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BANACH BUNDLES IN THE THEORY
OF LATTICE-NORMED SPACES. IV

DISJOINTNESS PRESERVING OPERATORS

A. E. Gutman

Abstract

In the present article, we study disjointness preserving operators that act in
K-spaces and lattice-normed spaces. In particular, we find their analytic represen-
tations and decompositions into simpler components. We study orthomorphisms,
shift operators, weighted shift operators, and arbitrary disjointness preserving
operators.
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This is the fourth part of the article the author intended as a paper on
Banach bundles in the theory of lattice-normed spaces (LNSs). The first three
parts were published in [12-14] and we sometimes appeal to the material of
these papers without explicit reference.

Disjointness preserving operators have its own theory rich in results and
treating such questions as boundedness, continuity, spectral and geometric
properties, multiplicativity, compactness, etc. The list of publications de-
voted to disjointness preserving operators is so extensive that it could serve
as a reason for a separate review. Leaving aside many rather interesting di-
rections, we will only concentrate our attention on analytic representation
and decomposition of disjointness preserving operators. B.Z. Vulikh [29-31]
was one of the first who considered these questions. Later, disjointness pre-
serving operators were studied by Y. A. Abramovich, E. .. Arenson, D. R. Hart,
A. K. Kitover, A.V.Koldunov, P. T. N. MacPolin, A.I. Veksler, A.W. Wickstead,
A.C.Zaanen, and many others (see, for instance, [1,2,5,6,16,22,33,34]).
We also observe that the question of analytic representation of disjointness
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preserving operators includes such an extensive direction as descriptions of
isometries of vector-valued LP-spaces (so-called Banach-Stone theorems).

In the present article, we study disjointness preserving operators that act
in K-spaces and lattice-normed spaces. In particular, we find their analytic
representations and decompositions into simpler components. We begin with
studying general properties of disjointness preserving operators; then we con-
sider orthomorphisms, shift operators, weighted shift operators, and, finally,
return to arbitrary operators and apply the accumulated experience.

0. Prerequisites

In this section, we present some preliminary information. Note that we
give only those facts and definitions that were not presented in the previous
three parts of the paper.

0.1. Proposition. Let A and B be Boolean algebras.

(a) The following properties of a Boolean homomorphism h: A — B are
equivalent:
(1) h is o-continuous;
(2) if a subset C' C A has a supremum then h(sup C') = sup h[C];
(3) if a subset C' C A has an infimum then h(inf C') = inf h[C];
(4) if (ax)rep is a net in A and ay T 1 then supyep h(ay) = 1;
(5) if (ax)ren is a net in A and ay | 0 then infyecp h(ay) = 0.
(b) The following properties of a Boolean homomorphism h: A — B are
equivalent:
(1) h is countably o-continuous;
(2) if a countable subset C' C A has a supremum then h(sup C) =
sup h[C];
(3) if a countable subset C' C A has an infimum then h(inf C') =
inf h[C;
(4) if (an)nen Is a sequence in A and a,, T 1 then sup, ey h(ay,) = 1;
(5) if (an)nen Is a sequence in A and ay, | 0 then inf, ey h(ay) = 0.

If the Boolean algebra A is complete (o-complete) then each of the five con-
ditions (a) (respectively, (b)) is equivalent to the following one: sup h[D] = 1
for every (countable) partition D of unity in A.

In view of the equivalence of conditions (a)(1)-(a)(3), o-continuous ho-
momorphisms are often called full or complete. Observe that the implication
(b)(5)=-(b)(1) implies equivalence of countable and sequential o-continuity of
a Boolean homomorphism.
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0.2. Let A and B be Boolean algebras. We say that a ring homomor-
phism h: A — B dominates a function hg: A — B (and write hg < h),
if ho(a) < h(a) for all a € A.

Proposition. Let A and B be Boolean algebras. A ring homomorphism
h: A — B dominates a ring homomorphism hy: A — B if and only if ho(a) =
ho(1) A h(a) for all a € A.

< The equality ho(a) = ho(1) A h(a) readily ensues from the following
relations:

ho(
ho( ) o(l)Ah(aL%
ho(a) V ho(at) = ho(1). >

0.3. Let f be an arbitrary positive element of a vector lattice . We say
that an s € E is an f-step element, if s =Y __; \im; f for some A1,..., A\, € R
and 7q,...,m, € Pr(E).

Proposition. Suppose that a vector lattice E' possesses the principal
projection property (for instance, E is a K,-space). Let E; be the ideal of E
generated by a positive element f € E. Then, for every element e € Ey and
every number € > 0, there is an f-step element s € Ey such that |s| < |e| and
le — s| <ef. In particular, the set of all f-step elements is r-dense in Ey.

< Assume all the hypotheses of the proposition to be satisfied and con-

sider an arbitrary element e € £y and a number € > 0. Let numbers m,n € N
be such that |e] < mf and 1/n < e. Then the sum

—1 . . . mn . . .
S %<Z;1f<e<%f>f+Z%<%f<e<Z;:1f>f

i=—mn
is a desired f-step element. >

0.4. Let U be an arbitrary, not necessarily d-decomposable LNS over
an arbitrary vector lattice E. Suppose that a d-decomposable LNS U over E
contains U as a subspace with the induced norm. We say that the LNS I/ is
a d-decomposable hull of U, if dgn!d = U, i.e., U is a minimal d-decomposable
LNS that contains U as a subspace with the induced norm.
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Proposition. Suppose that a vector lattice E' possesses the principal
projection property. Then every (not necessarily d-decomposable) LNS over E
has a d-decomposable hull which is unique to within an isometry.

< In order to construct a d-decomposable hull of an LNS U/ over F, we
employ the schema of formal mixing which is traditionally used in similar
situations (cf. [20,27,28]). Denote by U the totality of all finite families
((m, ui))z‘el of elements in Pr(E) x U such that (m;);er is a partition of unity

in the Boolean algebra Pr(E). Introduce in U the equivalence relation by
letting ((m,ui))iel ~ ((pj, Uj))jej if and only if mipj|u; — v;| = 0 for alli € I

and j € J. Define U to be the quotient set Zj{/w and agree to denote the coset
of a family ((m, ui))ig by > ;cr miui. By identifying the elements v € U with

“monomials” 1u € U, we assume that & C U. It is easy to become convinced
that U is an LNS over ' under the operations

Zmui—l—ijvj = Z mipj(u; + vj),

el jedJ iel,jed
A E iU 1= E 7ri)\ui,
el 1l
> miug| =Y milugl
i€l el

and is a d-decomposable hull of 4. Uniqueness of a d-decomposable hull is
obvious. >

0.5. Let E be a universally complete K-space and let (E¢)¢cz be a family
of pairwise disjoint ideals of E. The symbol @565 E¢ denotes the ideal of
the K-space E constituted by all elements e € E that satisfy the relation
(E¢)e € E¢ for each £ € Z. Obviously,

PE:= {OZ ec : (e¢)ees € HEf}

£eE (eE e

Suppose that, for every £ € Z, we are given an LNS U over Eg¢. It is not
difficult to become convinced that the vector space nga Ug is an LNS over
D¢z Ee with respect to the norm | (ug)eez| = 0 ¢ez |ug|- This LNS is
denoted by @geE Ue and called the disjoint sum of the family of LNSs (U )¢c=.
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0.6. Let E and F' be K-spaces and let &/ be an LNS over E. Suppose
that a function S: E — F satisfies the following conditions:

(a) S(e; +eg) < Sey + Sey for all positive eq, e € E;
(b) S(Xe) = ASe for all positive e € E and A € R;
(c) if 0 < ep < ey then Sep < Sey.

Consider the vector subspace Uy := {u € U : S|u] = 0} and agree to denote
by Syu the coset in U /Uy containing an u € U. Tt is easy to become convinced
that the space U /Uy is an LNS over F' with respect to the norm | Syu| := S|ul.
Observe that the LNS U /Uy need not be d-decomposable (for instance, in case
U=F=F=R?and S(z,y) = (z,z)). Slightly abusing the language, we
call a d-decomposable hull of the LNS U /Uy the norm transformation of U by
means of S and denote it by SU. The linear operator Sy : U — SU is called
the operator of norm transformation of U by means of S.

0.7. As is known, every universally complete K-space E can be endowed
with multiplication so that E becomes a commutative ordered algebra. If we
additionally fix an order unity in E and require it to be a multiplication unity
then the way of introducing multiplication in E becomes unique. Furthermore,
for every f € E, there exists a unique element g € E such that fg = (f)1,
where 1 € F' is the multiplication unity. We denote such an element g by 1/f.
The product e(1/f) is denoted by e/ f for brevity.

As is known, every Banach—Kantorovich space (BKS) U over a univer-
sally complete K-space E with a fixed order unity 1 can be endowed with
the structure of a module over £ so that

lgu=u, |eu|l=lellul (e€ E, uell).

Below (see 2.8) we will see that the relation |eu| = |e|]u]| uniquely determines
the structure of a module in U.

Let U be an arbitrary BKS over an order-dense ideal I of a universally
complete K-space £ with a fixed order unity. Given arbitrary e € £ and u € U,
we say that the product eu is defined in U (and write eu € U), if the product eu
calculated in the universal completion of U belongs to U. Obviously, the latter
is true if and only if |e||u] € E.

0.8. The module structure of a BKS is often used for finding elements
that satisfy certain conditions imposed on their norm. Here is one of typical
examples.
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Lemma. Let U be a BKS over E. For allu € U and e € E™T, there exists
an element u, € U such that |u.| = e and |u — ue| = ||u] — e|.

< Fix an order unity 1 in the universal completion E of the K-space F,
endow E with the corresponding multiplication and introduce in the universal
completion U of U the structure of a module over E. Let @ be an element
of U such that |u] = 1 and v = |u|a. Obviously, u. := e is the desired
element. >

0.9. Let X and Y be continuous Banach bundles (CBBs) over a topo-
logical space (). A homomorphism i € Homg(&X,)) is called an isometric
embedding of X into Y if, for each g € @, the operator i(q) is an isometric em-
bedding of X(q) into Y(q). If, in addition, all the operators i(q) are surjective
then the embedding 7 is called an isometry of X onto ).

The following assertion ensues immediately from definitions: if ¢ is an iso-
metric embedding of X into ) then there exists a (unique) subbundle )y in Y
such that 1 is an isometry of X onto ).

0.10. Let @ be a nonempty extremally disconnected compact space, let X
be a CBB over @, and let F be an ideal of C(Q). If Y C E(X) then the set
clU,cy supp u is called the support of U and denoted by suppl. Obviously,
(suppU) = (U), i.e., the operator u — ext (Xsuppuu) is the order projection
onto the band generated by . In particular, (suppu) = (u) for every section
u € E(X).

0.11. Let & and V be LNSs over respective vector lattices £ and F.
A positive operator S: E — F' is said to be a dominant of an operator
T:U — Vif |[Tu] < S|u| for all u € U. An operator possessing a dominant
is called dominated. The totality of all dominated operators from U into V is
denoted by M (U, V). Obviously, M (U, V) is a vector subspace of the space of
all linear operators from U into V.

Proposition. Let E' and F' be vector lattices and let U and V be LNSs.

(1) An operator T: E — F' is regular if and only if it is dominated.

(2) If an operator T': U — V is dominated then it is bounded.

(3) If F' is a K-space and an operator T: E — F is bounded then it is
dominated (= regular).

< Assertions (1) and (2) are obvious. A proof of (3) is presented in
[17: VII.1.27; 32: Theorem VII1.2.2]. >
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Remark. A bounded operator need not be dominated. Indeed, by en-
dowing the vector space £*° of bounded numeric sequences with coordinatewise
order, we obtain a K-space (hence, a BKS) which is denoted by #. On the
other hand, by endowing ¢*° with the uniform norm, we obtain a Banach space
(hence, a BKS) which is denoted by V. Then the identity mapping of £> onto
itself, as an operator from U/ into V), is bounded but not dominated.

0.12. Theorem [20]. Let U be an LNS over E and let V be an LNS
over F'.

(1) Every dominated operator T: U — V possesses a least dominant
(Wit;h respect to the order of the vector lattice M (E, F') of regular operators),
denoted by |T'| and called the exact dominant of T.

(2) If V is a BKS then the mapping |-|: T — |T| is a decomposable
M(E, F)-valued norm on M (U,V) under which M (U,V) is a BKS.

0.13. Theorem [20]. Consider a BKS U over E, an LNS V over F, and
a linear operator T': U — V. For each positive element e € F, assign

T<(e) ={|Turl+ -+ |Tunp| : w; €U, |ur]l+ -+ |un| < e},

~

T=(e) = {1Twil+ - +1Tunl s wi €U, |url+ -+ lun| = e},
T (e) :={|Turl+ -+ |Tun| : uv; €U are pairwise disjoint,

lui] + - -+ |unl < e}

The operator T' is dominated if and only if, for every positive element e € E,
one (hence, each) of the sets T(e), T—(e), or T (e) is bounded. In this case,
|T|e =supT<(e) =supT=(e) =sup T (e) for all e > 0.

1. The shadow of an operator

Our main tool for studying disjointness preserving operators is the so-
called shadow, a ring homomorphism in Boolean algebras which is generated
by the action of the operator on bands. Many properties of an operator are
expressible in terms of its shadow. In particular, this is true of certain questions
of continuity.

1.1. Let & and V be LNSs. An operator T: U — V is said to be disjoint-
ness preserving whenever uy L uo implies Tu; L Tug for all uy,us € U. It is
not difficult to become convinced that every disjointness preserving positive
operator in K-spaces is a lattice homomorphism. The following assertion shows
that all disjointness preserving operators, not only positive, are closely related
to lattice homomorphisms.
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Theorem. Let E be a vector lattice, let F' be a K-space, and let
T: E — F be a regular disjointness preserving operator. Put p := (TT[E™]).

Then the operators poT and —poT are lattice homomorphisms. In particular,
T=(p—p)IT].

< The claim follows directly from [4: Theorem 3.3]. >

In the sequel, we repeatedly use the last theorem in order to reduce con-
sideration of an arbitrary regular disjointness preserving operator to the case
of a positive operator.

1.2. The shadow of a linear opera-
tor T: U — V is defined to be the map-
ping h: Pr(U) — Pr(V) acting by the rule
h(m) = sup,ey(T'mu). In other words,
h(m) = (T[rU]).

Proposition. A linear operator in
LNSs is disjointness preserving if and only
if its shadow is a ring homomorphism.

< Only necessity requires proving. Consider a disjointness preserving
linear operator 7': Y — V in LNSs U and V. Without loss of generality, we
may assume that (im 7)™ = V. Prove that the shadow h: Pr(i{) — Pr(V)
of T" is a Boolean homomorphism. To this end, use the proposition stated

in [14] (see the introduction therein). Let (71,792, 73) be a partition of unity
in the algebra Pr(i). Then

h(m1) A h(mg) = sup (T'mu1) A sup (T'maug) = sup (T'muy) A (Tmauz) =0,
u €U us €U uy,us €U

i.e., h(my) L h(mg). The relations h(m;) L h(ms) and h(mg) L h(m3) can be
established similarly. Moreover,

h(m) V h(mg) V h(mg) =  sup (Tmu) V (T'mug) V (T'w3us)

uq,ug,uz €U

= sup (T(miug + mus + m3ug)) = sup(Tu) = 1,
u13u27u3€u ueld

whence it follows that (h(m1), h(ma), h(ms)) is a partition of unity in the algebra
Pr(V). >
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1.3. Proposition. Consider LNSs U and V, a linear operatorT": U — V
and a ring homomorphism h: Pr(U) — Pr(V). The following assertions are
equivalent:

(1) h dominates the shadow of T (see 0.2);

(2) (Tw) < h{u) for all u € U;

(3) Tmu= h(m)Tu for all w € U and 7 € Pr(U).

