ a2) ∨ h(a2\a1)

)
= h(a1) ∨ h(a2) .

1. Order approximating sets

In this section, we develop the results 0.4.5{0.4.9 of [1]. We introduce the
notions of order approximating and h-approximating subsets of an LNS. We
also present equivalent descriptions of the notions in terms of convergences of
various types. The notion of order approximation seems to be useful in the
general theory of LNSs. As for h-approximation, it will play its role in the
future, in studying disjointness-preserving operators.

1.1. Lemma. Let U be an LNS over a K-space E and let V be a �nitely

cyclic subset of U . Then, for every u ∈ U , there exists a net (vα)α∈A in V such

that the net
(u− vα

)
α∈A decreases and {

u− vα
 : α ∈ A} = {

u− v
 :

v ∈ V}. In particular,
u− vα

↘ infv∈V
u− v

.
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Proof. Suppose that a set V ⊂ U meets the hypothesis of the lemma and
�x an arbitrary element u ∈ U . We introduce in V relations of equivalence
and preorder as follows:

v ∼ w ⇔
u− v

=
u− w

,

v 4 w ⇔
u− v

>u− w
.

For any two elements v, w ∈ V we can �nd a projection π ∈ Pr(E) such thatu− (πv + π⊥w)
=

u− v
∧

u− w
. Since V is �nitely cyclic, the latter

means that the set (V ,4) is directed. Therefore, the quotient set A := V/∼
(endowed with the quotient order) is a directed ordered set. Taking an element
vα ∈ α in every coset α ∈ A, we obtain the desired net (vα)α∈A.

1.2. Let V be a subset of an LNS U . We say that V (orderly) approx-

imates an element u ∈ U if infv∈V
u− v

 = 0. We say that V (orderly)
approximates a subset W ⊂ U if V approximates every element of W . A
subset of U is called (order) approximating if it approximates U . Any order
dense ideal of an LNS is an example of an approximating set.

Proposition. Let X, Y , and Z be subsets of an LNS. If X approximates

Y and Y approximates Z, then X approximates Z.

Proof. For an arbitrary element z ∈ Z, denote infx∈X
x− z

by e and
assume to the contrary that e ̸= 0. Since infy∈Y

y − z
 = 0, there is an

element y ∈ Y and an order projection ρ such that ρ
y − z

< ρe/2. Similarly,
in view of the equality infx∈X

x− y
= 0, there is an element x ∈ X and an

order projection π such that π
x− y

< πρe/2. The following contradictory
relations complete the proof:

πρe 6 πρ
x− z

6 πρ
x− y

+ πρ
y − z

< πρe/2 + πρe/2 = πρe.

1.3. Proposition. Let V be a subset and let u be an element of an

LNS. The set V approximates u if and only if u is the o-limit of some net in

mixfin V .
Proof. If V approximates u then inf

{u− w
 : w ∈ mixfin V

}
= 0.

Therefore, in view of 1.1, there exists a net (wα)α∈A in mixfin V such thatu− wα
↘ 0.

Conversely, if u is the o-limit of a net in mixfin V then mixfin V approxi-
mates u. It remains to use Proposition 1.2 on observing that V approximates
mixfin V .

Corollary. If a subset V of an LNS U is �nitely cyclic, then its o-closure
consists of all elements u ∈ U approximated by V .

Corollary. If a subset V of an LNS U is �nitely cyclic, then its o-closure
is o-closed and, hence, is the least o-closed subset of U that includes V .

Proof. The claim follows from the previous corollary and Proposition 1.2.
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1.4. Proposition. The following properties of a subset V of an LNS U
are equivalent:

(1) V is an approximating subset of U ;
(2) for every ideal U0 ⊂ U , the set dfinV ∩ U0 is o-dense in U0;
(3) the set dfinV is o-dense in U ;
(4) dfinV is an approximating subset of U .
Proof. The implications (2) ⇒ (3) ⇒ (4) are obvious. It remains to prove

that (1) ⇒ (2) and (4) ⇒ (1).
(1) ⇒ (2): Suppose that the set V ⊂ U satis�es condition (1), �x an

arbitrary ideal U0 ⊂ U and its element u ∈ U0, denote the set dfinV ∩ U0 by
W , and assign e := infw∈W

u− w
. Obviously, e 6u. According to 1.1,

there exists a net (wα)α∈A in W such that
u− wα

↘ e. It remains to show
that e = 0. If e ̸= 0 then, in view of 1.3, there are w ∈ mixfin V and π ∈ Pr(E)
such that π

u− w
 < πe. The inequalities

πw 6 πw − πu
+

πu 6
e +

u 6 2
u ensure the containment πw ∈ W and, thus, we have the

following contradictory relations: πe 6 π
u− πw

< πe.
(4) ⇒ (1): Denote the set dfinV by W and suppose that it is an approx-

imating subset of U .
Denote infv∈V

vby e and prove that e = 0. If it is not so, then there
is an element u ∈ U that satis�es the inequalities 0 <

u 6 e/2. Since
infw∈W

u− w
= 0, there is an order projection π ̸= 0 and an element w =

π1v1 + · · ·+ πnvn ∈ W (vi ∈ V) such that π0
u− w

< π0
ufor all 0 ̸= π0 6

π. It is clear that πw ̸= 0 and, hence, ρ := πi ∧ π ̸= 0 for some i. Now, the
inequalities ρ

u− vi
< ρ

u6 ρe/2 lead to a contradiction: ρe 6 ρ
vi6

ρ
u− vi

+ ρ
u< ρe/2 + ρe/2 = ρe.

Thus, infv∈V
v= 0, which implies that V approximates V ∪ {0}. How-

ever, it is obvious that the set V ∪ {0} approximates dfinV and the latter
approximates U . It remains to apply Proposition 1.2.

R ema r k . Replacing dfinV by mixfin V in condition (2) of the last propo-
sition can lead to a nonequivalent assertion even if U = E. Indeed, the totality
V of all number sequences convergent to 1 is an approximating subset of the
K-space U of all sequences; however, the set mixfin V coincides with V and
has empty intersection with the order dense ideal U0 ⊂ U of all vanishing
sequences.

1.5. Lemma. If V is an approximating subset of a d-complete LNS U
over E then, for every u ∈ U , e ∈ E, and n ∈ N, there exists an element

w ∈ mixV satisfying the inequality ⟨e⟩
u− w

6 e/n.