If, in addition, h(1) = (imT') then each of conditions (1)—(3) is equivalent to
coincidence of the shadow of T" with h.

< The implications (3)=(1)=>(2) are obvious. Assume (2) to be satis-
fied and prove (3). Fix arbitrary elements v € U and m € Pr(i). From (2) it
follows that Tmu and Tru are disjoint. Consequently, there exist a projec-
tion p € Pr(V) such that Tmu = pTw and Tntu = p-Tu. In order to ensure
the equality pTu = h(m)Tu, it is sufficient to show that p(Tu) = h(7)(Tu).
The relations p(Tu) = (T'mu) < h(m) imply the inequality p(Tu) < h(n)(Tu).
One can establish similarly that p(Tu) < h(7)(Tu). The two last inequali-
ties directly imply the equality p(Tu) = h(m)(Tu).

According to Proposition 0.2, condition (1) and the equality ~(1) = (im T’
imply that the shadow of T" coincides with h. >

1.4. Proposition. Let T' be a dominated operator acting from a BKS
into an LNS. Then the shadows of T' and |T'| coincide.

< Let an operator T acts from a BKS U over E into an LNS V over F.
Denote the shadow of T" by hr and the shadow of |T'| by Iy Of course,
coincidence of the functions hy: Pr(d) — Pr(V) and hp: Pr(E) — Pr(F) is
understood with the identifications Pr(i) = Pr(E) and Pr(V) = Pr(F) taken
into account (see the introduction in [14]). For every m € Pr(FE), the inequality
hr(m) < Iyry(w) is obvious. To prove the reverse inequality, it is sufficient to
observe, that the conditions

ec B, mePr(E), up,....,up €U, |ur]l+- -+ |un| < me
imply
(ITurl + -+ 1Tunl) = (I Tmur| + - + [ T7unl)
= (T'muy) V-V (Tmuy)
< hT(ﬂ'),
and to use the formula |T'|re = sup T<(me) (see 0.13). >

Corollary. A dominated operatorT" from a BKS into an LNS is disjoint-
ness preserving if and only if its exact dominant |T'| is disjointness preserving.
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1.5. Let U and V be LNSs and let h: Pr(i) — Pr(V) be a ring homomor-
phism. Following general rules, we say that the mapping T': Y — V is h-o0-con-
tinuous whenever h—lin’/i uq = u (see [14: 1.12]) implies o- lir% Tuq = Tu for

ae ac

every net (uq)aca in U and every u € U.

Theorem. Let FE and F' be K-spaces. FEvery disjointness preserving
operator T': EE — F' is h-o-continuous, where h is the shadow of T'.

< Since the shadow of |T'| coincides with the shadow of T" (see Proposi-
tion 1.4), we may assume that the operator 7" is positive. To prove h-o-conti-
nuity of T, it is sufficient to consider a net (€q)qea in F, which is h-convergent

to zero, and to show that o- linji Tes = 0. Asymptotic boundedness of the net
(¢S

(Tea)aca follows from that of (eq)qaeca and from boundedness of T. According

to Lemma [14: 1.10] (2), o-convergence of Te, to zero will be established if we

prove that o- ling(Te)(Tea > Te/n) = 0 for all e € E and n € N. The latter
ac

relation can be obtained as follows:

(Te)(Teq > Te/n) = (Te){(T(ea — e/n))+> = (Te){T((ea —€e/n)*))
< h({(e))h({(ea —e/n)T)) = h({e)(ea > e/n)) > 0. >

Corollary. Every disjointness preserving dominated operator from a BKS
into an LNS is h-o-continuous, where h is its shadow.

< The claim follows from Proposition 1.4 and the last theorem. >

Remark. It is sometimes useful to take the following fact into account
(the fact follows directly from the last assertion): if U is a BKS, V is an LNS,
and a ring homomorphism h: Pr(i) — Pr(V) dominates the shadow of an op-
erator T': U — V, then the latter is h-o-continuous.

1.6. Corollary. The following properties of a disjointness preserving
dominated operator T' from a BKS into an LNS are equivalent:

(1) T is (sequentially) o-continuous;
(2) |T] is (sequentially) o-continuous;
(3) the shadow of T is (sequentially) o-continuous.

Countable and sequential o-continuity of the operator T' are equivalent.

< Tt is sufficient to combine 1.4, 0.1, [14: 1.12], and 1.5. ©>
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1.7. Corollary. Consider a BKS U and an LNS V and assume that
the shadows of two dominated operators S,T:U — YV are dominated by
the same ring homomorphism h: Pr(Ud) — Pr(V). If S and T coincide on
some h-approximating subset of U (see [14: 1.14]) then they coincide on the en-
tire U.

< The claim follows from Remark 1.5 and Propositions [14: 1.16, 1.17]. >

1.8. Proposition. Let U be an LNS over E, let V be a vector subspace
of F, let Uy let U, Ty: Uy — V be a linear operator, let S: E — F' be a disjoint-
ness preserving positive operator, and let h: Pr(E) — Pr(F') be the shadow
of S. Denote by hidy the LNS of all elements of U that are h-approximated
by Uy (see [14: 1.14, 1.15]). Assume that |Toug] < Slugpl (respective]y,
|Toug| = S|u0|) for all ug € Uy. Then there exists a unique linear exten-
sion T': hidy — V of the operator Ty such that |Tu] < S|ul (respectively,
|Tul| = S|u|) for all u € hidy.

< First, we prove the assertion about extension preserving the inequal-
ity. If 7 € Pr(U) and uy € Up are such that muy = 0, then h(m)Thug = 0,
since

h(m) Touo| < h(m)Slug| = Smlug| = 0.

This fact implies that the following definition of an operator T is sound:
n n

Ty (Z Wiuz‘) = Z h(m;)Tou; (m € Pr(U) are pairwise disjoint, u; € Ug),
i=1 i=1

which extends Ty onto dg,Uy and satisfies the inequality |Tgu| < S|u] for all
u € dgalp. In view of Proposition [14: 1.15], for every u € hldy, there exists
a net (uq)aca in dgyUy that is h-convergent to u. From the inequality

|Tgua —Tou5| < Slua — u5|

and h-o-continuity of S (see 1.5) it follows that the net (Tguq)aca is o-fun-
damental. Since the LNS V), is o-complete, it contains an o-limit of the net.
Obviously, the limit depends only on u and, therefore, can be denoted by Tu.
It is not difficult to become convinced that the operator T": hidy — V thus ob-
tained is the desired one. Uniqueness of the extension constructed is ensured
by its h-o-continuity inherited from S.

Assume now that |Toug| = Slug]| for all ug € Up. In view of what was
proven above, there exists an extension T': hidy — V of the operator Ty such
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that |Tu| < Slu| for all u € hlhy. For every ug € Uy and 7 € Pr(U),
the relations

Sluol = 1Tugl = 1 Truo| + |Trtuo| < Slwuol + S|tug| = Sluo

and the inequalities |T'mug| < S|mug| and |T7rLu0| < Sleu()l imply
|Trugl = Slmugl. Since ug € Uy and © € Pr(U) were chosen arbitrarily,
we have |Tu| = S|u| for all u € dg,lhy. The equality |Tu| = S|u| for all
u € hldy is now deduced from what was proven with the help of Proposi-
tion [14: 1.16]. >

Corollary. Let U be an LNS over F, let V be a BKS over F, let Uy
be an approximating vector subspace of U, let Ty: Uy — V be a linear op-
erator, and let S: E — I be a disjointness preserving o-continuous positive
operator. Assume that |Tyug| < S|ugl (respectjvely, | Toug| = S|u0|) for all
uy € Uy. Then there exists a unique linear extension T: U — V of Ty such
that |Tu| < S|ul (respectively, |Tu]| = S|u|) for all u € U.

1.9. If D is a subset of a K-space E then |D| denotes the set {|d| : d € D},
and lin|D| stands for the linear span of |D|. The smallest ideal of E that
contains D is conventionally denoted by Ep.

Lemma. Let E be a K-space, let D be a subset of F, let V and VV be
arbitrary LNSs over the same K-space F', and let S: E — Y and T: E — W
be dominated operators. Assume that the shadows of S and T' are dominated
by the same ring homomorphism h: Pr(E) — Pr(F') and denote the h-closure
of the ideal Ep by hEp.

(1) If V =W and the operators S and T coincide on D, then they coincide
on hED.

(2) If | Se| = |Te| for all e € lin|D| then |Se| = |Te| for all e € hEp.

< We only prove assertion (1), since (2) can be proven similarly and
even easier. Assume that the operators S and 7" meet all the hypotheses of
the lemma and coincide on D. We will prove that S and 1" agree on hEp in
several steps.

(a) Suppose that e € |D|, i.e., e = |d| for some d € D. Then

Se = S(d")d+ S(d™)d = h((d"))Sd+ h({d"))Sd
=h({d")Td+ h({d"))Td=T(d")d+T({d")d = Te.

(b) From (a) it follows that S and T" agree on the set lin|D].
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(c) Let e be a d-step element of E with d € lin|D|, i.e., e = > | mA\id
for some numbers \; and pairwise disjoint projections m; € Pr(E). Then, in
view of (b), we have

Se = i S(ﬂ'i)\id) = i )\ih(ﬂi)Sd = i )\Z‘h(ﬂ'i)Td = iT(ﬂ'z’)\id) = Te.
i=1 i=1 i=1 i=1

(d) Suppose now that e € Ep. Then |e|] < d for some d € lin|D)|.
In view of 0.3, there exists a sequence (ey)nen of d-step elements of E that
is r-convergent to e. According to (c), the operators S and 7T coincide on
the elements e,. Therefore, using r-continuity of S and T, we arrive at
the equality Se = Te.

(e) Finally, if e is an arbitrary element of hEp then the equality Se = Te
follows from (d) and h-o-continuity of S and 7. >

Corollary. Let U be a BKS over F, let D be a set of positive elements
in E, let V and VW be arbitrary LNSs over the same K-space F', and let
S:U —YV and T: U — W be dominated operators. Assume that the shadows
of S and T are dominated by the same ring homomorphism h: Pr(E) — Pr(F)
and denote by hEp the h-closure of the ideal Ep.

(1) If V = W and the operators S and T coincide on the set {u € U :
|u] € D} then they coincide on the set {u € U : |u| € hEp}.

(2) If | Su| = |Tu| for all w € U with norm |u| € linD then |Su| = |Tul
for all w € U with norm |u| € hEp.

< Prove assertion (1) (assertion (2) can be proven similarly). Assume
that the operators S and 7" meet all the hypotheses of the corollary and coincide
on the set {u € U : |u| € D}. Consider an arbitrary element u € U with norm
|u] € hEp and establish the equality Su = Tu.

Fix an order unit 1 in a universal completion E of the K-space E, in-
troduce the corresponding multiplication in £ and endow a universal com-
pletion U of U with the structure of a module over E (see 0.7). Let @
be an element of U such that || = 1 and v = |u]a. Consider operators
Su, Tu: E — V acting by the rules Sye = S(eu) and T,e = T'(ew). It is clear
that the shadows of S, and T, are dominated by the homomorphism A and
the operators themselves coincide on D. Therefore, according to assertion (1)

of the last lemma, the operators S, and T, coincide on hEp. In particular,
Su = Sylu| =Tylu|l = Tu. >
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1.10. Asis seen from the following theorem, all the four types of bound-
edness introduced in [14: 2.3] coincide for each disjointness preserving operator
defined on a vector lattice.

Theorem. Let E be a vector lattice and let V be an LNS. The following
properties of a disjointness preserving operator T': E — V are equivalent:

(1) T is bounded;

(2) T is countably bounded;

(3) T is sequentially bounded;

(4) T is semibounded;

(5) ifey,es € E and |e1| < |ea| then |Ter| < |Tez].

< The implications (5)=(1)=-(2)=-(3)=>(4) are obvious. The proof of
Theorem 2.1 in [22] that establishes the implication (4)=-(5) is presented for
the case V = FE; however, it remains valid for an operator with values in
an arbitrary LNS. >

The proof of the implication (4)=-(5) becomes particularly simple and
clear in the case when E possesses the principal projection property (for in-
stance, when E is a K,-space). Indeed, assume that an operator 7' meets con-
dition (4), fix arbitrary elements ej, ey € E satisfying the inequality |e1| < |ez],
and denote by S the set

n
{Zmﬂeﬂ . m € Pr(E), |\ < 1}.
=1

It is not difficult to become convinced that |T's| < |Teq] for all s € S. More-
over, in view of 0.3, there exists a sequence (sp)pen of elements in S r-con-
vergent to ey with regulator |ea|. Condition (4) together with the relations
|Te1| < |Ter —Tsp| + |Tea]l (n € N) now yields the desired inequality
[Ter| < |Tes].

1.11. The analog of Theorem 1.10 for operators defined on LNSs is not
true. Moreover, all the four types of boundedness are pairwise different for this
class of operators. Indeed, every normed space is an LNS over R and every
linear operator from a normed space into an arbitrary LNS is disjointness
preserving. Consequently, operators considered in the Examples [14: 2.4-2.6]
act from BKSs into BKSs and are disjointness preserving.
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1.12. Lemma. Let U be a BKS over E, let V be an LNS, let T U — V
be a disjointness preserving semibounded operator, and let e be a positive
element of E. For each uw € U satisfying the inequality |u| < e, there is
an element u € U such that |u| = e and |Tu| < |Tal.

< Suppose that |u] < e. In view of the equality {|u] : v € U} =
{e € E: e > 0}, we do not restrict generality by assuming that (u) = (e
Obviously, the product (¢//]u])u is defined in U for all ¢ € E (see 0.7
Define an operator S: E — V by the formula S(¢/) = T((¢//|ul)u) and
assign u := (e/|u])u. It is easy to see that the operator S is disjointness
preserving and semibounded. According to Theorem 1.10, the operator S
meets condition 1.10 (5). This allows us to conclude that |Tu] = S|u] < Se =
|Tu|. It remains to observe that || =e. >

).
).

Proposition. Let U be a BKS over E and let V be an LNS. A disjointness
preserving operator T: U — V is dominated if and only if it is bounded.
Furthermore, for all positive e € E,

|T|e = sup{|Tu|: uwel, |ul <e}
=sup{|Tu|: vel, |u| =e}

< For an arbitrary positive element e € E, the equality
|T|e =sup{|Tu|: ueld, |ul <e}

is easily deduced from the criterion 0.13 involving the set 7') (e). It remains to
employ the lemma proven above. >

The last result does not provide any new information about operators in
vector lattices, since dominatedness and boundedness are always equivalent
for operators with values in a K-space (see Proposition 0.11 (3)) However,
an analog of the last proposition is true in the case of vector lattices:

Theorem [23]. Let E and F be arbitrary vector lattices. A disjointness
preserving operator T: E — F is regular (= dominated) if and only if it is
bounded.

1.13. As was noted in 1.11, countable boundedness is not sufficient for
boundedness of a disjointness preserving operator. It is interesting to clarify
which (easily verified) additional assumptions yield boundedness of operators
bounded in a weaker sense. Leaving this question open, we only formulate one
corollary to Lemma 1.12 which is a small step in the indicated direction.
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Proposition. Let U be a BKS over E' and let V be an LNS over F.
A disjointness preserving operator T: U4 — V is bounded if and only if it is
semibounded and, for every positive element e € E, the set {|Tu| : u € U,
|u] = e} is order-bounded in F.

Note that any semibounded disjointness preserving operator defined on
a vector lattice obviously meets the hypotheses of the last proposition. This
allows us to consider Proposition 1.13 as a generalization of Theorem 1.10.

1.14. One of the main results concerning disjointness preserving opera-
tors provides their representation as sums of certain special operators taking
pairwise disjoint values (see Section 4). Here we pay attention to such sums.

Lemma. LetU and V be LNSs and let S,T: U — V be linear operators.
The following assertions are equivalent:

(1) Su L Twu for all u € U;
(2) Suj L Tugy for all uy,uz € U, i.e., imS L imT.

< Only the implication (1)=-(2) requires proving. Let u; and uy be
arbitrary elements of Y. The relations Suqy L Tu; and Sus L Tugy imply:

[Sur| A [Tug| = |Sua| A lTuy + Tug|

< |T Ul + U |
[Sui] AlTug| = |Sur + Suz| A Tuz] < |S(

SU1+u2 |

It remains to observe that S(uj + ug) L T'(u1 + ug). >

Operators S and T meeting each of the equivalent conditions (1) or (2)
are called strongly disjoint. Let U and V be LNSs and let (T¢)¢c= be a family
of linear operators from U into V. We say that an operator T: U — V
is decomposable into the strongly disjoint sum of operators T¢ (and write
T = @565 Té), whenever the operators T¢ are strongly disjoint and, for every
u € U, the relation Tu = 0 ¢z Teu holds.

Assume that T = ¢z T¢ and assign pe == (imTg) for each § € E.
According to the lemma, the projections p¢ are pairwise disjoint; therefore,
for all { € Z the equality T¢ = p¢ o T holds. In particular, this implies that
the strongly disjoint sum @565 T is disjointness preserving if and only if so
is each summand T¢.
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2. Orthomorphisms

This section is devoted to one of the simplest classes of disjointness pre-
serving operators, the class of band preserving operators.

Throughout the section, GG is a universally complete K-space with a fixed
order unity 1g, @ is the Stone compact space of the Boolean algebra Pr(G)
(recall that this algebra is the base of G), E and F are order-dense ideals
of G, and U and V are LNSs over E and F, respectively. We introduce
a multiplication in the K-space G which makes it a commutative ordered
algebra with unity 1g (see 0.7). Recall also that we identify the Boolean
algebras Pr(G), Pr(E), Pr(F), Pr(i) and Pr(V).

2.1. A linear operator T: U4 — V is said to be band preserving if it
satisfies one of the following equivalent conditions:

(1) (Twu) < (u) for all u € U;

(2) Tmu=nTu for all u € U and 7 € Pr(G);

(3) mu =0 implies 7Tu = 0 for all u € U and 7 € Pr(G);

(4) |u] L g implies |Tu] L g for all w € U and g € G;

(5) lu] L g implies |Tu] L g for all u € U and all elements g of some
order-dense ideal of the K-space G.

Obviously, the last definition generalizes the familiar notion of band preserving
operator acting in vector lattices (see [5, 6,22, 33, 34]).

2.2. Bounded band preserving operators are called orthomorphisms.
The totality of all orthomorphisms from U into V is denoted by Orth(U,V).
We write Orth(U) instead of Orth(U,U).

It seems interesting to clarify the additional requirements that, being im-
posed on band preserving operators, yield their boundedness. Of course, band
preserving operators are disjointness preserving and, therefore, they are subject
for such boundedness criteria as 1.10 and 1.13. It is known (see [14: 2.4-2.6]),
that semiboundedness, sequential boundedness, and even countable bounded-
ness of a disjointness preserving operator do not imply its boundedness. In the
case of band preserving operators, the situation is different:

Theorem. The following properties of a band preserving operator T from
a BKS into an LNS are equivalent:

(1) T is bounded;

(2) T is countably bounded;
(3) T is sequentially bounded;
(4) T is semibounded.
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< The implications (1)=(2)=(3)=>(4) are obvious. It remains to show
that (4)=(1). Assume that an LNS U/ is order-complete and an operator
T:U — V is band preserving and semibounded. Fix an arbitrary positive
element e € G and prove that the set {|Tu] : |u| < e} is order-bounded in F.
We divide the proof into two steps.

(a) Show first that the set {|7Tu| : |u] < e} is order-bounded in the uni-
versally complete K-space GG. Without loss of generality, we may assume that
G = Co(Q), where @ is an extremally disconnected compact space (see The-
orem [12: 0.3.4]). Denote by D the totality of those points ¢ € @, for which

sup{|Tul(q) : |u] < e} = .

Assume that the set {|Tu| : |u| < e} is not bounded in Cx(Q). Then,
according to [17: Chapter XIII, Theorem 2.32], the clopen set U := intcl D is
nonempty. For each natural n and each point ¢ € U N D, consider an element,
uh € U satisfying the conditions |u%| < e and |Tu%|(q) > n. Denote by U,
a clopen subset of @ such that ¢ € Ul C U and |TU%I(P) > n for all
p € Ul. Tt is clear that, for each n € N the relation SUPgeUnD Ul = U holds
in the Boolean algebra Clop(Q). In view of the exhaustion principle, there
exists a family (Vii)gevnp of pairwise disjoint elements of Clop(Q) such that
Vi C Uf for all ¢ € UN D, and supyepnp Vit = U. According to [12: 0.4.3],
the sum O—quUmD<V7g>u% exists in the BKS 4. Denote the sum by w,,. For all
n € Nand g € UN D, we have

(Vi Tup | = | TV yun | = | TVl | = (ViIDITud | = nxya.

After passing to the supremum over ¢ € U N D, we obtain |Tu,| > nxy for
all n € N; which, together with the inequalities |u,| < e, yields a contradiction
with semiboundedness of 7.

(b) Denote by f the upper envelope of the set {|7u| : Ju] < e} in
the K-space G and show that f € F. Without loss of generality, we may as-
sume that f > 0 on some comeager subset of ). Then, according to [17: Chap-
ter XIII, Theorem 2.32], the set of all points ¢ € @, for which

0 < sup{|Tul(q) : lu] <e} = f(q) < oo,

is comeager in (). For any such point g, consider an element u, € U satisfying
the conditions |uq| < e and |Tuq|(q) > f(q)/2. By repeating the idea of
step (a) and “mixing up” the elements u, in an appropriate way, we can
construct an element u € U such that |Tu| > f/2; whence the containment
f € F follows directly. >
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Additional requirements, yielding boundedness of band preserving opera-
tors, can be imposed on the spaces rather than on operators acting in them.
In the present article, we are not going to develop this idea. We only observe
that many results in the indicated direction are presented in [5: Theorem 2;
6: Theorem 3.2 and 3.3; 22: Corollaries 2.3 and 2.4].

2.3. It is easy to become convinced that Orth(E,F) is an ideal of
the K-space M (E, F') and, therefore, is also a K-space.

If an element g € G is such that g - e € F for all e € E then the op-
erator of multiplication by ¢ is obviously an orthomorphism from FE into F'.
Many papers about disjointness preserving operators contain results in this
direction (see, for instance, [2,5,6,8,9,33,34]). The following statement gen-
eralizes, in a sense, the experience from finding multiplication representation
of orthomorphisms acting in K-spaces.

Theorem. For every orthomorphism T: E — F, there exists a unique
element gy € G such that Te = gr-e for alle € E. The mapping T' — gr per-
forms a linear and order isomorphism of the K-space Orth(E, F') onto the ideal
{9€G: g-ecF foralle € E} of the K-space G.

Identifying an orthomorphism 7' with the element gr € G, we assume
in the sequel that Orth(E, F) C G. Obviously, Orth(E) contains 1g and
is a subalgebra of G. In particular, Orth(E) is an f-algebra (see [16,34]).
The last theorem justifies the term weight operator which is sometimes used
instead of “orthomorphism?”

2.4. Proposition. Let an LNS U be order-complete. A linear operator
T:U — V is an orthomorphism if and only if it is dominated and its exact dom-
inant |T'|: E — F is an orthomorphism. In particular, the space Orth(U,V)
endowed with the dominant-norm is a BKS over the K-space Orth(E, F).

< The claim follows directly from Propositions 1.12 and 1.4. >

2.5. Corollary. Every orthomorphism from a BKS into an LNS is
o-continuous.

2.6. Corollary. If two orthomorphisms from a BKS U into an LNS V
coincide on some order-approximating subset of U (see [14: 1.2]), then they
coincide on the entire U.

< The claim follows from 2.5 and Proposition [14: 1.4]. >

2.7. Corollary. If two orthomorphisms S,T € Orth(E,V) coincide on

a subset Ey C E then they coincide on EOLL. In particular, if the K-space E
has an order unity 1 and S(1) =T(1) then S =T.
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2.8. Proposition. For every BKS U over E there exists a unique op-
eration Orth(E) x U — U making U a module over Orth(E) such that
lgul = |g|/lu| for all g € Orth(E) and uw € U. Furthermore, U is a unital
module, i.e., lgu = u for all w € U. For every g € Orth(E) and u € U, the el-
ement gu coincides with the product of g and u calculated in the universal
completion of U (see 0.7).

< Let a BKS miU over G be a universal completion of &/. Then U =
{u e mU : |u] € E}. In view of 0.7, the space mid can be endowed with
the structure of a module over the ring G so that 1gu = u and |gu| = |g||u|
for all g € G and u € mU. In order to prove existence of a desired module
structure in the BKS U, it is sufficient to observe that, for all g € Orth(E)
and v € U, we have |g||u| € E and, consequently, gu € U.

We now prove uniqueness. Assume that, together with the operation
(9,u) — gu introduced above, there is another one, (g,u) — ¢ * u, also
making & a module over Orth(E) and satisfying the condition |g * u]| = |g||u]
for all g € Orth(£) and v € U. Fix an element u € U and define the mappings
S,T: Orth(E) — V by the formulas S(g) = gu and T'(g) = g * u. Obviously,
S and T are orthomorphisms. Observe that T'(1g) = S(1g), i.e., 1g *u = wu.
Indeed,

|1(;>x<u—u|:1(;-|1g*u—u|zllg*(lg*u—u)l

=|(1¢-1g) *u—1g *u| = 0.

For proving the equality S = T, it remains to employ 2.7. >

The fact that any BKS over G can be endowed with the structure of a mod-
ule over G allows us to define a simple class of orthomorphisms. If a BKS U/
over ' and a BKS V over F are order-dense ideals of the same BKS over GG
and g € Orth(E, F), then the operator v — gu is an orthomorphism from U
into V. We call such operators scalar orthomorphisms.

2.9. Proposition. Let U be an order-complete LNS, T € Orth(U, V),
g € G, and v € U. If the product gu is defined in U (see 0.7) then the prod-
uct gT'(u) is defined in V and the equality T'(gu) = g7 (u) holds. In particular,
Tog=goT for every orthomorphism g € Orth(FE).

< Fix an arbitrary element v € U and denote by G, the order-dense
ideal {g € G : gu € U} of the K-space G. Let m) be the universal comple-
tion of V. Consider the mappings L, R: G;, — m) defined by the formulas
L(g) = T(gu) and R(g) = gT'(u). Obviously, L and R are orthomorphisms
and L(1g) = R(1g). From 2.7 it follows that L = R. >
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2.10. We conclude this section by a useful fact, which will be repeatedly
employed in the sequel.

Theorem [21]. Let E be a vector lattice and let F' be a K-space. A pos-
itive operator T': EE — F' is disjointness preserving if and only if, for every
operator S: EE — F satisfying the inequalities 0 < S < T, there is an or-
thomorphism g € Orth(F') such that 0 < g < idp and S = g o T, where
idp: F'— F' is the identity operator.

Combining the last theorem with Theorem 1.1, we obtain the following
result.

Corollary. Let E be a vector lattice and let F' be a K-space. A regular
operator T': E — F' is disjointness preserving if and only if, for every regular
operator S: E — F satisfying the inequality |S| < |T'|, there is an orthomor-
phism g € Orth(F) such that |g| <idp and S = go T, where idp: F — F'is
the identity operator.

3. Shift operators

Another class of disjointness preserving operators is considered in this
section. Here, we introduce and study so-called shift operators, which are ab-
stract analogs of the composition mappings f — f os. This class of operators
is closely related to another notion discussed here, the notion of operator “wide
on a set” While studying shift operators, we suggest their equivalent charac-
terizations, describe the maximal domain of definition on which they can be
extended, and show that the notions of shift operator and that of a multi-
plicative operator coincide. We also introduce here the notion of the shift of
a disjointness preserving operator, which in a sense concentrates multiplicative
properties of the operator.

Throughout the section, £ and F are universally complete K-spaces.
In case order unities 1¢ and 1 £ are fixed in £ and F, we regard the K-spaces as
ordered algebras with unities 1¢ and 1 (see 0.7). The ideal of the K-space £
generated by d € £ is denoted by &£;. In particular, & stands for the ideal of £
generated by 1¢. We point out that some notions introduced in this section
depend on a concrete choice of 1¢ and 1r.

3.1. Let E be a K-space, let D be a subset of F, and let  be an LNS.
We say that an operator T': 2 — V is wide on the set D whenever the equality
T[D]*+ = T[E]*+ holds.
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Proposition. Suppose that E is a K-space, D is a subset of E, V is
anLNS, T': E — V is a disjointness preserving operator, and h: Pr(E) — Pr(V)
is its shadow. The following assertions are equivalent:

(1) T is wide on the set D;

(2) T is wide on the ideal Ep;

(3) the shadow of the restriction of T onto Ep coincides with the shadow
of T';

(4) the set T[Ep] is o-dense in T[E];

(5) the ideal Ep h-approximates the space E.

< The implications (1)=>(2)<«=(4) are obvious. Since the shadow of T’
dominates that of the restriction of 7" onto Ep, the equivalence (2)<(3) readily
follows from Proposition 0.2. We show that (1)<(2)=(5)=(4).

(2)=(5): Assume condition (2) to be satisfied, consider an arbitrary
element e € E, and show that h-inf cyme = e, where II = {7 € Pr(E) :
me € Ep}. For every n € N and d € Ep, assign 72 := (|e| < nld|). Obviously,
74 € 1. Since

d—mid| = () "1d] < () Vlel/n < lel/n

for all n € N, we have r- li_)m ndd = d. Using r-continuity of the operator T
n—oo

and taking account of the equality T(ng) = h(wg)T d, we arrive at the relation
suppen h(md) > (T'd). Since the element d € Ep was chosen arbitrarily, we
conclude by (2) that sup,cpy h(m) = h(1) and, consequently, h-inf e me = e.

(5)=(4): Consider an arbitrary element e € E. From (5) and Proposi-
tion [14: 1.3] it follows that e is the h-limit of some net (eq)qea of elements

in Ep. In view of Corollary 1.5, we have o- lini T(eq) = Te.
ae

(2)=(1): For every element e € Ep, there exist dy,...,d, € D such
that |e|] < |di| + --- + |dyn]. In view of Theorem 1.10, we conclude that
(Te) < (T'dy) V ---V (Tdy). It remains to employ condition (2). >

Remark. As is seen from the last proposition, the fact that an oper-
ator 1" is wide on a set D reflects the connection of D with the domain of
definition and with the shadow of T' rather then with the operator 7T itself.

3.2. Let U and V be LNSs and let D be a subset of the norming lattice
of U. We say that an operator T: U — V is wide on the set D, whenever
{Tu : |u] € D+ = (imT)*+. If U and V are K-spaces then the last
definition is equivalent to that given in 3.1, which justifies preservation of
terminology.
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Lemma. Let U be a BKS over a K-space E, let V be an arbitrary LNS,
and let D be a subset of positive elements in E. A disjointness preserving

operator T: U — V is wide on D if and only if its exact dominant |T'| is wide
on D.