Proof. Suppose that U and V meet the hypotheses of the lemma and
consider arbitrary elements u ∈ U , e ∈ E, and n ∈ N. According to 1.4, there
is a net (vα)α∈A in mixfin V o-convergent to u. We may assume that this
net is order bounded. In view of 0.3.2(1) of [1], there is a partition of unity
(πnα)α∈A in the Boolean algebra Pr(E) such that πnα⟨e⟩

vα − u
 6 e/n for



60 A.E.Gutman

all α ∈ A. It is clear that the sum w := o-
∑

α∈A πnαvα is the desired element
of mixV .

1.6. Suppose that an order unity 1 is �xed in the norming K-space of
an LNS. Then the r-convergence with regulator 1 is called the uniform conver-

gence in the LNS. The notions of a uniform dense subset and uniform closure

are introduced in such an LNS similarly.

Proposition. Let V be a subset and let u be an element of an LNS over

a K-space with order unity. The set V approximates u if and only if u is

a uniform limit of some sequence in mixV .
Proof. Necessity is a straightforward consequence of Lemma 1.5; su�-

ciency is established as in the proof of Proposition 1.3.

1.7. Proposition. Let U be a d-complete LNS over a K-space with

order unity. The following properties of a subset V ⊂ U are equivalent:

(1) V is an approximating subset of U ;
(2) for every ideal U0 ⊂ U , the set dV ∩ U0 is uniformly dense in U0;
(3) dV is uniformly dense in U ;
(4) dV is an approximating subset of U .

Proof. Suppose that an LNS U over E meets the hypotheses of the
proposition and 1 is an order unity in E. The implications (2) ⇒ (3) ⇒ (4)
are obvious and the implication (4) ⇒ (1) is established as in the proof of
Proposition 1.4. It remains to show that (1) ⇒ (2).

Suppose that a subset V ⊂ U satis�es condition (1), �x an arbitrary ideal
U0 ⊂ U , and denote the set dV ∩ U0 by W .

Show that W approximates U0. For this purpose, we �x an arbitrary
element u ∈ U0, assign e := infw∈W

u− w
, and establish the equality e = 0.

If e ̸= 0 then, in view of 1.6, there are w ∈ mixV and π ∈ Pr(E) such that
π
u− w

< πe. Obviously, e 6u. The inequalities
πw6πw − πu

+πu6 e +
u6 2

uensure the containment πw ∈ W and, thus, we have
the following contradictory relations: πe 6 π

u− πw
< πe.

Since W approximates U0, in view of 1.5 there exists a sequence (wn)n∈N
in mixW such that ⟨u⟩

u− wn
6 (

u∧ 1)/n for all n ∈ N. It is clear that

the sequence
(
⟨u⟩wn

)
n∈N is constituted by elements of W and r-converges to

u with regulator 1.

R ema r k . Replacing dV by mixV in condition (2) of the last proposition
can lead to a nonequivalent assertion even if U = E. Indeed, the totality V of
all number sequences with every member nonzero is an approximating subset
of the K-space U of all sequences; however, the set mixV coincides with V
and has empty intersection with the order dense ideal U0 ⊂ U of all �nitary
(= terminating) sequences.
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1.8. Proposition. Let V be a subset and let u be an element of an LNS.
The set V approximates u if and only if u is the r-limit of some sequence in

mixV .
Proof. Su�ciency: Suppose that V approximates u. Consider an arbi-

trary element v ∈ V and assign e :=
u∨

v. It is su�cient to �x an n ∈ N
and �nd an element w ∈ mixV that satis�es the inequality

u− w
6 e/n.

According to Lemma 1.5, there exists an element w0 ∈ mixV that satis�es the
inequality ⟨e⟩

u− w0
6 e/n. It is clear that the sum ⟨e⟩w0 + ⟨e⟩⊥v belongs

to mixV , coincides with ⟨e⟩w0, and, thus, is the desired element w.
Necessity is established in the same way as in Proposition 1.3.

1.9. Proposition. Let U be a d-complete LNS. The following properties
of a subset V ⊂ U are equivalent:

(1) V is an approximating subset of U ;
(2) for every ideal U0 ⊂ U , the set dV ∩ U0 is r-dense in U0;
(3) dV is r-dense in U ;
(4) dV is an approximating subset of U .

Proof. The implications (2) ⇒ (3) ⇒ (4) are obvious, the equivalence
(4) ⇔ (1) is established in Proposition 1.7, and the proof of the implication
(1) ⇒ (2) word for word repeats that of the analogous implication in Propo-
sition 1.7, with the only di�erence that 1 is replaced by

u.
R ema r k . Replacing dV by mixV in condition (2) of the last proposition

can lead to a nonequivalent assertion. There is an appropriate example in the
previous remark (see 1.7).

1.10. A net (eα)α∈A in a vector lattice E is said to be asymptotically

bounded if there exists an index �α ∈ A such that the set {eα : α > �α} is order
bounded. Obviously, every o-convergent net is asymptotically bounded.

In the sequel, we will need some modi�cation of Theorem 0.3.2 of [1].

Lemma. Let (eα)α∈A be a net in a K-space E and let e ∈ E.
(1) The net (eα)α∈A o-converges to e if and only if it is asymptotically

bounded and the relation o-limα∈A⟨d⟩
⟨
|eα − e| > d

⟩
= 0 holds in the Boolean

algebra Pr(E) for all positive d ∈ E.

(2) Let D be a set of positive elements in E such that the band D⊥⊥

contains e and all the members of the net (eα)α∈A. If the net (eα)α∈A is

asymptotically bounded and o-limα∈A⟨d⟩
⟨
|eα − e| > d/n

⟩
= 0 for all d ∈ D

and n ∈ N, then o-limα∈A eα = e.

Proof. (1) It is easy to verify the necessity of the criterion formulated,
and its su�ciency follows from (2).

(2) Let an index �α ∈ A be such that the set {eα : α > �α} is bounded.
Assign e0 := infα>�α supβ>α|eβ − e|. If the net (eα)α∈A does not converge to e
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then e0 > 0 and, thus, there are π ∈ Pr(E), d ∈ D, and n ∈ N such that
0 < πd/n < e0. Therefore, for each index α > �α, we have

sup
β>α

⟨d⟩
⟨
|eβ − e| > d/n

⟩
= ⟨d⟩

⟨
sup
β>α

|eβ − e| > d/n
⟩
> π,

which contradicts the convergence of ⟨d⟩
⟨
|eα − e| > d/n

⟩
to zero.