< A proof can be easily obtained with the help of Proposition 1.12.
Indeed, the relations

(ITle) = sup(Tu) < sup(Tu) = sup sup(Tw) = sup (|T'|d),
[u=e [ule D deD |u=d deD

which hold for every positive element e € E, prove necessity; whereas the re-
lations

(Tu) < (ITul) < (IT|d) = sup sup(Tu) = sup (Tu),

sup
deD deD fu=d lule D

that are valid for each element u € U, establish sufficiency. >

Proposition. Suppose that U is a BKS over a K-space E, D is a subset of
positive elements in E, V is an arbitrary LNS, T': U — V is a disjointness pre-
serving bounded operator, and h: Pr(U) — Pr(V) is its shadow. The following
assertions are equivalent:

(1) T is wide on the set D;

(2) T is wide on the ideal Ep;

(3) the shadow of the restriction of T' onto the set {u € U : |u| € Ep}
coincides with the shadow of T';

(4) the set {Tu: |u| € Ep} is o-dense in im T';

(5) the ideal Ep h-approximates the space E.

< The equivalence (2)<(3) is established in the same way as in 3.1.
Equivalence of assertions (1), (2), and (5) ensues from Propositions 1.4 and 3.1
and the last lemma. The implication (4)=-(2) is obvious. It remains to show
that (5)=(4).

Let u be an arbitrary element of /. From (5) and Proposition [14: 1.3] it
follows that |u] is the h-limit of some net (eq)aca of positive elements in Ep.
In view of Lemma 0.8, there exists a net (uq)aca in U such that Juq| = eq and
|u — uq| = [|u] — €q]. Then h_clyié?; Uq = u and, according to Corollary 1.5, we

have o-limyecp Tugq = Tu. >
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3.3. Proposition. Let E be an ideal of £ generated by a positive
element d € €. For every ring homomorphism h: Pr(E) — Pr(F), the following
sets coincide:

(1) the h-closure of E;

(2) the h-cyclic hull of E;

(3) the countably h-cyclic hull of E;

(4) the set of such e € € that inf,en h(le| > nd) = 0.

< The relations (4)C(3)C(2)C(4) are obvious. The inclusion (4)C(1)
can be easily established with the help of the first corollary in [14: 1.18].
It remains to show that (1)C(4). Suppose that a net (eq)qca of elements
in E h-converges to e € £. For each a € A, denote by n, the natu-
ral number satisfying the inequality |eo| < nqd. By using the relations
h-infoecp e — eq] = 0 and

h(le| > 2nqd) < h{le| > 2|eq|)
= h((e)(lel = leal > lel/2)) < h((e)(le = eal > le]/2)),

we obtain the desired equality inf ey h(le| > nd) =0. >

The coincident sets (1)—(4) described in the last proposition are denoted
by hE.

3.4. Proposition. Fix an order unity 1¢ in the K-space £. Then the set
h&: is a subalgebra of &.

< This fact ensues from 3.3 (we mean the equality h&; = (4) for d = 1¢)
and from the following relations:

inf h{lef| > nlg) = inf h(lef| > mnlg)
neN neN

k]

< inf _h((le] > mlg) Vv (|f] > nlg))

m,neN

= inf (h{le| > mle) V h{|f] > nle))

m,neN
= inf h(le| > mlg) Vv inf h(|f] > nlg). >
meN neN
3.5. Lemma. Let d be an arbitrary order unity in £. For every sequence
(7n)nen of projections in Pr(€) that decreases to zero, there is an element e € £
such that 7, = (|e| > nd) for all n € N.

< Since the K-space & is universally complete, the series Zzo:l Tnd has
an o-sum in it. Denote the sum by s. It is clear that (s > nd) = mp41 for
all n € N and, consequently, we can take s + d as the desired element e. >
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Corollary. Let h: Pr(€) — Pr(F) be a ring homomorphism and let d
be an arbitrary order unity in £. The equality h€; = &£ holds if and only if
the homomorphism h: Pr(€) — Pr(F) is sequentially o-continuous.

3.6. Let U be an LNS over an order-dense ideal E of the universally
complete K-space &, let d be a positive element of £, and let V be an arbitrary
LNS. We say that an operator T': Y — V is wide at the element d whenever it
is wide on the set {e € E': e is a fragment of d}.

Lemma. Suppose that E is an order-dense ideal of &, d is a positive
element of £,V is an LNS, T': E — V is a disjointness preserving bounded op-
erator, and h is its shadow. Assign Il := {7 € Pr(€) : nd € E}. The following
assertions are equivalent:

(1) the operator T is wide at the element d;

(2) supregh(m) = k(1) and, for all m € 11 the equality (T'nd) = h(m)
holds;

(3) E C hé&,.

< The equivalence of (1) and (3) is contained in Proposition 3.1, the im-
plication (2)=-(1) is obvious. It remains to show that (1)=-(2). If (1) is valid
then, for every projection 7y € II, we have

h(mo) = h(mp) sup(Te) = h(mp) sup(T'wd) = sup(T'mond) = (T'mpd). ©>
eck mell mell

3.7. Proposition. Fix arbitrary order unities 1¢ and 1x in the K-spaces
€ and F. For every ring homomorphism h: Pr(€) — Pr(F), there exists
a unique regular operator S: h€ 1 — F such that the shadow of S is equal to h
and S(lg) = h(1)1x. Furthermore, the operator S is positive.

< For the sake of convenience, assume that h(1) = 1. We construct
the operator S in three steps.
1. Define the operator S on the set of step-elements of £ by letting

S( i )\iﬂ'ilg) = i Aih(mi)1x
=1 =1

for arbitrary A\i,..., A\, € R and my,...,m, € Pr(€).

2. Extend the operator S onto £. To this end, fix an arbitrary element
e € & and choose a sequence (ep)pen of step-elements in & so that it r-con-
verges to e with regulator 1¢. It is easy to verify that the sequence (Sey,)nen
is r-fundamental (with regulator 1x). Assign Se := r—nli_{lgo Sep.
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3. Finally, extend S onto the entire set h€1. Every element e € h&; can
be represented as the mixing 0-) |, .y 7Tnen of elements e, € & by means of
an h-partition (7,)pen. Assign Se := 0y, .y h(mp)Sen.

It is easy to verify that the definition of S is sound at each of the steps.
Obvious positiveness of S ensures its regularity. In order to prove uniqueness
of S, it is sufficient to observe that, at step 3, the sequence (Z;nzl Wnen)meN
is r-convergent to e with regulator o-)_ _nmyle,| € RE. >

The operator S, whose existence is asserted in the last proposition, is
called the shift by h and denoted by Sp. Let E be an order-dense ideal of £
and F' be an order-dense ideal of . We say that an operator S: E — F'is
a shift operator, if there exists a ring homomorphism h: Pr(£) — Pr(F) such
that £ C h&; and S = S, on E. Tt is clear that, in this case, the homomor-
phism A is the shadow of S. Observe that the notion of the shift and that
of shift operator depend on the choice of unities 1¢ and 17 in the K-spaces £
and F.

3.8. Proposition. Fix order unities in the universally complete K-spaces
& and F. Let E be an order-dense ideal of £, let F' be an order-dense ideal
of F, and let S,S: E — F be shift operators. If S < S then S = po S for
some projection p € Pr(F).

< The claim ensues from Propositions 0.2 and 3.7. >

Let p € Pr(F), let h: Pr(£) — Pr(F) be a ring homomorphism, and
let S be the shift by h. Then the shift by the homomorphism p o h is denoted
by pS. Observe that, in general, dom pS is wider than dom S; therefore, pS
differs from the composition p o .S. However, in view of the last proposition,
the operators pS and p o S coincide on dom S and, thus, pS extends po S.

3.9. Theorem. Fix order unities 1¢ and 1x in the K-spaces £ and F.
Let E be an order-dense ideal of £ and let F' be an order-dense ideal of F.
A linear operator S: E — I is a shift operator if and only if it satisfies
the following conditions:

(a) S is disjointness preserving;

(b) S is regular;

(c) S takes fragments of 1¢ into fragments of 1r;
(d) S is wide at 1¢.

< Necessity of conditions (a)—(c) is obvious and necessity of (d) follows
from 3.6. Let us show sufficiency. Suppose that the operator S satisfies
conditions (a)—(d), denote the shadow of S by h and assign Il := {7 € Pr(£) :
7le € E}. Lemma 3.6 implies the equality (S(mlg)) = h(m) for each 7 € I,
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which, together with condition (c), yields S(7lg) = Sp(mlg). The same lemma
ensures the inclusion £ C h&p. In view of Lemma 1.9, we now conclude that
S=S5,on E. >

Corollary. Fix order unities 1¢ and 1 in the K-spaces £ and F. Let K
be an order-dense ideal of £ containing 1¢ and let F' be an arbitrary order-
dense ideal of F. A linear operator S: E — F' is a shift operator if and only
if it satisfies the following conditions:

(a) S is disjointness preserving;

(b) S is regular;

(¢) S(lg) is a fragment of 1x;
)

(d) {S(1g)}"" = (im §)+L.

Remark. Conditions (d) in the statements of the theorem and the corol-
lary may not be omitted. Indeed, let F = R, let £ be the space of all se-
quences, and let E be the ideal of £ generated by the sequence eg(n) = n
(n € N). Denote by @ the Stone-Cech compactification of the discrete topo-
logical space N and fix an arbitrary point ¢ € Q\N. Naturally identifying
the spaces & and Cx(Q), define an operator S: E — F by the formula
Se = (e/ep)(q). Letting 1g(n) =1 (n € N) and 17 = 1, we see that the oper-
ator S satisfies conditions (a)—(c) of the last lemma, but S(1g) = 0.

Remark. From the last corollary it is clear that the domain of defi-
nition h&; of the shift by A is maximally wide. More precisely, h&€; contains
the domain of definition of every regular operator S acting from an order-dense
ideal of € into F, having shadow h, and satisfying the equality S(1g) = h(1)1r.

3.10. Fix order unities 1¢ and 17 in the K-spaces £ and F. A linear
operator S: F — F defined on an order-dense ideal F C & is called multi-
plicative if SejSey = S(ejey) for any two elements ej, ez € E, whose product
belongs to E. Observe that the notion of multiplicative operator depends on
the choice of unities 1¢ and 1.

Theorem. Let E be an order-dense ideal of £. A linear operator
S: E — F is a shift operator if and only if it is multiplicative.

< The fact that every shift operator is multiplicative is easily established
by checking all the steps of its construction in 3.7. We will show that any
multiplicative operator S: E — F is a shift operator by verifying conditions
(a)—(d) of Theorem 3.9.

(a) Disjointness of elements ej,ey € FE is equivalent to the equality
e1eg = 0. The same is true for elements of F. Consequently, S is disjointness
preserving.
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(b) We prove, that the operator S is positive, in three steps.

(b1)Ife € Eand 0 < e < 1g then Se > 0. Indeed, in this case, €3 and e /e
belong to E in view of the inequalities €3 < e and ey/e < e; consequently,
(Se)? = S(e3) = 5((ev/e)?) = S(ey/e)” > 0.

(bg) If e € E and e > 1¢ then Se > 0. Indeed, in this case, /e € E in

view of the inequality v/e < e; consequently, Se = S((/e)?) = S(\/E)2 > 0.

(bg) If e € F and e > 0 then Se > 0. Indeed, Se = S{e < lg)e +
S(e > 1g)e > 0 in view of (b1) and (ba).

(c) The fact that an element e € E is a fragment of 1¢ is equivalent to
the equality e? = e. The same is true for fragments of 17. Consequently, S
takes fragments of 1¢ into fragments of 1.

(d) Show that {Se : |e] < 1g}*++ = (im S)*+. Consider the projec-
tion p € Pr(F) onto the band {Se : |e|] < 1g}* and define an operator
T: E — F by the formula Te = pSe. The proof will be completed if
we establish that 7" = 0. Obviously, the operator 7' is multiplicative and
Te = 0 whenever |e| < 1g. We also observe that, in view of (b), the op-
erator T' is positive. Let e be an arbitrary positive element of E. For each
n € N, the equality T'(e/n) = Te, holds, where e, = (¢/n > lg)e/n. Since
Ven < ep < e/n, we have the inclusions /e, e, € E and the inequality
T\/en < Tey. Consequently,

Te=nTe, = nT(\/Q2) = n(]\/@f <n(Tey)? = n(Te/n)? = (Te)?/n
for all n € N, which is possible only in case Te = 0. >

3.11. Remark. There are a number of results describing multiplicative

operators (= shift operators) as extreme points of certain sets of operators
(see [10,11, 24]).

3.12. Remark. It is known (see [32: Theorem VIII.10.1]) that every
regular operator T': £ — F admits an integral representation

Te = /OO Adp((e < Alg)) (e € &),

— 00

where ¢ is an arbitrary order-bounded additive function from Pr(£) into F.
It is not difficult to become convinced that 7" is a shift operator if and only if
the values of the function ¢ are fragments of 1. Furthermore, the shadow h
of T is defined by the formula h(7) = (p(7)). Some classes of multiplicative
operators (= shift operators) are described form the viewpoint of the integral
representation in the papers by B.Z. Vulikh [29, 31].
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3.13. Fix order unities 1¢ and 17 in the K-spaces £ and F. Let U
and V be LNSs over order-dense ideals £ C £ and FF C F,let T: U4 — V be

a disjointness preserving operator, and let h: Pr(E) — Pr(F) be its shadow.
Then the shift S : h&€ — F by h is called the shift of the operator T.

Proposition. Let U and V be LNSs over order-dense ideals E C &
and F' C F and suppose that the LNS U is order-complete. Assume that
T:U — V is a disjointness preserving bounded operator with shift S. If ele-
ments e € dom S and u € U are such that the product eu is defined in U, then
the product S(e)T'(u) is defined in V and the equality T (eu) = S(e)T'(u) holds.
In particular, T o g = S(g) o T for every orthomorphism g € Orth(E)Ndom S.

< Fix an arbitrary element u € U and denote by &, the order-dense
ideal {e € dom S : eu € U} of the K-space £. Let mV be the universal com-
pletion of V. Consider the mappings L, R: &, — mV defined by the formulas
L(e) = T(eu) and R(e) = S(e)T(u). Obviously, the operators L and R are
bounded (= dominated) and disjointness preserving; moreover, their shadows
are dominated by the shadow of 7. Since L(1g) = R(l¢) and &, C dom S,
Lemma 1.9 implies the equality L = R. >

3.14. Fix order unities 1¢ and 1 in the K-spaces £ and F. Let U be
an LNS over an order-dense ideal £ C £ and let V be an LNS over an order-
dense ideal ' C F. An operator S: U — V is called a shift operator if
there exists a shift operator s: £ — F such that |Su| = s|u| for all u € U.
Obviously, s = |S], i.e., the operator s is the exact dominant of S (see 0.12).

Remark. Thus, if S: U — V is a shift operator then it is dominated
and its exact dominant |S|: £ — F if a shift operator. The converse is false
in general. Indeed, if i/ and V are Banach spaces and the norm of an operator
S: U — Vis equal to unity then its exact dominant |S|: R — R is the identity
operator (and, hence, a shift operator), while the operator S itself is a shift
operator only if it is an isometric embedding.