Corollary. Suppose that a K-space E has an order unity 1, (eα)α∈A is

an asymptotically bounded net in E, and e ∈ E. Then o-limα∈A eα = e if and
only if the relation o-limα∈A

⟨
|eα− e| > 1/n

⟩
= 0 holds in the Boolean algebra

Pr(E) for all n ∈ N.
The condition of asymptotic boundedness presented in the above asser-

tions is essential. Indeed, let a net (πα)α∈A of order projections and an element
e ∈ E be such that o-limα∈A πα = 0 and παe ̸= 0 for all α ∈ A. Endow the
Cartesian product A× N with the lexicographic order:

(α,m) < (β, n) ⇔ α < β or (α = β and m < n) .

Then o-lim(α,n)∈A×N⟨d⟩
⟨
|nπαe| > d

⟩
= 0 for all positive d ∈ E; however, the

net (nπαe)(α,n)∈A×N is not asymptotically bounded and, hence, has no order

limit.

1.11. By simplifying the proof of Lemma 1.10, we can obtain the following
assertion.

Lemma. Let (eξ)ξ∈� be a family of positive elements of a K-space E.
(1) The equality infξ∈� eξ = 0 is valid in the K-space E if and only if

the relation infξ∈�⟨d⟩
⟨
eξ > d

⟩
= 0 holds in the Boolean algebra Pr(E) for all

positive d ∈ E.
(2) Let D be a set of positive elements of E such that eξ ∈ D⊥⊥ for

all ξ ∈ �. If infξ∈�⟨d⟩
⟨
eξ > d/n

⟩
= 0 for all d ∈ D and n ∈ N, then

infξ∈� eξ = 0.

Corollary. Suppose that a K-space E has an order unity 1 and (eξ)ξ∈�
is a family of positive elements of E. Then infξ∈� eξ = 0 if and only if the

relation infξ∈�
⟨
eξ > 1/n

⟩
= 0 holds in the Boolean algebra Pr(E) for all

n ∈ N.
1.12. Throughout the section, we assume that E is a K-space, B is a

complete Boolean algebra, and h : Pr(E) → B is a ring homomorphism. Say
that a net (πα)α∈A in Pr(E) h-converges to zero and write h-limα∈A πα = 0
if o-limα∈A πα = 0 in the Boolean algebra Pr(E) and o-limα∈A h(πα) = 0 in

the Boolean algebra B. In case h-limα∈A π⊥α = 0, i.e. if o-limα∈A πα = 1 and
o-limα∈A h(πα) = h(1), we say that the net (πα)α∈A h-converges to unity and
write h-limα∈A πα = 1. We say that a net (eα)α∈A in E h-converges to e ∈ E
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and write h-limα∈A eα = e if the net (eα)α∈A is asymptotically bounded and

h-limα∈A⟨d⟩
⟨
|eα − e| > d

⟩
= 0 for all positive d ∈ E. In this case, we call the

element e the h-limit of the net (eα)α∈A. We say that a net (uα)α∈A in U
h-converges to u ∈ U and write h-limα∈A uα = u if h-limα∈A

uα − u
= 0. In

this case, we call the element u the h-limit of the net (uα)α∈A. The totality of
the h-limits of all h-convergent nets in a subset V ⊂ U is called the h-closure
of V . We call a set h-closed if it coincides with the h-closure of itself. We say
that a set is h-dense in U if its h-closure coincides with U .

If a family (πξ)ξ∈� in Pr(E) is such that infξ∈� πξ = 0 in the Boolean
algebra Pr(E) and infξ∈� h(πξ) = 0 in the Boolean algebra B, then we

write h-infξ∈� πξ = 0. In case h-infξ∈� π
⊥
ξ = 0, i.e. if supξ∈� πξ = 1 and

supξ∈� h(πξ) = h(1), we write h-supξ∈� πξ = 1. For an arbitrary family

(eξ)ξ∈� of positive elements of a K-space E, the notation h-infξ∈� eξ = 0

means that h-infξ∈�⟨d⟩
⟨
eξ > d

⟩
= 0 for all positive d ∈ E.

R ema r k . The criterion of o-convergence formulated in Corollary 1.10
has no analog for h-convergence. The same is true of Corollary 1.11. In-
deed, consider as E the K-space of all number sequences. Let the Boolean
homomorphism h : Pr(E) → {0, 1} be the characteristic function of some
nonprincipal ultra�lter in the Boolean algebra Pr(E). Denote by F the set of
all positive sequences convergent to 1. Obviously, the sequence e = (m)m∈N
is an order unity in E and the relation h-inff∈F

⟨
f > e/n

⟩
= 0 holds for all

n ∈ N. Moreover, indexing each element of F by itself and endowing the in-
dex set with the reverse pointwise order, we obtain a set (f)f∈F that satis�es

the relation h-limf∈F
⟨
f > e/n

⟩
= 0. Nevertheless, h

⟨
f > 1/2

⟩
= 1 for all

f ∈ F .

The following assertion is a straightforward consequence of Lemmas 1.10
and 1.11.

Proposition. (a) For every net (eα)α∈A in E and arbitrary element

e ∈ E, from h-limα∈A eα = e it follows that o-limα∈A eα = e. If the

homomorphism h is o-continuous, then the relations h-limα∈A eα = e and

o-limα∈A eα = e are equivalent.
(b) For every net (eξ)ξ∈� of positive elements of E, from h-infξ∈� eξ = 0

it follows that infξ∈� eξ = 0. If the homomorphism h is o-continuous, then
the relations h-infξ∈� eξ = 0 and infξ∈� eξ = 0 are equivalent.

1.13. Rema r k . In the sequel, while establishing equalities of the form
limα∈A h

(
⟨d⟩⟨eα > d⟩

)
= 0 or infξ∈� h

(
⟨d⟩⟨eξ > d⟩

)
= 0, we often assume that

h⟨d⟩ = 1. This assumption does not restrict generality, since, leaving aside

the trivial case h⟨d⟩ = 0 and replacing B by the Boolean algebra
{
b ∈ B :

b 6 h⟨d⟩
}
, we arrive at the situation h⟨d⟩ = 1.
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1.14. Let V be a subset of an LNS U . We say that V h-approximates

an element u ∈ U if h-infv∈V
u− v

= 0. We say that V h-approximates

a set W ⊂ U if V h-approximates every element of W . A subset of an
LNS U is called h-approximating if it h-approximates U . From Proposi-
tion 1.12 it follows that every h-approximating set is approximating and, in
case the homomorphism h is o-continuous, the notions of approximating and
h-approximating set coincide.

Proposition. Let X, Y , and Z be subsets of an LNS. If X h-approxi-
mates Y and Y h-approximates Z, then X h-approximates Z.

Proof. Consider an arbitrary element z ∈ Z, �x a positive element d
of the norming lattice, and assign b := infx∈X h

(
⟨d⟩⟨

x− z
> d⟩

)
. Due to

1.2, it is su�cient to establish the equality b = 0. For simplicity, we assume
that h⟨d⟩ = 1 (see 1.13). Suppose to the contrary that b ̸= 0. Then, in view
of infy∈Y h⟨

y − z
> d/2⟩ = 0, there is an element y ∈ Y such that b0 :=

b ∧ h⟨
y − z

> d/2⟩ < b. Similarly, in view of the equality infx∈X h⟨
x− y

>
d/2⟩ = 0, there is an element x ∈ X such that (b\b0) ∧ h⟨

x− y
> d/2⟩ <

(b\b0). It is easy to verify that x satis�es the inequality b∧h⟨
x− z

> d⟩ < b,
which contradicts the de�nition of b.

1.15. Proposition. Let V be a subset and let u be an element of an

LNS. The set V h-approximates u if and only if u is the h-limit of some net

in mixfin V .
Proof. Necessity: If V h-approximates u then, in view of 1.1, there exists

a net (wα)α∈A in mixfin V such that the net
(u− wα

)
α∈A decreases and

{
u− wα

 : α ∈ A} = {
u− w

 : w ∈ mixfin V}. It remains to observe that
h-limα∈A

u− wα
= 0.

Su�ciency: If u is the h-limit of a net in mixfin V, then mixfin V h-ap-
proximates u. It remains to observe that V h-approximates mixfin V and to
use Proposition 1.14.

Corollary. If a subset V of an LNS U is �nitely cyclic, then its h-closure
consists of all elements u ∈ U h-approximated by V .

Corollary. If a subset V of an LNS U is �nitely cyclic, then its h-closure
is h-closed and, hence, is the least h-closed subset of U that includes V .

Proof. The claim follows from the previous corollary and Proposition 1.14.

1.16. Proposition. Let V be a subset of an LNS U and satisfy the

relation h-infv∈V
v= 0. Then the following assertions are equivalent:

(1) V is an h-approximating subset of U ;
(2) for every ideal U0 ⊂ U , the set dfinV ∩ U0 is h-dense in U0;
(3) the set dfinV is h-dense in U ;
(4) dfinV is an h-approximating subset of U .
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Proof. The implications (2) ⇒ (3) ⇒ (4) are obvious. It remains to prove
that (1) ⇒ (2) and (4) ⇒ (1).

(1) ⇒ (2): Suppose that a subset V ⊂ U satis�es condition (1). Fix
an arbitrary ideal U0 ⊂ U and denote the set dfinV ∩ U0 by W . Con-
sider an arbitrary element u ∈ U0. According to 1.15, there exists a net
(wα)α∈A in mixfin V that h-converges to u. For each α ∈ A, we assign
πα := ⟨

u− wα
6u⟩. The relationsπαwα
6u+

u− παwα
=

u+ (πα
u− wα

+ π⊥α
u)

6u+ (πα
u+ π⊥α

u) = 2
u

ensure that the net (παwα)α∈A is constituted by elements of W and the rela-
tionsu− παwα

= πα
u− wα

+ π⊥α
u6 πα

u− wα
+ π⊥α

u− wα
=

u− wα


together with h-limα∈A
u− wα

= 0 give h-limα∈A
u− παwα

= 0.
(4) ⇒ (1): From the relation h-infv∈V

v= 0 it follows that V h-approx-
imates V ∪ {0}. On the other hand, the set V ∪ {0} obviously h-approximates
dfinV , the latter in turn h-approximating U . It remains to apply Proposi-
tion 1.14.

1.17. The di�erence between the statements of Propositions 1.4 and 1.16
is essential: the condition h-infv∈V

v= 0 in the latter proposition cannot be
omitted. Indeed, consider the K-space E of all number sequences and assign
U :=

{
u ∈ E : inf

(
Lim|u|\{0}

)
> 0

}
, where Lim|u| is the set of all partial

limits of the sequence |u|. We make U an LNS over E by de�ning
u:= |u| for

all u ∈ U . As in Remark 1.12, let the Boolean homomorphism h : Pr(E) →
{0, 1} be the characteristic function of some nonprincipal ultra�lter in the

Boolean algebra Pr(E). Consider as V the set
{
u ∈ E : inf Lim|u| > 0

}
and

assign d := (1/n)n∈N. It is clear that dfinV = U ; however, h⟨|v| > d⟩ = 1 for
all v ∈ V .

Proposition. Let U be an LNS over E. Suppose that, for every positive

e ∈ E, there is an element u ∈ U satisfying the inequalities e 6u6 2e
(this is true, for instance, in case U is o-complete, see 0.4.3 of [1]). Then

the condition h-infv∈V
v= 0 in the statement of Proposition 1.16 can be

omitted.

Proof. Consider an arbitrary subset V ⊂ U , denote dfinV by W , suppose
that W h-approximates U , and establish the relation h-infv∈V

v= 0. Due
to 1.4

(
we now use the implication (4) ⇒ (1)

)
, it is su�cient to �x an arbi-

trary positive element d ∈ E and to show that infv∈V h
(
⟨d⟩

⟨v> d
⟩)

= 0.