Proposition. Let U be an LNS over an order-dense E a F
ideal E C & and let V be an LNS over an order-dense 1
ideal ' C F. An operator S: U — V is a shift operator H W H
if and only if there exist a shift operator s: E — F and u—=3 V

an F'-isometric embedding v: std — V such that S = vosy, 1
where sy U — sU is the norm transformation of U by Su ’

means of s (see 0.6). sU
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<1 Only necessity requires proving. An elementary verification shows
that the formula

L(Z pisuui) = ZpiSui (ul EU, p; € Pr(V))
i=1 i=1

soundly defines a function ¢: st/ — V that is the desired isometry. >

3.15. The following description of shift operators generalizes criterion 3.9
to the case of LNSs.

Theorem. Fix order unities 1¢ and 1r in the K-spaces € and F. Let U
be a BKS over an order-dense ideal E C £ and let V be an LNS over an order-
dense ideal ' C F. An operator S: U — V is a shift operator if and only if it
satisfies the following conditions:

(a) S is disjointness preserving;

(b) S is bounded;

(c) ifu €U and |u] is a fragment of 1¢ then |Su| is a fragment of 1 r;
(d) S is wide at 1¢.

< Necessity of conditions (a)—(d) follows immediately from Theorem 3.9.
Assume that an operator S satisfies conditions (a)—(d). Denote by | S| the ex-
act dominant of S and show first that |S|: £ — F is a shift operator by
verifying conditions (a)—(d) of Theorem 3.9. Condition (a) ensues from Corol-
lary 1.4, condition (b) is ensured by the fact that | S| is positive, condition (c)
follows from Proposition 1.12, and condition (d) from Lemma 3.2. Thus, | S| is
a shift operator. Since the shadows of S and | S| coincide (see Proposition 1.4),
the operator |.S] is the restriction of the shift of S onto F.

Assign U; = {u € U : |u] is a fragment of 15}, consider an arbitrary
element u € Uy, and show that |Su| = |S||u|. For the sake of convenience,
we assume that |u|] = 1¢ and |S|1¢ = 1. This assumption does not restrict
generality, since S[(u)td] C (|S||ul)V, and, therefore, we may regard S as
an operator from (u){ into (|S||u|)V. Denote the projection (Su)* by p.
Since | Su] is a fragment of 1, it is sufficient to show that p = 0. Assume to
the contrary that p # 0. Then, by Proposition 1.12, there is an element u; € U
such that |ui| = 1lg¢ and pSu; # 0. Assign e := |u; + 3u|. The equalities
|u] = Ju1] = 1e readily imply 2 - 1¢ < e < 4 - 1¢; hence, }Ilg < 1/e < %lg.
The last inequality proves that the product @ := (1/€)(uj +3u) is defined in U.
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By using Proposition 3.13 and the equality pSu = 0, we obtain:

plSul = p|S((1/e)(u1 + 3u))|
= plSI(1/e)|S(ur + 3u)]
= |SI(1/e)lpSus + 3pSul
= plSI(1/e)| Sus
= (pSu1)|SI(1/e).

Observe that |a]| = 1¢ and, consequently, | S@| is a fragment of 1. Therefore,
the relations

pl5al = (pSu)ISI(1/e) > (pSun)IS1(1e) = HlpSum)Lr,

yield the inequality p|Su| > (pSui)1x which contradicts the following rela-
tions:

(pSu1)1F < p|Sul = (pSu1)|SI(1/e) < (PSM)ISI(%ls) = %(psmﬂf-

Thus, we established that |Su| = |S||u] for all v € U;. Denote by h
the shadow of S. As is known, h coincides with the shadow of |.S|. Then,
applying Corollary 1.9 (2) to the operators S: U — V and | S|;: U — | S|U, we
obtain the equality |Su| = |S||u]| for all ©w € U with norm in h&;. It remains
to observe that {u € U : |u| € h& 1} = U, since E = dom |S| C h&. >

4. Weighted shift operators

Weighted shift operators considered in this section are the compositions
W oS ow of two orthomorphisms w and W and a shift operator S. Repre-
sentability of a disjointness preserving operator as such a composition is related
to existence of a bounded set on which the operator is wide. In addition to
this criterion, we also suggest some sufficient conditions for representability of
an operator in the form W o S o w. The main result of the present section is
representation of an arbitrary disjointness preserving operator as the strongly
disjoint sum of weighted shift operators. Thus, operators of the form W o Sow
play the role of simple elements, from which wider classes of operators are
constituted. In the sequel, this fact will allow us to construct one of analytic
representations of disjointness preserving operators.

Throughout the section, £ and F' and order-dense ideals of the K-spaces £
and F. In the spaces £ and F, we fix order unities 1¢ and 1 and consider
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the multiplication that makes the spaces commutative ordered algebras with
unities 1¢ and 1z, respectively (see 0.7). We recall that orthomorphisms in
the K-spaces under consideration are multiplication operators and we identify
them with the corresponding multipliers (see 2.3). The ideal of the K-space £
generated by the element 1¢ is denoted by &;. Observe that some notions
introduced in this section depend on a concrete choice of unities 1¢ and 1r.

4.1. We say that a linear operator T: E — F'is a weighted shift oper-
ator if there exist order-dense ideals £/ C £ and F' C F,

E —I 4y F  orthomorphisms w: E — E' and W: F/ — F, and a shift
operator S: B/ — F’ such that T = W o S o w. The com-

wl TW position W o S o w is called a WSW-representation of T,
and the operators W, S, and w are called the outer weight,
the shift, and the inner weight of the representation WoSow.

Observe that, in view of Theorem 1.1, a regular operator T: £ — F is
a weighted shift operator if and only if so is its modulus |T'|. Moreover, if one of
the operators T or |T'| admits a WSW-representation then the other one admits
a WSW-representation with the same shift and inner weight. Thus, while
discussing the question of whether an operator is a weighted shift operator, we
may always assume the operator positive.

From the viewpoint of the above definition, the property of a mapping to
be a weighted shift operator depends on the choice of 1¢ and 1x. Actually,
there is no such a dependence. Indeed, let an operator T admit a WSW-rep-
resentation

E 2 F

Te=WxS(wxe) (e€kl),

where “x” is the multiplication corresponding to the unities 1¢ and 1x. Then,

after replacing 1lg and 17 by 1: and 1’ and introducing the new multi-
plication “-” in the K-spaces under consideration, the operator 7' remains
a weighted shift operator and admits the WSW-representation

Te=W-S'(w'-e) (e€BE),
where

S'v=1s/15)-S(le-x) (x € (domS)/1¢)

and w' = w/l% (here, the division and the power operation also correspond
to the new unities). Thus, the notion of a weighted shift operator T: £ — F
makes sense for “pure” K-spaces F and F', without any dependence on their
embedding into universally complete K-spaces and introducing the multiplica-
tive structure. In particular, this implies that a positive operator T': £ — F
is a weighted shift operator if and only if it can be made a shift operator by
an appropriate choice of unities 1¢ and 1.
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Simple examples show that a single weighted shift operator can have differ-
ent WSW-representations. However, variety of the components of a WSW-rep-
resentation for a given operator 7' is naturally restricted by their connection
with T" and with each other. Two main aspects of this connection are reflected
in the following proposition:

Proposition. Let T: E — F be a weighted shift operator and let
W o Sow be a WSW-representation of it. Assign p := (imT).

(1) Denote the shift of T by St. Then St extends po S and the equality
WoSow=W oSrow holds.

(2) Identify w and W with the corresponding elements of £ and F and
assign Wrp := 0—7lri€I%T7r(15/w) € F, where Il = {m € Pr(€) : n(lg/w) € E}.

Then pW = Wpr and W o Sow = WproSow.

< Assertion (1) readily follows from 3.7 and 3.8. Let us prove (2). Due

to the obvious equality 7o (w)* = 0, we do not restrict generality by assuming
that (w) = (1). Then

-li T = o-1i = o-1i =
0 71T1€r§1I m(lg/w) =o 7lr1€rrr1[ WSrwn(lg/w) = o 71T1€nr1[ WSrrle <7sTl€11I)I h(ﬂ))I/V,

where h is the shadow of 7. Since p = h(1), it is sufficient to show the re-
lation sup e h(m) = h(1). From E C dom(St o w) it follows that w[E] C
dom S = h&; and, hence, E' C h& . It remains to employ Lemma 3.6. >

Thus, a WSW-representation of a concrete operator determines to a great
extent by the choice of the inner weight. Observe that every weighted shift
operator admits a WSW-representation with positive inner weight. Indeed,
consider an arbitrary WSW-representation WoSow. Identifying the orthomor-
phism w with an element of £ (see 2.3), denote the projection (w™) € Pr(E)
by 7 and assign p := (S(7l¢)). Then

WoSow=WoSo (rlwl —7TL|’LU|)
—Wo(poSolu|—p-oSolul) = (oW —p W) oS o ful.
Remark. If Wo Sowisa WSW-representation of an operator 7' with

positive inner weight w, then the operators T, T~ and |T| admit the following
WSWe-representations: T+ = WtoSow, T~ = W~ oSow, and |T| = |W|oSow.
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4.2. Theorem. Let w be an arbitrary positive element of £. A linear
operator T': E — F admits a WSW-representation with inner weight w if and
only if it is disjointness preserving, regular, and wide at the element 1g /w.

< Necessity ensues from Proposition 4.1(2). Let us prove sufficiency.
Suppose that a disjointness preserving operator T: E — F' is wide at 1¢/w.
Without loss of generality, we may assume that the operator 7T is positive.
Assign IT := {r € Pr(€) : 7(lg/w) € E} and denote by W the orthomor-
phism of multiplication by sup,c T7(1lg/w) € F. Consider the composition
(17/W)oT o (1g/w) as an operator from w[E] into F and denote it by S.
By proving that S is a shift operator, we will obtain the desired WSW-repre-
sentation W o S ow for T. In accordance with Theorem 3.9, it is sufficient to
show that the operator S satisfies conditions (a)—(d) presented in the statement
of that theorem. Verification of the conditions causes no difficulties. >

We say that a subset of the K-space E' is & -bounded if it is bounded in £.
A subset Uy of an LNS over E is called £€-bounded if the set {|u0| D ug € ng}
is £-bounded.

Corollary. A linear operator T': E — F' is a weighted shift operator if
and only if it is disjointness preserving, regular, and wide on some £-bounded
subset of E.

< If the operator T is wide on a set D C E and an element e € £ is
such that |d| < e for all d € D, then the operator T is wide at e and, in view of
the last theorem, it admits a WSW-representation with inner weight 1¢/e. >

4.3. Proposition. Assume that regular operators T,T: E — F are dis-
jointness preserving and satisfy the inequality |T'| < ‘T‘ Then T is a weighted
shift operator if and only if so is T. Moreover, the following assertions are true:

(1) If WoSow is a WSW-representation of T then the operator T admits
a WSW-representation of the form W o S o w, where [W| < [W]|.

(2) If WoSow is a WSW-representation of T then the operator T admits
a WSW-representation of the form W o S o w, where (im T)|W| < |W’

< Without loss of generality, we may assume that the operators 7’ and T
are positive.

(1) The claim is ensured by Corollary 2.10.

(2) Assume that 7" admits a WSW-representation WoSow and assign p :=
(imT"). According to Theorem 4.2, the operator 7" is wide at the element 1¢ /w.
Then the operator T also has this property and, by the same Theorem 4.2, it
admits a WSW-representation W o Sow. The desired interrelation between W
and W ensues from Proposition 4.1. >
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4.4. In accordance with Theorem 4.2, it seems interesting to study situa-
tions in which an operator T: £ — F turns out to be wide on some £-bounded
subset of . Without touching the general problem, we will only discuss several
particular cases.

First of all, we point out a trivial corollary to Theorem 4.2: if {Te}*+ =
(im T)*+ for some element e € E then T is a weighted shift operator (and it
admits a WSW-representation with inner weight 1¢/e). In particular, the fol-

lowing assertion holds:

Proposition. If there exists a strong order unity e in the K-space E then
every disjointness preserving regular operator T: E — F' is a weighted shift
operator and admits a WSW-representation with inner weight 1¢/e.

Of course, the indicated cases admit generalizations. For instance, since
every set of pairwise disjoint elements in £ is £-bounded, we have the following:

Proposition. Let T: E — F' be a disjointness preserving regular op-
erator. If {Teg : £ € Z}L = (imT)+ for some family (e¢)¢ez of pairwise
disjoint elements in F/, then T is a weighted shift operator.

The hypothesis of this proposition is not necessary. Indeed, let £ = C(P),
where P is an extremally disconnected compact space containing a noniso-
lated point p € P. Denote by E the order-dense ideal {e € £ : e(p) = 0}
of the K-space £. Consider the set @ := P\{p} and let F be the K-space
of all real-valued functions defined on (). Define an operator T: E — F as
follows: Te = e|Q. Obviously, the operator T' is wide on the £-bounded set
{e € E: |e| <1} (and, therefore, it is a weighted shift operator), but the fam-
ily (e¢)ce= mentioned in the statement of the last proposition does not exist.

Another class of weighted shift operators resulted by combining Lemma 3.6
and Corollaries 1.6 and 3.5.

Theorem. Every disjointness preserving sequentially o-continuous regu-
lar operator T': E — F' is a weighted shift operator. Moreover, for every order
unity w € &£, such an operator T admits a WSW-representation with inner
weight w.

4.5. It is known that not every disjointness preserving regular operator
is a weighted shift operator. For the sake of completeness, we present here
the corresponding example from [1], which is moreover typical in a sense
(see below).

Let Q be an extremally disconnected compact space without isolated
points. In this case, we can find an order-dense ideal F C Cw(Q), a fam-
ily (e¢)¢ez in E, and a family (g¢)eez in @ so that the following conditions be
satisfied: the set {g¢ : £ € Z} is dense in @, eg(qe) = oo for all £ € =, and, for
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each e € E, the number set {(e/e¢)(qe) : € € E} is bounded. Then the op-
erator T': . — (°°(Z) acting by the rule (T'e)(&§) = (e/e¢)(qe) is disjointness
preserving and regular (even positive), but is not a weighted shift operator.

The above construction of an operator T' possesses the following prop-
erty: if we denote by p¢ the operator of multiplication by the characteris-
tic function xy¢), then we obtain a partition of unity (p¢)eez in the algebra
Pr(¢>(Z)) such that all fragments of the form pg o T' are weighted shift op-
erators. It turns out that of all disjointness preserving regular operators are
structured in the same way.

Theorem. Let T: EF — F be a disjointness preserving regular operator.
Then there exists a partition of unity (p¢)¢cz in the algebra Pr(F') such that,
for each § € =Z, the composition pe o T" is a weighted shift operator. More-
over, the projections p¢ can be taken so that each composition pg o T admit
a WSW-representation with inner weight 15/65, where e¢ is a positive element
of E. In this case, the operator I' is decomposed into the strongly disjoint sum

T=EPWopeSo(lg/e),
e
where S is the shift of T' and W : F — F is the orthomorphism of multiplica-
tion by 0 _¢cz peTec.

. 6/62 ’ . Te :
% (= s ’//\ mix 7w F/\
U T S > s '.; ...... > .......... > /\

s s o e : e g5 e o i e
: pP1 P2 P3

< By applying the exhaustion principle to the relation sup,cp+(T'e) =
(imT'), we obtain a disjoint family (p¢)¢cz in the algebra Pr(F) and a family
(e¢)eex of positive elements in E such that supgez pe(Teg) = (imT). After
adding the projection (imT)* to the family (p¢)¢ez and the zero element
to the family (e¢)ccz, we make (p¢)ecz a partition of unity and preserve
the relation supgcs pe(T'ee) = (imT). By Theorem 4.2, for each ¢ € E,
the composition pg o T' is a weighted shift operator and admits a WSW-rep-
resentation with inner weight 1g/e¢. If S is the shift of 7" then the shift of
pe o T is equal to peS (see 3.8); thus, using Proposition 4.1, we conclude that

peoT = peTecopeSo(le/es).
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4.6. Let U be a BKS over an order-dense ideal £ C &£ and let V be
a BKS over an order-dense ideal F' C F. We say that a linear
operator T': U — V is a weighted shift operator if there exist U Ty
a BKS U’ over an order-dense ideal E' C &, a BKS V' over
an order-dense ideal I’ C F, orthomorphisms w: U — U’ wl TW
and W: V" — V, and a shift operator S: U’ — V' such g 5 yy
that 7" = W o S ow. As in the case of an operator in
K-spaces, the composition W o Sow is called a WSW-representation of T and
the operators W, S, and w are respectively called the outer weight, the shift,
and the inner weight of the representation W o S o w.