For the sake of simplicity, we assume that h⟨d⟩ = 1 (see 1.13). Denote
infv∈V h⟨

v > d⟩ by b and assume to the contrary that b ̸= 0. Consider
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an arbitrary element u ∈ U satisfying the inequalities d/4 6u6 d/2. In
view of the equality infw∈W h⟨

u− w
> d/5⟩ = 0, there exists an element

w = π1v1 + · · · + πnvn ∈ W (vi ∈ V) such that b ∧ h⟨
u− w

> d/5⟩ < b.
Using the equality

⟨
u− w

> d/5⟩

= π1⟨
u− v1

> d/5⟩ ∨ · · · ∨ πn⟨
u− vn

> d/5⟩ ∨ (π1 ∨ · · · ∨ πn)
⊥⟨d⟩ ,

it is easy to verify that b ∧ h⟨
u− vi

 > d/5⟩ < b for at least one index
i ∈ {1, . . . , n}. Then, applying the relations

⟨
vi> d⟩ 6 ⟨

u− vi
+

u> d⟩ 6 ⟨
u− vi

> d/2⟩ 6 ⟨
u− vi

> d/5⟩ ,

we arrive at the equality b ∧ h⟨
vi> d⟩ < b, which contradicts the de�nition

of b.

1.18. We call a disjoint family (πξ)ξ∈� in the Boolean algebra Pr(E) an
h-partition of unity if h-supξ∈� πξ = 1. If (uξ)ξ∈� is an arbitrary family in an

LNS U over E and (πξ)ξ∈� is an h-partition of unity in Pr(E), then we call
the sum o-

∑
ξ∈� πξuξ (if it exists) the h-mixing of the family (uξ)ξ∈� with

respect to (πξ)ξ∈�. For an arbitrary subset V ⊂ U , the totality of various
h-mixings of all (all countable) families in V is called the h-cyclic hull (the
countably h-cyclic hull) of the set V and denoted by h-mixV (by h-mixσ V ,
respectively). A set V ⊂ U is called h-cyclic if it coincides with the h-cyclic
hull of itself. It is easy to verify that the h-cyclic hull of V is the least h-cyclic
set that includes V.

1.19. Rema r k . We con�ne ourselves to the criteria for h-approximation
given in Propositions 1.15 and 1.16. The author did not succeed in using the
notion of h-cyclic hull to obtain e�cient descriptions for h-approximation
analogous to those presented in 1.6, 1.7, 1.8, and 1.9.

2. Order bounded operators

In this section, we depart from the convention made in 0.4.1 of [1] and
consider not only decomposable LNSs over K-spaces but also arbitrary LNSs
over arbitrary vector lattices. We do it not for the sake of generality but
rather to avoid duplication of formulations both for LNSs and vector lattices.
Indeed, every vector lattice together with the modulus function |·| is an LNS
over itself. Thus, a de�nition or an assertion formulated for LNSs can be
formally extended to the case of vector lattices. Observe that a vector lattice
is o-complete as an LNS (i.e., is a BKS) if and only if it is a K-space.
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2.1. Let U be an LNS over a vector lattice E. A net (uα)α∈A in U
is called asymptotically bounded if the net (

uα)α∈A possesses this property;
i.e., if there exists an index �α ∈ A such that the set {

uα: α > �α} is order
bounded in E.

(a) We say that a subset W ⊂ U is r-annullable (o-annullable, boundable)
if, for every net (wα)α∈A in W and every vanishing number net (εα)α∈A, the
net (εαwα)α∈A is r-convergent to zero (o-convergent to zero, asymptotically
bounded).

(b) We say that a subset W ⊂ U is countably r-annullable (countably
o-annullable, countably boundable) if, for every countable net (wα)α∈A in W
and every vanishing number net (εα)α∈A, the net (εαwα)α∈A is r-convergent
to zero (o-convergent to zero, asymptotically bounded).

(c) We say that a subset W ⊂ U is sequentially r-annullable (sequen-
tially o-annullable, sequentially boundable) if, for every sequence (wn)n∈N in
W and every vanishing number sequence (εn)n∈N, the sequence (εnwn)n∈N is
r-convergent to zero (o-convergent to zero, bounded).

(d) We say that a subset W ⊂ U is semibounded (countably semibounded,
sequentially semibounded) if, for every net (countable net, sequence) (wα)α∈A
in W and every vanishing number net (εα)α∈A, the relation infα∈A

εαwα
= 0

holds in the vector lattice E.

Theorem. Let U be an LNS over a vector lattice E and let W be a

subset of U .
(a) The following assertions are equivalent:

(1) the set W is r-annullable;
(2) the set W is o-annullable;
(3) the set W is boundable;
(4) the set {

w: w ∈ W} is order bounded in E.
(b) The following assertions are equivalent:

(1) the set W is countably r-annullable;
(2) the set W is countably o-annullable;
(3) the set W is countably boundable;
(4) for every countable subset W0 ⊂ W , the set {

w: w ∈ W0} is

order bounded in E.
(c) The following assertions are equivalent:

(1) the set W is sequentially r-annullable;
(2) the set W is sequentially o-annullable;
(3) the set W is sequentially boundable.

(d) The following assertions are equivalent:
(1) the set W is semibounded;
(2) the set W is countably semibounded;
(3) the set W is sequentially semibounded;
(4) infn∈N

wn
/n = 0 for every sequence (wn)n∈N in W .
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Proof. (a) The implications (4) ⇒ (1) ⇒ (2) ⇒ (3) are obvious. We will
show that (3) ⇒ (4). Order the Cartesian product W × N by comparing the
second component: (w1, n1) < (w2, n2) ⇔ n1 < n2. Applying assertion (3)
to the nets (w)(w,n)∈W×N and (1/n)(w,n)∈W×N, we obtain a pair (�w, �n) ∈
W × N and an element e ∈ E such that

w/n6 e for all (w, n) > (�w, �n).

In particular,
w/(�n+ 1)

 6 e for all w ∈ W , which implies that the set

{
w: w ∈ W} is bounded from above by (�n+ 1)e.

(b) This is established in the same way as (a).
(c) The implications (1) ⇒ (2) ⇒ (3) are obvious. We will show that

(3) ⇒ (1). Fix an arbitrary sequence (wn)n∈N in W and a vanishing number

sequence (εn)n∈N. According to (3), the set
{|εn|1/2wn

: n ∈ N
}
has some

upper bound e ∈ E. In order to prove assertion (1), it remains to observe thatεnwn
6 |εn|1/2e for all n ∈ N.
(d) The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. We show

that (4) ⇒ (1). Fix an arbitrary net (wα)α∈A in W and a vanishing num-
ber net (εα)α∈A. For each natural n ∈ N, choose an index α(n) ∈ A so
that εα(n) 6 1/n. Then, using (4), we obtain the relations infα∈A

εαwα
6

infn∈N
εα(n)wα(n)

= 0.

A subset W ⊂ U satisfying the conditions listed in items (a), (b), and (c)
of the last theorem is called bounded, countably bounded, and sequentially

bounded, respectively.

2.2. Obviously, every bounded set is countably bounded, every countably
bounded set is sequentially bounded, and every sequentially bounded set is
semibounded. We observe that the four types of boundedness di�er pairwise
even if U = E. Indeed, in the K-space of all functions e : R → R with
countable supports e−1

[
R\{0}

]
, the set {et : t ∈ R} of the characteristic

functions of all singletons {t} ⊂ R is countably bounded but not bounded.
The set {en : n ∈ N} of the characteristic functions of all singletons {n} ⊂ N
is a sequentially bounded but not a countably bounded subset of the K-space
of vanishing number sequences.

We will give an example of a semibounded but not sequentially bounded
subset in the K-space M

(
[0, 1]

)
of cosets of real-valued Lebesgue-measurable

functions on the interval [0, 1]. For this purpose, we construct a family of

intervals Inm
(
n ∈ N, m ∈ {1, 2, . . . , 2n}

)
as follows:

I11 :=
[
0
2 ,

1
2

]
, I12 :=

[
1
2 ,

2
2

]
;

I21 :=
[
0
4 ,

1
4

]
, I22 :=

[
1
4 ,

2
4

]
, I23 :=

[
2
4 ,

3
4

]
, I24 :=

[
3
4 ,

4
4

]
;

. . .

In1 :=
[
0
2n ,

1
2n

]
, In2 :=

[
1
2n ,

2
2n

]
, . . . , In2n :=

[
2n−1
2n , 2

n

2n

]
;

. . .
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and denote by fnm the coset in M
(
[0, 1]

)
containing the characteristic function

of the interval Inm. Then the set
{
2nfnm : n ∈ N, m ∈ {1, 2, . . . , 2n}

}
is the

desired one.

2.3. Theorem. Let U and V be LNSs over respective vector lattices E
and F and let T be a linear operator from U into V .

(a) The following assertions are equivalent:
(1) the operator T is r-continuous;
(2) the operator T is r-o-continuous;
(3) if r-limα∈A uα = 0 in U then the net (Tuα)α∈A is asymptoti-

cally bounded;
(4) the operator T takes bounded subsets of U into bounded sub-

sets of V ;
(5) for every positive element e ∈ E, the set {

Tu :
u6 e} is

bounded in F .
(b) The following assertions are equivalent:

(1) the operator T is countably r-continuous;
(2) the operator T is countably r-o-continuous;
(3) if r-limα∈A uα = 0 in U and the index set A is countable, then

the net (Tuα)α∈A is asymptotically bounded;
(4) the operator T takes countably bounded subsets of U into

countably bounded subsets of V ;
(5) the operator T takes bounded subsets of U into countably

bounded subsets of V ;
(6) the operator T takes countable bounded subsets of U into

bounded subsets of V .
(c) The following assertions are equivalent:

(1) the operator T is sequentially r-continuous;
(2) the operator T is sequentially r-o-continuous;
(3) if r-limn∈N un = 0 in U then the sequence (Tun)n∈N is bounded;
(4) the operator T takes sequentially bounded subsets of U into

sequentially bounded subsets of V;
(5) the operator T takes bounded subsets of U into sequentially

bounded subsets of V .
(d) The following assertions are equivalent:

(1) if r-limα∈A uα = 0 in U then infα∈A
Tuα= 0;

(2) if r-limα∈A uα = 0 in U and the index set A is countable, then
infα∈A

Tuα= 0;
(3) if r-limn∈N un in U then infn∈N

Tun= 0;
(4) the operator T takes semibounded subsets of U into semi-

bounded subsets of V ;
(5) the operator T takes bounded subsets of U into semibounded

subsets of V .
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Proof. (a) The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are obvious.
Using boundability as a criterion for boundedness (see 2.1(a)), it is easy to
deduce (4) from (3). It remains to show that (5) ⇒ (1). Suppose that the
operator T satis�es condition (5) and, for every positive element e ∈ E, denote
by fe some upper bound of the set {

Tu :
u6 e} in the lattice F . Let

(uα)α∈A be an arbitrary net in U r-convergent to zero with regulator e ∈ E.
Fix an arbitrary number ε > 0 and choose an index �α ∈ A so that

uα6 εe
for all α > �α. Then, for all α > �α, we have:

Tuα= ε
Tuα/ε6 εfe.

(b) The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) ⇒ (6) are ob-
vious. Using countable boundability as a criterion for countable bounded-
ness (see 2.1(b)), it is easy to deduce (4) from (3). It remains to show that
(6) ⇒ (1). Suppose that the operator T satis�es condition (6). Let (uα)α∈A
be an arbitrary countable net in U r-convergent to zero with regulator e ∈ E.
For every natural n, denote by αn an element of A such that

uα6 e/n for
all α > αn. The set U0 := {nuα : n ∈ N, α ∈ A, α > αn} is countable and
bounded; hence, there is an element f ∈ F such that

Tu6 f for all u ∈ U0.
Then

Tuα=
Tnuα/n 6 f/n for all α > αn.

(c) The implications (1) ⇒ (2) ⇒ (3) and (4) ⇒ (5) are obvious. Using
sequential boundability as a criterion for sequential boundedness (see 2.1(c)), it
is easy to deduce (4) from (3). It remains to show that (5) ⇒ (1). Let (un)n∈N
be an arbitrary sequence in U r-convergent to zero with regulator e ∈ E. Then
there exists a vanishing number sequence εn > 0 such that

un6 εne for all
n ∈ N. Boundedness of the set {un/εn : n ∈ N} and condition (5) allow us
to conclude that the set {Tun/εn : n ∈ N} is sequentially r-annullable and,
hence, the sequence (Tun)n∈N r-converges to zero.