Of course, use of the terminology of 4.1 in the case of operators in LNSs
is not quite correct, since a K-space is a particular case of an LNS. Therefore,
in order to avoid confusion, we sometimes call a weighted shift operator scalar
or vector, referring to Definition 4.1 or 4.6, respectively. By analogous reasons,
we speak about scalar or vector WSW-representations. A vector WSW-repre-
sentation W o S o w of an operator T: U — V will be called semivector if w
is a scalar orthomorphism (see 2.8), i.e., U and U’ are order-dense ideals of
the same BKS over £ and the orthomorphism w acts by the rule v +— eu for
some fixed orthomorphisms e € Orth(FE, E).

Theorem. Let U be a BKS over an order-dense ideal E C &€ and let V
be a BKS over an order-dense ideal F' C F. A linear operator T:U — V is
a vector weighted shift operator if and only if it is dominated and its exact
dominant |T|: E — F' is a scalar weighted shift operator. Moreover, the fol-
lowing assertions hold:

(1) If W o S ow is a vector WSW-representation of T then |T| admits
a scalar WSW-representation W o |§| o |w]| such that 0 < W < |W|

(2) Let W o S ow be a scalar WSW-representation of |T'| with posi-
tive weights W and w. Then T admits a semivector WSW-representation
W oS ow such that |W| =W, |§| = S, and w is the orthomorphism of
multiplication by w.

< (1) The claim readily follows from 4.3 (1).

(2) Suppose that W o Sow is a scalar WSW-representation of | 7|, where
w: E—FE',S:E' — F and W: F' — F. Let mi be the universal completion
of U, let U be the ideal {u € mU : |u] € E'} of the BKS mi, and let
w: U — U' be the orthomorphism of multiplication by w. Denote by V'
the o-completion of the norm transformation of U’ by means of S (see 0.6)
and consider the corresponding operator of norm transformation S: U’ — V.
Now, we are to construct an orthomorphism W: V' — V.



72 A. E. Gutman

Assign V) := (S o w)[U] and define a linear operator Wo: V) — V as
follows: Wo(Swu) := Tu. Such a definition is sound, since the equality
Swu; = Swuy implies

|Tuy — Tug| < | T |ur —ur| = WSwlug — uq |
= WS|wu; —wus| = W|EWU1 — SEUQI =0.

Assign p:= (imT). Since p < ((Sow)[U]) andwlf] = {v' € V' : |[v'| € w[E]},
the operator p o S is wide on the ideal w[E] C E'. Consequently, by Propo-
sition 3.2((2)=>(3)), the set V| = (p o S)[w[U]] approximates (p o S)[U’].
The latter set, by the definition of the norm transformation SU’, approxi-
mates the set p[SU'], which in turn approximates p[V']. Therefore, in view
of [14: 1.2], the set V)| approximates p[V']. Obviously, |Wovol WIUOI for
all vy € V). According to Corollary 1.8, the operator Wy admits a (unique)
linear extension Wy: p[V'] — V such that |W1/| < W|o/| for all o' € V.
Then the composition Wy o p: V' — V satisfies the inequality |W1 o pl <W
and, consequently, it is an orthomorphism. Thus, we have already constructed
a WSW-representation (11 0p) oS o of the operator T. However, we cannot

assign W := W o p at this moment, since the equality IWI W will not be
guaranteed.
For all positive e € E, we have

|W1 o plSwe = sup{lWlpvll v eV, |v'| = Swe}
= sup{plWov(’)l v €V, IU6I = Swe}
= sup{plWogwul TuEeU, |§Eu| = Swe}
= sup{lTul s Swlu| = Swe}
> sup{|Tul : |u] = ¢}
=|T]e
= W Swe,

whence |W1 o plSwe = WSwe by the inequality |W1 o pl < W. Thus,
WoSow and IWl el p| oS ow are two WSW-representations of the oper-
ator |T'|. Hence, according to Proposition 4.1 (2), the equality |W1 o pl = pW
holds. To ensure the equality |W| = W, it is sufficient to define W as the sum

of the orthomorphism Wi op and some “inactive” supplement with norm p=W.
Proposition 2.4 implies existence of an orthomorphism Wy € Orth(U, V) such
that |W2| = W. We assign W:=Wjo p—l—WQ o pl. >
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Remark. (1) The inequality W < |W| presented in assertion (1) of
the last theorem can be strict. In other words, the equality |T'| = |W|o|S|o|w]

cannot be guaranteed for every WSW-representation 7' = WoSow. (A simple
counterexample can be given in the case when U and V are Banach spaces.)
However, (2) implies that every weighted shift operator 7: U — V admits
a WSW-representation W o S o @ such that |T'| = |W| o |§| o |w].

(2) From the last theorem it follows that each vector weighted shift opera-
tor admits a semivector WSW-representation. Moreover, if an operator admits
a vector WSW-representation with inner weight w then it admits a semivector
WSW-representation with inner weight the operator of multiplication by |w]|.

(3) If we consider each of the K-spaces F and F as a BKS (over itself)
then the exact dominant of every regular operator 17: £ — F coincides with
its modulus |T'|. This observation and the last theorem allow us to conclude
the following: a mapping 7': E — F'is a vector weighted shift operator if and
only if it is a scalar weighted shift operator. This fact justifies correctness of
using the common term “weighted shift operator” for operators in BKSs as
well as for operators in K-spaces.

4.7. Each of the assertions stated in the following theorem readily follows
from a similar “scalar” assertion (see 4.1-4.4) and Theorem 4.6.

Theorem. Let U be a BKS over an order-dense ideal ' C £ and let V
be a BKS over an order-dense ideal F' C F.

(1) The property of a mapping T: U — V to be a weighted shift operator
does not depend on choosing unities 1g and 1r.

(2) A linear operator T: U — V is a weighted shift operator if and only if it
is bounded, preserves disjointness, and satisfies the relation T[U]*+ = T[]+
for some &€-bounded subset Uy C U.

(3) Let w be an arbitrary positive element of £. A linear operator
T:U — V admits a WSW-representation with inner weight of norm w if and
only if it is disjointness preserving, bounded, and wide at the element 1g /w.

(4) Suppose that T': U — V is a disjointness preserving bounded operator.
If {Tu}*+ = (imT)*+ for some element u € U then T is a weighted shift
operator and admits a WSW-representation with inner weight of norm 1g/|u].

(5) If there exists a strong order unity e in the K-space E then every dis-
Jjointness preserving bounded operator T': U — V is a weighted shift operator
and admits a WSW-representation with inner weight of norm 1¢/e.

(6) Every disjointness preserving sequentially o-continuous bounded op-
erator T': U — V is a weighted shift operator. Moreover, for every order unity
w € &, such an operator T" admits a WSW-representation with inner weight
of norm w.



74 A. E. Gutman

4.8. Theorem. Suppose that U is a BKS over an order-dense ideal
E c &,V isaBKS over an order-dense ideal ' C F, mU and mV are universal
completions of U and V, and T': U — V is a disjointness preserving bounded
operator. Then there exists a partition of unity (p¢)¢cz in the algebra Pr(V)
such that, for each { € =, the composition p¢ oT' is a weighted shift operator.

The projections pg can be chosen so that each composition pg o T" admit
WSW-representation with inner weight of norm 1g/e¢, where e¢ is a positive
element of F.

For each § € =, assign E¢ = {e/ec : e € E} and U := {u € mlU :
|u] € E¢}, where mU is the universal completion of U, and denote by
wg: U — Ug the scalar orthomorphism of multiplication by 1¢/e¢. Then there
exist a BKS V' over F, strongly disjoint shift operators S¢: Us — V' (€ € ),
and an orthomorphism W: V' — m) such that the operators T and |T| de-
compose into the following strongly disjoint sums:

T = WoSngg, |T|:®IW|OIS§IO|M§I‘
¢ex= £e=

T N — > ~
w1 TS -l
Wt Vs Vg Tu
% W /\ S / 5 v /v3 W /\/\
.......... > (S P RS \}_ e R a\
[ SoRRARRRARRRI [ SORRERRRRR R < s s
ws ‘. w3l 53) :Ui

< Let T: U — V be an arbitrary disjointness preserving bounded op-
erator. By Theorem 4.5, there exists a partition of unity (p¢)cez in the alge-
bra Pr(F) such that, for each £ € =, the composition pg o |T'| is a weighted
shift operator and, moreover, admits a WSW-representation with inner weight
le/ee, where e¢ is a positive element of E. Define BKSs ¢ and orthomor-
phisms wg¢: U — Uy in the same way as in the statement of the theorem being
proved. By Theorem 4.6, for each £ € Z, there exist a BKS V¢ over an order-
dense ideal F¢ C p¢[F], a shift operator S¢: Us — V¢, and an orthomorphism
We: Ve — pe[V] such that

ngTZWfOSEwa,
pe o |T| = [We|o|Se| o |wel.
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In order to complete the proof, it remains to construct the desired BKS V' and
“glue” the orthomorphisms W together to obtain a single orthomorphism W'.

Assign V := @gcz Ve (see 0.5) and denote by V' a universal completion of
the BKS V. Naturally identifying Ve and p¢[Vy], we regard Se as an operator
from U into V'. For each element

U(/] = (ve)eez € V(l),

Wo(vl) = O—Z Wg(vg) e mV.

(e

assign

Due to Corollary 1.8, the orthomorphism Wy: V) — m) admits a unique
extension to an orthomorphism W: V' — mV. >

5. Representation of disjointness preserving operators

Constructing analytic representations of disjointness preserving operators
is an old tradition. This question was studied by everyone who was interested
in these operators from an abstract point of view. Representation of various
classes of operators as composition and multiplication mappings is presented,
for instance, in [1,3-6, 19,30, 31,33, 34]. According to the Vulikh-Ogasawara
theorem [12: 0.3.4], an order-dense ideal of the K-space Cs(Q), with ) an ex-
tremally disconnected compact space, is a general form of a K-space. Fur-
thermore, according to the Corollary [12: 2.4.4], order-dense ideals of the LNS
Coo(Q, X), where X is a continuous Banach bundle over ), exhaust all BKSs.
These two facts provide a base for representation methods of studying oper-
ators in K-spaces and BKSs. Analytic representations of operators are con-
structed in this section with the help of such operations as continuous change
of variable, pointwise multiplication by a real-valued function, and pointwise
evaluation of an operator-valued function.

Throughout the section, X and Y are totally disconnected, and P and @)
extremally disconnected compact spaces. The symbol 1,7 denotes the function
on a set M which is identically equal to unity.

5.1. Assume that some “abstract” objects A and B (for instance, Boolean
algebras, K-spaces, or BKSs) are represented via isomor- f

A B

phisms i: A — A and j: B— B in the form of some “con-
crete” objects A and B (for instance, algebras of sets or Zl lj
spaces of functions). Then the interpretation of a mapping L interpre- =
f: A — B (with respect to the representations i and j) A WB
is defined to be the composition jo foi™!: A— B.
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5.2. Denote by Co(Y, X) the totality of all continuous functions s: Yy — X
defined on various clopen subsets Yy C Y.

Proposition. A mapping h: Clop(X) — Clop(Y) is a ring homomor-
phism if and only if there exists a function s € Co(Y, X) such that h(U) = s71[U]
for all U € Clop(X). For every ring homomorphism h, such a function s
is unique.

< The claim follows directly from the well-known theorem of R. Sikorski
(see [26: Section 11; 25]). >

The relation h(U) = s7![U] is called the representation of the ring ho-
momorphism h by means of the function s. Observe that, due to the Stone
theorem, the above proposition describes the structure of ring homomorphisms
acting in arbitrary Boolean algebras.

5.3. The following proposition shows that every ring homomorphism
(to within an isomorphism) is the mapping of intersection with a fixed set.

Proposition. Let h: Clop(X) — Clop(Y) be a ring homomorphism.
Then there exist a closed subset Z C X and an order isomorphism t of
the Boolean algebra Clop(Z) onto imh such that h(U) = (U N Z) for all
U € Clop(X).

< Let h(U) = s~ ![U] be the representation of h by means of a function
s € Cy(Y,X). Assign Z := ims and, for each element W € Clop(Z), define
the set (W) € Clop(Y) by the formula i(W) := s~![W]. Verification of
the assertions of the theorem causes no difficulties. >
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5.4. Proposition. Let FE and F' be order-dense ideals of Coo(Q). A map-
ping W: E — F' is an orthomorphism if and only if there exists a function
w € Cxo(Q) such that

W(e) =we (e€E).
For every orthomorphism W, such a function w is unique.

<1 The assertions stated are a reformulation of Theorem 2.3 with account
taken of Theorem [12: 0.3.4]. >

The relation W(e) = we is called the representation of the orthomor-
phism W by means of the function w. Observe that, due to Theorem [12: 0.3.4],
the last proposition describes the structure of orthomorphisms acting in arbi-
trary K-spaces.

5.5. Given arbitrary functions s € Cy(Q, P) and e € Cs(P), the function
ces: @ — Ris defined as follows:
e(s(q) if ¢ € dom s,
o= {00
0 if ¢ € Q\ dom s.

Of course, to ensure correctness, while using the notation ee s, we must always
have in mind a fixed set () containing dom s. Obviously, the function e ® s is
continuous but, in general, does not belong to Cx (@), since it can assume
infinite values on a set with nonempty interior. The totality of all functions
e € Co(P) for which e @ s € U (Q) is denoted by Cs(P).

Proposition. Let h: Pr(Cso(P)) — Pr(Cso(Q)) be a ring homomor-
phism and let hC'(P) be the order-dense ideal of Co(P) defined in 3.3. Then

where h(U) = s~1[U] is the representation of h by means of an s € Cy(Q, P)
(With respect to the natural representations of Pr(COO(P)) and Pr( (Q) )

< The claim follows from Propositions 3.3 and 5.2. >

A continuous function s: Q — P is called o-ezact, if s7'[c] G] = cl s~ [G]
for every open o-closed subset G C P. Below (see. 6.1), this property of
a function is considered in more detail.
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Lemma. Denote the image of a function s € Cy(Q, P) by R.

(1) For every function e € Cs(P), the intersection RNdom e is dense in R,
ie., Cs(P) C {e € Cx(P): e|lr € Coo(R)}.

(2) If the restriction s|® is a o-exact function then Cs(P) = {e € Coo(P) :
elp € Cso(R)} and Co(R) = {e|r : e € Cs(P)}.

< (1) Consider a function e € Cg(P). If there were a nonempty open
set W C R disjoint from dom e then the function e ® s would assume infinite
values on the nonempty open set s~1[W], which would contradict the inclusion
eeo s € Cx(Q). Consequently, the intersection R N dome is dense in R.

(2) Let a function e € Cs(P) be such that the intersection R N dome
is dense in R. Then, using the fact that the function s|® is o-exact and
the intersection R N dome is a o-closed open subset of R, we obtain

cl(eos) 'R] = cls dome] = cls ' [R N dome]
=5t [cl(RNdome)] = s Y R] = dom s,

and the first equality is established. The second equality follows from the first
one due to the Tietze-Urysohn theorem. >

Remark. The requirement in condition (2) of the lemma, that the func-
tion s|® be o-exact, is essential since the set Cs(P) is not in general determined
by the image of s. Indeed, suppose that p € P is not a P-point, i.e., the in-
tersection of some sequence of neighborhoods of p is not a neighborhood of p.
Let P:= P U {oo} be the enrichment of P by a new isolated point co. Then
the identity function s: P — P and the function 5 := s U {(oo,p)}: PP
have the same image, while the sets Cs(P) and C5(P) does not coincide.