(d) The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. We will show
that (4) ⇒ (1). Let (uα)α∈A be an arbitrary net in U r-convergent to zero
with regulator e ∈ E. Then, for every natural n ∈ N, there exists an index
α(n) ∈ A such that

uα(n)6 e/n. Boundedness of the set {nuα(n) : n ∈ N}
and condition (4) allow us to conclude that the set {Tnuα(n) : n ∈ N} is

semibounded, hence (see 2.1(d)),

inf
α∈A

Tuα6 inf
n∈N

Tuα(n)= inf
n∈N

Tnuα(n)/n = 0 .

An operator T : U → V satisfying the conditions listed in items (a),
(b), (c), and (d) of the last theorem is called bounded, countably bounded, se-
quentially bounded, and semibounded, respectively. Obviously, every bounded
operator is countably bounded, every countably bounded operator is sequen-
tially bounded, and every sequentially bounded operator is semibounded. We
will devote a large part of this section to presenting examples which will show
that the four types of boundedness of operators di�er pairwise. Operators
arising in each of the examples below act from Banach spaces into K-spaces.
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2.4. Ex amp l e . There exist a Banach space X, an extended K-space
F , and an operator T : X → F that is countably bounded but not bounded.

We call a sequence (α1, α2, . . . ) of countable ordinals αn �nitary if there
is an index n ∈ N such that αn ̸= 0 and αm = 0 for all m > n. In this
case, the number n is called the dimension of the sequence α and denoted by
dim(α). Denote the set of all �nitary sequences of countable ordinals by A
and endow it with the lexicographic order by de�ning α < β if and only if,
for some n ∈ N, we have α1 = β1, . . . , αn−1 = βn−1, and αn < βn. For all
α, β ∈ A, we denote by ]α, β[ the open interval {γ ∈ A : α < γ < β}.

For every sequence α ∈ A, assign

α + 1 :=
(
α1, . . . , αdim(α)−1, αdim(α) + 1, 0, 0, . . .

)
.

Consider α, β ∈ A. We say that α is a fragment of β and write α @ β if
α = (β1, β2, . . . , βdim(α), 0, 0, . . . ).

Lemma 1. For all α, β ∈ A, the following relations are equivalent:

(1) ]α, α + 1[ ∩ ]β, β + 1[ ̸= ∅;
(2) ]α, α + 1[ ⊂ ]β, β + 1[ or ]α, α + 1[ ⊃ ]β, β + 1[;
(3) α @ β or β @ α.

Proof. If dim(α) = dim(β) then the claim is obvious. For de�niteness,
assume that dim(α) < dim(β). Therefore, if α < (β1, . . . , βdim(α), 0, 0, . . . )

then α + 1 < β, and if α > (β1, . . . , βdim(α), 0, 0, . . . ) then α > β + 1. In

both cases, the intervals ]α, α + 1[ and ]β, β + 1[ are disjoint. The lemma is
proven.

Endow the set A with the order topology, for which
{
]α, β[ : α, β ∈ A

}
is a base of open sets. Denote by Q the Stone compactum of the Boolean

algebra Rop(A) of regular open subsets of A (see 0.2.3 of [1]). Let U 7→ Û
be an isomorphism of Rop(A) onto the Boolean algebra Clop(Q) of clopen
subsets of Q (see 0.2.2 of [1]). Observe that Rop(A) contains all intervals ]α, β[

(α, β ∈ A). For every sequence α ∈ A, assign Qα := ]α, α+ 1[∧ ∈ Clop(Q)
and denote the characteristic function of the subset Qα ⊂ Q by χα. Thus,
χα ∈ C(Q).

Lemma 2. For every nonempty open set U ⊂ A and every n ∈ N, there
is a sequence α ∈ A such that dim(α) > n and ]α, α + 1[ ⊂ U .

Proof. By the de�nition of order topology, the set U includes some interval
]α, β[, α < β. Assign m := min{i ∈ N : αi < βi} and k := max{m,n}. The
sequence (α1, . . . , αk, αk+1 + 1, 0, 0, . . . ) is the desired one.

Lemma 3. For every n ∈ N, the relation sup
{
]α, α + 1[ : α ∈ A,

dim(α) > n} = 1 holds in the Boolean algebra Rop(A).

Proof. The claim follows immediately from Lemma 2.
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Lemma 4. In the K-space C∞(Q) the sum fS := o-
∑

α∈S dim(α)χα

exists for every countable subset S ⊂ A.

Proof. The formula f(q) :=
∑

α∈S dim(α)χα(q) de�nes a function f :

Q → �R. According to 0.3.3(2) of [1], in order to prove the lemma, it is

su�cient to establish that f−1(∞) is a meager subset of Q. Taking account
of Lemma 1, we conclude the following: if a point q ∈ Q satis�es f(q) = ∞,
then there is a chain

α(1) @ α(2) @ · · · @ α(n) @ · · ·
of pairwise di�erent elements in S such that q ∈

∩
n∈NQα(n) . Thus,

f−1(∞) ⊂
∩
n∈N

∪
α∈S(n)

Qα ,

where S(n) = {α ∈ S : dim(α) > n}. Consequently, the lemma will be proven
if we establish that

int
∩
n∈N

cl
∪

α∈S(n)
Qα = ∅ ,

i.e., infn∈N supα∈S(n)Qα = 0 in the Boolean algebra Clop(Q) or, equivalently,

infn∈N supα∈S(n) ]α, α + 1[ = 0 in the Boolean algebra Rop(A).

Assume that the last equality does not hold. Then, according to Lemma 2,
there is a sequence β ∈ A such that the interval ]β, β + 1[ is included in
supα∈S(n) ]α, α + 1[ for every n ∈ N and, in particular, for n = dim(β) + 1.

Denote the set{
γ ∈ S

(
dim(β) + 1

)
: ]β, β + 1[ ∩ ]γ, γ + 1[ ̸= ∅

}
by �. Obviously, ]β, β + 1[ ⊂ supγ∈� ]γ, γ + 1[ and, consequently, for every
sequence α < β + 1, there exists an element γ ∈ � such that γ + 1 >
α. However, Lemma 1 implies that β is a fragment of every element of �;
therefore, for all γ ∈ �, we have

γ + 1 =
(
β1, . . . , βdim(β), γdim(β)+1, . . . , γdim(γ) + 1, 0, 0, . . .

)
6

(
β1, . . . , βdim(β), γdim(β)+1 + 1, 0, 0, . . .

)
6

(
β1, . . . , βdim(β), sup

γ′∈�

(
γ′dim(β)+1 + 1

)
, 0, 0, . . .

)
< β + 1 ,

which easily yields a contradiction.
Let X be the vector space of all bounded functions x : A → R with

countable support {α ∈ A : x(α) ̸= 0}. Obviously, X is a Banach space
with respect to the uniform norm ∥·∥∞ and a K-space with respect to the
pointwise order.
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Lemma 5. For every function x ∈ X , the sum o-
∑

α∈A dim(α)x(α)χα

exists in the K-space C∞(Q).

Proof. Denote by S the support of the function x ∈ X . Applying
Lemma 4, we have ∑

α∈A
dim(α)x+(α)χα(q) 6 ∥x∥∞ fS(q)

at every point q ∈ Q, which implies that the sum o-
∑

α∈A dim(α)x+(α)χα

exists in C∞(Q). Similar arguments for the function x− complete the proof
of the lemma.

We now begin de�ning the spaces X and F and the operator T . The
Banach space X is de�ned as the closure of the subspace of X constituted
by all functions with �nite supports. As the K-space F , we take C∞(Q).
Finally, the operator T : X → F is de�ned by the formula

Tx = o-
∑
α∈A

dim(α)x(α)χα ,

in which the existence of the o-sum is guaranteed by Lemma 5.
The operator T is countably bounded. Indeed, if the norms of all the

elements of a countable subset X0 ⊂ X are bounded from above by a number
λ and S is the union of the supports of all the functions in X0, then, in view of
Lemma 4, we have |Tx| 6 λfS for all x ∈ X0. Thus, the operator T satis�es
condition 2.3(b)(6), i.e., it is countably bounded.

We will show that the operator T is not bounded. For every sequence
α ∈ A, denote the characteristic function of the singleton {α} ⊂ A by xα.
If the set {Tx : x ∈ X, ∥x∥∞ 6 1} had an upper bound in the K-space F ,
then, according to Lemma 3, for every n ∈ N we should have

sup{Tx : x ∈ X, ∥x∥∞ 6 1} > sup{Txα : α ∈ A, dim(α) > n}
> sup{nχα : α ∈ A, dim(α) > n}
= n1F ,

where 1F is the identical unity. Thus, the operator T does not satisfy condition
2.3(a)(5), i.e., it is not bounded.

2.5. Ex amp l e . There exist a Banach space X, a K-space F , and an
operator T : X → F that is sequentially bounded but not countably bounded.

Proof. Endowing the vector space c0 of vanishing number sequences with
the uniform norm ∥·∥, we obtain a Banach space to be denoted by X. On
the other hand, endowing the space c0 with pointwise order, we obtain a K-
space which we denote by F . Consider the identity mapping T : c0 → c0
as an operator from X into F . For every natural n ∈ N, denote by en the
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characteristic function of the subset {n} ⊂ N. The operator T is not countably
bounded, since it takes a bounded countable subset {en : n ∈ N} of the Banach
space X into an unbounded subset of the K-space F (see 2.3(b)(6)).

We will show that the operator T is sequentially bounded by using the
criterion 2.3(c)(3). Consider an arbitrary sequence (xn)n∈N in X convergent
in norm to zero and de�ne a sequence x by the formula x(m) = supn∈N|xn(m)|
(m ∈ N). It is su�cient to show that x(m) → 0 as m → ∞. Fix an arbitrary
number ε > 0. Let a number �n ∈ N be such that ∥xn∥ 6 ε for all n > �n and

let �m ∈ N be such that
(
|x1| ∨ |x2| ∨ · · · ∨ |x�n|

)
(m) 6 ε for all m > �m. Then

x(m) 6 ε for all m > �m.

2.6. Ex amp l e . There exist a Banach spaceX, an extendedK-space F ,
and an operator T : X → F that is semibounded but not sequentially
bounded.

Proof. Denote by � the set of all �nite sequences of unities and zeroes:
� :=

{(
δ(1), . . . , δ(n)

)
: n ∈ N, δ(i) ∈ {0, 1}

}
. Enumerate the elements of

the set �, listing �rst all the sequences of length 1, then of length 2, etc.:

δ1 := (0), δ2 := (1);

δ3 := (0, 0), δ4 := (0, 1), δ5 := (1, 0), δ6 := (1, 1);

. . .

δ2n−1 := (0, 0, . . . , 0), δ2n := (0, 0, . . . , 1), . . . , δ2n+1−2 := (1, 1, . . . , 1);

. . .

For every element δ =
(
δ(1), . . . , δ(n)

)
∈ �, denote by Iδ the following interval

of the real line:[δ(1)
21

+
δ(2)

22
+ · · ·+ δ(n)

2n
,
δ(1)

21
+

δ(2)

22
+ · · ·+ δ(n)

2n
+

1

2n

]
.

By way of explication, we observe that

Iδ1 = I11 , Iδ2 = I12 ;

Iδ3 = I21 , Iδ4 = I22 , Iδ5 = I23 , Iδ6 = I24 ;

. . . ,

where Inm are the intervals considered in 2.2.

Denote by X the Banach space ℓ1(�) of summable functions x : � → R
with the norm ∥x∥ =

∑
δ∈�|x(δ)| and de�ne F to be the K-space M

(
[0, 1]

)
of cosets of real-valued Lebesgue-measurable functions on the interval [0, 1].
For every element δ ∈ �, denote by fδ the characteristic function of the
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interval Iδ and by fδ the coset in M
(
[0, 1]

)
that contains the function fδ.

De�ne the operator T : X → F by the formula

Tx = o-
∑
δ∈�

2dim δx(δ) fδ ,

where dim δ is the length of a sequence δ. The last o-sum exists, since the
corresponding pointwise sum

∑
δ∈� 2dim δx(δ)fδ is, obviously, measurable and

the integral of its modulus is equal to∑
δ∈�

2dim δ|x(δ)|µ(Iδ) =
∑
δ∈�

|x(δ)| = ∥x∥

and, hence, is �nite. Thus,
∫
|Tx| = ∥x∥, which immediately implies semi-

boundedness of the operator T .
We will show that the operator T constructed is not sequentially bounded.

For every element δ ∈ �, denote by eδ the characteristic function of the
singleton {δ} ⊂ �. Then the sequence

(
2−dim δn eδn

)
n∈N converges in norm

to zero; however, its image
(
fδn

)
n∈N with respect to the operator T does not

r-converge to zero.
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