5.6. If E C Coo(P) and R C P then the set {e|p : e € E} is denoted
by E|g.

Lemma. Denote the image of a function s € Cy(Q), P) by R and assume
that the function s|® is o-exact. Then

(1) Cx(R) is a vector sublattice of Coo(R);
(2) if E is an ideal of the K-space Cs(P) then E|p is an ideal of the vector
lattice C'oo(R).

< Assertion (1) readily follows from Lemma 5.5(2). Let us prove (2).
Assume that a function g € C'(R) satisfies the inequalities 0 < g < e|g for
some positive element e € E. In view of Lemma 5.5 (2), there is a positive
function e € Cg(P) such that g =é|g. TheneAe € F and g = (e Ae)|g. >
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5.7. Proposition. Let E be an order-dense ideal of C(P) and let F
be an order-dense ideal of Co(Q)). A mapping S: E — F is a shift operator
if and only if there exists a function s € Cy(Q, P) such that Se = e e s for
alle € E.

< Sufficiency can be easily established with the help of Theorem 3.9.
Let us show necessity. Suppose that S: E — F is a shift operator and
h: Pr(E) — Pr(F) is its shadow. Represent the algebras Pr(F) and Pr(F)

as Clop(P) and Clop(Q) and consider the representation h(U) = s~ '[U] of

the corresponding interpretation h: Clop(P) — Clop(Q) of the homomor-
phism h by means of an s € Cy(Q, P). According to Proposition 5.5, the equal-
ity hC'(P) = Cs(P) holds. Since the operators (e — e o s): Cs(P) = Cx(Q)
and Sp,: hC(P) — Cx(Q) have the same shadow h and satisfy the equalities
1pes = S,(1p) = h(1)1q, they coincide in view of Proposition 3.7. Therefore,
Se=Sp,e=cesforallec E. >

5.8. The function s connected with the shift operator S in the way
described in the last proposition is not unique in general. Indeed, assume
that the compact space P contains two distinct nonisolated points p; and po,
assign £ := {e € Cx(P) : e(p1) = e(p2) = 0} and consider the func-
tions s1,s9: @ — P identically equal to p; and pg, respectively. Then
cesi—cesy—0forallec FE.

The following proposition clarifies the question about unique representa-
tion of a shift operator.

Proposition. Let E be an order-dense ideal of Coo(P), let F' be an order-
dense ideal of Cx(Q), and let S: E — F be a shift operator. Assign
Qo :=suppim S = clJ,c g supp Se.

(1) If functions s1, s2 € Cy(Q, P) satisfy the equalities Se = ces1 = c® sy
for all e € E then )y C dom sy Ndom sy and s1 = S9 on ().

(2) There exists a unique function s € C(Qo, P) such that Se = c e s
for all e € E. Furthermore, if s is such a function then h(U) = s U] is
a representation of the shadow h of the operator S.
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< (1) Denote by D the totality of all points in P, at which some functions
in £ are nonzero. Obviously, the set s;*[D] is dense in Qp; therefore, it is
sufficient to establish the equality s; = s9 on this set. Take an arbitrary point
q € s7'[D] and assume to the contrary that s1(q) # s2(q). Since s1(q) € D,
there exists a function e € E that satisfies the relations e(s1(g)) # 0 and
6(82 (q)) = 0, which contradicts the equality ¢ @ s1 = ¢ @ s9.

(2) Existence of the function s follows from Proposition 5.7, and its
uniqueness from assertion (1). The fact that s represents the shadow of S
ensues from the proof of the Proposition 5.7. >

If a function s satisfies the conditions of assertion (2) then the relation
Se = e e s is called the representation of the shift operator S by means of
the function s. Observe that, due to Theorem [12: 0.3.4], Propositions 5.7
and 5.8 describe the structure of shift operators acting in arbitrary K-spaces.

5.9. The following proposition shows that every shift operator (to within
an isomorphism) is the operator of restriction onto a fixed set.

Proposition. Let E be an order-dense ideal of Co(P), let F' be an order-
dense ideal of Cso(Q)), and let S: E — F' be a shift operator. Then there exist
a closed subset R C P and a mapping i: E|p — F such that

(1) E|g is a vector sublattice of the K-space C(R);
(2) 1 is a linear and order isomorphism of E|r onto im S;
(3) Se=i(e|g) foralle € E.

< Let Se = e e s be the representation of S by means of a function
s € Co(Q,P). Assign R := ims and, for each element g € E|g, define
the function i(g) € C(Q,R) by the formula i(g) := g e s. Verification of
assertions (1)—(3) causes no difficulties. >
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5.10. Theorem. Let E be an order-dense ideal of Co(P) and let F
be an order-dense ideal of Cs(Q). A mapping T: E — F is a weighted shift
operator if and only if there exist functions s € Cy(Q, P), w € C(P), and
W e Cx(Q) such that we e s € Coo(Q) and Te = W (we o s) for all e € E.

-
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< The claim readily follows from Propositions 5.4 and 5.7. >

5.11. Simple examples show that the components of a representation
Te = W(we o s) of a weighted shift operator 7" are not unique. However,
omitting certain details, we may say that the function s is unique and W is
uniquely determined by the choice of w. This observation can be precisely
stated as follows:

Proposition. Let E be an order-dense ideal of Co(P), let F' be an order-
dense ideal of Co(Q)), and let T: E — F be a disjointness preserving regular
operator. Assign ()y := suppim7T.

(1) Let functions s1,s2 € Co(Q, P), wi,we € Co(P), and W1,W5 € Co(Q)
be such that Te = Wi(wie @ s1) = Wa(wae @ s) for all e € E. Then
Qo C domsi Ndomse and s1 = s9 on Qp. If, in addition, wy = wy then
W1 = W2 on Qo.

(2) Let a positive function w € Cy(P) be such that T is wide at 1/w
(see 3.6). Then there exist unique functions s € C(Qq, P) and W € Cw(Q)
such that W = 0 outside Qg and Te = W (we o s) for all e € E. Furthermore,
supp W = s~ !suppw] = Qqp, Se = e ® s is a representation of the shift S of
the operator T, and h(U) = s~![U] is a representation of its shadow h.

< Assertion (1) follows immediately from Proposition 4.1 (due to 5.4
and 5.8). Let us show (2). Existence of functions s and W ensues from
Theorems 4.2 and 5.10, and their uniqueness from assertion (1). Connection
of the function s with the shift and shadow of the operator 7T follows from
Propositions 4.1 (1) and 5.8 (2). ©>
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If s, w, and W satisfy the conditions stated in assertion (2), then the re-
lation T'e = W (we @ s) is called the representation of the weighted shift oper-
ator T" by means of the functions s, w, and W. Observe that, due to the The-
orem [12: 0.3.4], assertions 5.10 and 5.11 describe the structure of weighted
shift operators acting in arbitrary K-spaces.

Remark. If Te = W(wees) is a representation of a weighted shift oper-
ator T then the operators T, T, and |T'| admit the following representations:
Tte=WT(wees), T"e=W (wees), |Tle=|W|(wees).

5.12. Given arbitrary functions f, g € C(Q,R), the product fg € C(Q,R)
is defined by the rule

f(@)g(q) if the product f(q)g(q) makes sense,
(fg)(q) := i.e., does not have the form 0- =400 or Foo -0,

0 if f =0 or g =0 in a neighborhood of ¢
on a dense subset of () and then extends onto the entire space ) by continuity.

Theorem. Let E be an order-dense ideal of Co(P), let F' be an order-
dense ideal of Co(Q)), and let T: E — F be a disjointness preserving regular
operator. Consider the representation h(U) = s '[U] of the shadow h of
the operator T' by means of a function s € Cy((Q), P). Then there exist a family
(we)eez of positive functions in Coo(P) and a family (Wg)ecz of pairwise
disjoint functions in C(Q) such that 1/we € E for all £ € Z and

Te=o0) Welweees) (€ b). (*)
£eE
P \Q_, G1e$ o, A .
P % os Q Q ! : f ;
‘ ° n? o 3
% 22 m em Wz) ‘ R ‘ --“:’-::..E..-) Jéll “ \ Te
| E f I S
P P '».___g__ 0 0 o
wg“" o fs

-------- >

<1 The assertion stated is a reformulation of Theorem 4.5 with account
taken of Proposition 5.11 (2). ©>
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Observe that the functions wee ® s in the representation (x), being contin-

uous functions from @ into R, need not belong to Cso(Q) while the products
We(wee @ s) do belong to Coo(Q).
We call the relation

Te = O—Z We(wee o s)
ez

the representation of the operator T by means of the functions s, wg, and We.
Observe that, due to Theorem [12: 0.3.4], the last theorem describes the struc-
ture of disjointness preserving regular operators acting in arbitrary K-spaces.

Remark. If Te = 0y ..z We(wee o s) is a representation of the opera-
tor T then the operators T+, T, and |T| admit the following representations:

Tre = O—Z Wg’(wge °5),

§eE

T e = o- W§_ (wge ° S),
§eE

|T|e = O—Z |We|(wee @ )
§EE

The remainder of the current section is devoted to representation of op-
erators in Banach—Kantorovich spaces.

5.13. If X and Y are ample CBBs over () (see [12: Chapter 2], wherein
ample CBBs are called “complete”), u € Co(Q, X) and w € Cy (Q, B(X, )))),
then the section ext(w ® u) € Coo(Q, ) is denoted by w ® w.

Proposition. Let X and Y be ample CBBs
over () and let E and F be order-dense ideals of X(9)
Coo(Q). A mapping W: E(X) — F(Y) is an or- y
thomorphism if and only if there exists a section
w e COO(Q,B(X,J/)) such that Wu = w ® u for
all w € E(X). For every orthomorphism W, such
a section w is unique. Furthermore, |W|(e) =
|wle for all e € E.

< Let W: E(X) — F()Y) be an orthomor-
phism. Consider the representation |W|(e) = ge
of the orthomorphism |W|: E — F by means of
a function g € Cx(Q) (see 2.4 and 5.4). Denote by D the (open, dense)
set of all points of () at which the function ¢ is finite and some functions
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in £ are nonzero. In addition, assign E; := E'N C(Q). Define the mapping
wo: q € D w(q) € B(X(q),y(q)) as follows: for every ¢ € D and x € X(q),
take a section u € Eq(X) satisfying u(q) = x (such a section exists in view
of [12: 1.3.11]) and assign wq(q)z := (Wu)(q). Correctness of this definition
and boundedness of the operator wg(q) are ensured by the relations

(W) (g)|| = [Wul(g) < (IWlul)(q) = (glul)(a) = 9(a)[u(q)]

that are valid for all ¢ € D and u € E;(X). By Theorem [12: 2.2.13],
we have wg € C(D,B(X,Y)). Assign w = ext(wy) € Coo(Q, B(X,))).
The construction of the section w directly implies that Wu = w ® u for all
u € E1(X). The set E1(X) is an order-dense ideal of the BKS E(X') and thus
approximates the latter. Therefore, in view of 2.6, the orthomorphisms W and
u +— w ® u coincide on the entire space E(X).

Show uniqueness of w. Suppose that sections wy,ws € Cy (Q, B(X, y))
satisfy the equality w1 ® u = wy ®@ u for all u € E(X). Denote by Dq the set
of all points of @), at which some functions in E are nonzero, and assign
D := Dy Ndomw; N domws. Consider a ¢ € D and an z € X(q). In view
of [12: 1.3.11], there is a section u € E(X') such that u(q) = x. Therefore,

For proving the equality w; = ws, it remains to observe that the set D is dense
in Q.

Let us establish the equality |W|(e) = |wle. From [12: 1.3.11] it follows
that

lw| =sup{Jw@u|: ve C@,X), |ul <1}.

Therefore, for all positive e € E, we have

|We = sup |Wu| = sup |W(eu)|

lule lul<1

= sup |w®(eu)| = sup |w®u|e =lwle. >
[ul<1 [ul<1

The relation Wu = w ® u is called the representation of the ortho-
morphism W by means of the section w. Observe that, due to the Corol-
lary [12: 2.4.4], the last proposition describes the structure of orthomorphisms
acting in arbitrary BKSs.
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5.14. Proposition. Let X and ) be arbitrary CBBs over ) and let ) be
ample. Suppose that E is an order-dense ideal of Co(Q)), U and V are lattice-
normed subspaces of E(X) and E(Y), and U approximates E(X). A mapping
I:U — V is an isometric embedding if and only if there exists an isometric
embedding i of X into Y such that I(u) =i ® u for all u € U.

< Only necessity requires verification. Let I: &/ — )V be an isomet-
ric embedding. In view of Corollary 1.8, there exists an isometric embed-
ding I: Co(Q,X) — Coo(Q,)) that extends I. Denote by X the am-
ple hull of X, represent Coo(Q,X) as Cux(Q, X)) (see [12: 2.4.8]) and con-
sider the representation f(u) = i1 @ u of the corresponding interpretation
I: Cso(Q,X) — Cso(Q,)) of the orthomorphism I by means of a section
i € Coo(Q,B(X,Y)). It is not difficult to become convinced that i is
an isometric embedding of X into ). For each point ¢ € Q, assign i(q) :=
f(q)‘X(q). By the definition of a homomorphism (see [12: 1.4.2]), we have
Q®ie C(Q®X,Q®Y). Therefore, Q@i = (Q®1)|gex € C(QRX,Q®Y),
ie., i € Homg(X,)); consequently, i is an isometric embedding of X into V.
It remains to observe that I(u) = I(u) =i Qu=iQ@u for allu eU. >

The following result supplements the interpretation [12: 2.4.1] of isometric
LNSs.

Corollary. Let X and Y be ample CBBs over () and let E be an order-
dense ideal of C(Q). A mapping I: E(X) — E(Y) is an isometric embedding
(an isometry) if and only if there exists an isometric embedding (an isometry) i
of X into (onto) Y such that I(u) =i ® u for all u € E(X).

Due to the Corollary [12: 2.4.4], the last assertion describes the structure
of isometric embeddings of arbitrary BKSs.

5.15. Lemma. Suppose that X is an ample CBB over P, s € Cy(Q, P),
and u € Coo(P, X). If |u| € Cs(P) then ue s € Co(Q, X @ 5).

< First, the domain of definition of the section u e s coincides with
dom(]u]es) and, therefore, it is dense in () due to the containment |u| € Cs(P).
Second, if the section ues has a limit at the point ¢ € @) then ¢ € dom |u e s| =
dom(|u| @ s) = dom(ues). >

Observe that ampleness of X does not ensure that of X e s. Indeed, if
the stalk X'(p) is infinite-dimensional, the space @ is infinite, and the function
s: (Q — P is constant and equal to p, then, by Theorem [12: 2.5.3], the bundle
X e s is not ample.
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5.16. Lemma. Suppose that X is an ample CBB over P, E is an order-
dense ideal of Coo(P), F is an order-dense ideal of Coo(Q), and S: E — F' is
a shift operator. Denote the BKS E(X) by U and consider the operator of norm
transformation Sy : U — SU (see 0.6). Let Se = e @ s be the representation
of the operator S by means of a function s € Cy(Q, P). Then there exists
an F-isometric embedding i: SU — F(X e s) such that iSyu = u e s for all
ue E(X).

< Define an operator ig: Sy[U] — F(X e s) by letting ig(Syu) = ues
for all u € U. Correctness of this definition is justified by the equalities
|ues| =|ules = Slul = |Syu| (v € U), which, in particular, imply that
lio(v)| = lv| for all v € Sy[U]. By Corollary 1.8, the operator iy extends to
the desired isometric embedding i: SU — F(X es). >

5.17. Proposition. Let X and ) be ample CBBs over P and () and
let E and F' be order-dense ideals of Coo(P) and Coo(Q), respectively. A map-
ping S: E(X) — F(Y) is a shift operator if and only if there exist a func-
tion s € Cy(Q, P) and an isometric embedding i of X e s into ) such that
Su=1i® (ues) for allu € E(X). In this case, |S|le = ee s for alle € E.

f(—q; V(q)

< Sufficiency is easily verified with the help of Theorem 3.15, and
necessity can be established by consequent application of Proposition 3.14,
Lemma 5.16, and Proposition 5.14. >

If we additionally require in the statement of the last proposition that
the function s be defined on suppim S (see 0.10), then the choice of s and i
that provide the representation Su = i ® (u  s) becomes unique (this can be
easily deduced from Proposition 5.8). In this case, the relation Su =i ® (ues)
is called the representation of the shift operator S by means of the function s
and the embedding i. Observe that, due to the Corollary [12: 2.4.4], the last
proposition describes the structure of shift operators acting in arbitrary BKSs.
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5.18. Theorem. Let X and ) be ample CBBs over P and () and let E
and F be order-dense ideals of Cx(P) and Cw(Q), respectively. A map-
ping T: E(X) — F(Y) is a weighted shift operator if and only if there ex-
ist a positive function w € Cx(P), a mapping s € Cy(Q, P), and a section
W € Co(Q,B(X ®5,Y)) (where X o s is the ample hull of X e s) such that

Tu=W ® (wues) forall ue EX),
|Tle = |W|(wees) forall ec E.

Furthermore, we may assume that doms = suppim7 and W = 0 outside
suppimT.

< Sufficiency is easily verified with the help of Propositions 5.13 and 5.17.
Let us show necessity. If T: E(X) — F()) is a weighted shift operator
then, according to Theorem 4.6, there T
exist a BKS V' over an order-dense  £(X)
ideal F' C Cx(Q), a scalar ortho- w\ ‘
morphism w: E(X) = Cx (P, X) gen-
erated by a positive orthomorphism (WE)(X) S F(2)
w: B — Cx(P), a shift operator X
S: (wE)(X) — V', and an orthomor- ()es i®y W ()
phism W: V' — F()) such that

T =WoSow, |T|= |W|o|§|o|w|.

Due to the Corollary [12: 2.4.4], we
may assume that V' = F'(Z), where F'(Xes)




88 A. E. Gutman

Z is an ample CBB over (). According to Proposition 5.17, there is a func-
tion s € Cy(Q, P) and an isometric embedding ¢ of A @ s into Z such that

Su=1i® (ues) for all u € (WE)(X). In view of the Corollary [12: 2.1.10],
the homomorphism ¢ extends to an isometric embedding 7 of X’ e s into Z. Due
to Proposition 5.13, the orthomorphism (v — W(i®v)): F'(X es) = F()
can be represented as v — W ®v, where W € C (Q, B(X es, y)) It is clear
that the constructed functions w, s, and W are those desired. >

If functions w, s, and W satisfy the conditions stated in Theorem 5.18 then
the relation Tu = W @ (wu e s) is called the representation of the operator T
by means of s, w, and W. Due to the Corollary [12: 2.4.4], the last theorem
describes the structure of weighted shift operators acting in arbitrary BKSs.

5.19. Let Y be a CBB over @ and let (Q¢)¢ez be a family of pairwise
disjoint elements of Clop(Q). Suppose that, for each £ € =, we are given a sec-
tion ve € C(Dg,Y) over a dense subset De C Q. Assign D := Q\ cl Ugez Qe
It is clear that the union Uges D¢ U D is a dense subset of () and the func-
tion (Jgez ve U 0[p defined on it is a continuous section of Y. In the sequel,
the maximal extension of this continuous section is denoted by @&E vg.

Theorem. Suppose that X and ) are ample CBBs over P and (),
E and F are order-dense ideals of Coo(P) and Cso(Q), T: E(X) — F())
is a disjointness preserving bounded operator, and h(U) = s~[U] is the rep-
resentation of the shadow h of T' by means of a function s € Cy(Q, P). Then
there exist a family (w¢)¢ez of positive functions in Coo(P), a disjoint family
(Q¢)ecz of elements in Clop(Q), and a section W € Cu (Q, B(X e s, y)) such
that supp W = ¢l U§€E Q¢ =doms =suppimT, 1/we € E for all { € =, and

Tu= @ W@ (weu o s)|q, (u € E(X)). ()
EeE
N mes/ Ol
wy ; = 3 -
';" P '\.. _3___;"' Q Ql vy Tu
’ U Up @S V2 H !
e NN 0. Y e e (A
E— = 2 e — s e
P voP sl Q Q@2 Q1 Q2Qs3 Q
e/ s (e B
P *s .Q Qs

< According to 5.18, this assertion reformulates Theorem 4.8. >
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Observe that the functions w¢u @ s in the representation (*) being con-
tinuous sections of the bundle X e s, need not belong to C'w (Q, X e s), while
the restrictions (weu @ s)|, do belong to Cx (Qe, X ®s).

The relation Tu = Pecz W ® (weu @ s)|q, is called the representation
of the operator T (by means of s, we, Q¢, and W). Observe that, due to
the Corollary [12: 2.4.4], the last theorem describes the structure of disjointness
preserving bounded operators acting in arbitrary BKSs.

6. Interpretation for the properties of operators

The representation theorems of Section 5 allow us to interpret various
properties of orthomorphisms, shift operators, weighted shift operators, and
arbitrary disjointness preserving operators in terms of the properties of certain
components of their representation. As an illustration, we consider order
continuous operators, injective operators, and operators with ideal image.

Throughout the section, P and () are extremally disconnected compact
spaces.

6.1. Lemma. Let X and Y be totally disconnected compact spaces and
let s: X — Y be a continuous function.

(a) The following assertions are equivalent:
(1) s~Yint F] = int s71[F] for every closed subset F C Y;
(2) s7clG] = cls7YG] for every open subset G C Y;
(3) if F is a closed subset of Y and int F = & then int s~ ![F] = &;
(4) if G is an open subset of Y and c1G =Y then cls !G] = X;
(5) the inverse image s '[D] of every meager subset D C Y is
a meager subset of X;
(6) the inverse image s'[D] of every comeager subset D C Y is
a comeager subset of X.
(b) The following assertions are equivalent:
(1) s~ ![int F] = int s~ [F] for every closed o-open subset F' C Y;
(2) s7clG] = cls7YG] for every open o-closed subset G C Y;
(3) if F is a closed o-open subset of Y and int F' = &
then int s7![F] = @;
(4) if G is an open o-closed subset of Y and clG =Y
then cls71[G] = X.

A function s satisfying any of the conditions in (a) (in (b)) is called ezact
(o-ezxact).



90 A. E. Gutman

Remark. In the case when Y is an extremally disconnected compact
space, the list (a) can be supplemented by the following equivalent assertions:

(7) if U is a clopen subset of X then s[U] is a clopen subset of Y;
(8) if U is an open subset of X then s[U] is an open subset of Y.

As is known, a function s satisfying condition (8) is called open. Thus,
if Y is extremally disconnected then the classes of exact and open functions
s € C(X,Y) coincide. The author does not know analogs of assertions (7)
and (8) equivalent to the fact that the function s is o-exact.

6.2. Proposition. Let X and Y be totally disconnected compact spaces
and let h: Clop(X) — Clop(Y') be a ring homomorphism. Consider the repre-
sentation h(U) = s~1[U] of h by means of a function s € Cy(Y, X). The homo-
morphism h is o-continuous (sequentially o-continuous) if and only if the func-
tion s is exact (o-exact).

< There is a proof in [26: Section 22]. >

6.3. Let U and V be LNSs over order-dense ideals of the K-spaces Coo(P)
and Co(Q), respectively. If T: U — V is a disjointness preserving operator
and h(U) = s~1[U] is the representation of the shadow h of the operator T by
means of a function s € Cy(Q, P), then we say that s is the shift function of
the operator 7.

Theorem. Suppose that E and F are order-dense ideals of C(P) and
Cxo(Q) (respectively), U is a BKS over E, V is an LNS over F, T: U — V
is a disjointness preserving bounded operator, and s € Cy(Q, P) is its shift
function. The operator T is o-continuous (sequentially o-continuous) if and
only if the function s is exact (o-exact).

< Since the function s represents the shadow of 7', the claim follows
from 6.2 and 1.6. >

6.4. Proposition. Let X and Y be totally disconnected compact spaces
and let h: Clop(X) — Clop(Y) be a ring homomorphism. Consider the rep-
resentation h(U) = s71[U] of h by means of a function s € Cy(Y, X). The ho-
momorphism h is injective if and only if the function s is surjective.

6.5. Theorem. Suppose that E and I are order-dense ideals of Coo(P)
and C(Q) (respectively), T: E — F is a disjointness preserving regular
operator, and s € Cy(Q, P) is its shift function. The operator T is injective if
and only if the function s is surjective.
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<0 Necessity: In view of Proposition 6.4, it is sufficient to assume injectiv-
ity of the operator T" and establish injectivity of its shadow h: Pr(E) — Pr(F).
Consider an arbitrary projection 7 € Pr(E) and suppose that h(m) = 0. Then
Tme = 0 for all e € E. Due to injectivity of T, the latter means that me = 0
forallee E, ie., m=0.

Sufficiency: Let

Te = @ W (wee o s)|,
£e=E

be the representation of the operator T’ by means of s € Cp(Q, P), we € Coo(P),
Q¢ € Clop(Q), and W € Co(Q). Assume that the function s is surjective.
For each § € =, assign Py := supp wg. Consider an arbitrary functions e € £
and suppose that T'e = 0. Then W (w¢e o s)|g, = 0 for all £ € Z. The latter
means that, for each § € =, the equality weees = 0 holds on ()¢, which implies
the equality wge = 0 on s[Q¢] and, hence, the equality e = 0 on s[Q¢] N Fx.
Thus, the function e is equal to zero on the union

D = U S[Qg] N Pg.

qa=

It remains to show that the set D is dense in P.
Let a clopen set U be contained in the difference P\D. Then, for all
e € E and £ € Z, the equality we(U)e = 0 holds on Ut U PgL. From

the inclusion s[Q¢] N Pe C U~ it follows that we(U)e = 0 on s[Q¢]. Therefore,
(we(U)e) @ s = 0 on Q¢ and, hence, W ((we(U)e) o s)|Q5 = 0. Arbitrariness
of £ € = allows us to conclude that T(U)e = 0, and arbitrariness of e € F yields
the equality h(U) = 0. According to injectivity of h (see Proposition 6.4),
the latter means that U = &. >

6.6. Remark. The author did not succeed in obtaining an adequate
criterion for injectivity of an operator in BKSs. Simple examples show that
direct generalization of the last theorem to the case of an operator in BKSs
fails. Interpretation for injectivity of such operator must involve the outer
weight of the representation.

6.7. Proposition. Let X and Y be totally disconnected compact spaces
and let h: Clop(X) — Clop(Y') be a ring homomorphism. Consider the rep-
resentation h(U) = s~'[U] of the homomorphism h by means of a function
s € Cy(Y,X). The equality im h = [0, h(1)] holds if and only if the function s
is injective.
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6.8. Lemma. A continuous function s: () — P is injective if and only
if the operator (e — e o s): C(P) — C(Q) is surjective.

< If the function s is injective then it is a homeomorphism of () onto im s.
In this case, every function f € C(Q) can be represented as g o s, where
g € C(ims). By the Tietze-Urysohn theorem, the function g extends to
an e € C(P).

If points q1,q2 € @ are different then there is a clopen set V' C @ that
contains only one of them. If the operator e — eos is surjective then the char-
acteristic function of V' can be represented as e o s, whence s(q1) # s(q2). >

6.9. In the sequel, we discuss interpretation of the fact that an operator
has ideal image. In order to clarify this property, we present a result of
[16: Lemma 2.7].

Lemma. Let E and F' be vector lattices and let T': E — F' be a dis-
Jjointness preserving regular operator. The following assertions are equivalent:

(1) imT is an ideal of F’;
(2) im |T| is an ideal of F;
(3) |T|[0,€e] = [0, |T|e] for all positive e € E.

The list of equivalent properties (1)—(3) of the operator T' can be supple-
mented by the following one: the operator T takes ideals of £ into ideals of F',
i.e., for every ideal Ey C E, the set T'[Ey] is an ideal of F'.

6.10. Proposition. Suppose that E and F are order-dense ideals of
Coo(P) and Coo(Q) (respectively), T: E — F is a disjointness preserving regu-
lar operator, and s € Cy(Q, P) is its shift function. Assume that (T'e) = (imT)
for some element e € E. The image of T' is an ideal of F' if and only if the func-
tion s is injective.

< Due to Theorem 1.1, we may assume that the operator 7' is positive
and e > 0. Moreover, for the sake of convenience, we assume that (im7") =1,
ie., doms = Q.

Let the image of T" be an ideal. In view of Lemma 6.8, to prove injectivity
of s, it is sufficient to fix an arbitrary function 5 € C(Q), 0 < f < 1, and
represent it as cwos, where o« € C'(P). According to Lemma 6.9, the inequalities
0 < fTe < Te imply existence of an element e € E such that 0 < e < e and
Te = fTe. Let a function a € C(P) be such that e = ae. Then, according
to 3.13, we have

(o s)Te =T(ae) =Te = pTe,

whence a0 s =  due to the equality (Te) = 1.
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Suppose now that the function s in injective. Fix arbitrary elements
e € F and f € F satisfying the inequalities 0 < f < Te and show that
f € imT. Let a function f € C(Q) be such that f = fTe. By injectivity
of the operator (e — eos): C(P) — C(Q) (see 6.8), there exists a function
a € C(P) such that o s = f. Then ae € F and, in view of 3.13, we have
T(ae) = (aos)Te=pTe=f. >

6.11. Existence of an element € € E satisfying the equality (T'e) = (imT')
is an essential condition in the statement of Proposition 6.10. Without this
requirement, the function s need not be injective even when 7' is a surjective
shift operator. We will give a corresponding example in this subsection.

Lemma. Consider functions s € Cy(Q, P) and f € Cx(Q). Suppose
that there is an open set D C P such that s is injective on s~ ![D] and f is
identically zero outside s 1[D]. Then f = e s for some function e € Co(P).
For a positive and/or bounded function f, the corresponding function e can
be chosen with the same property.

<1 Denote the image of s by R and define a function g: R — R as follows:

[ f(s7Hp) ifpeRND,
9(p) == { . e B,

Fix an arbitrary point p € R and show that the function g is continuous at p.

(1) Suppose that p € RND. Since the set D is open, we thus have a clopen
set U C P such that p € U C D. From injectivity of s on s~![D] it follows
that the restriction s|V is a homeomorphism of s~1[U] onto RN U. Therefore,

the function g|y = f o (3|U)71 is continuous.

(2) Suppose now that p € R\D. Fix an arbitrary number ¢ > 0 and show
that |g| < € in a neighborhood of p. Assign Q. := {q €eqQ: |flq = 5}.
Taking account of the fact that f = 0 outside s~'[D], we have the inclusion
Q- C s !DJ; hence, s[Q.] C D. Since |f| < ¢ outside Q., we conclude that
lg| < € outside s[Q:]. It remains to observe that R\s[Q.] is a neighborhood
of p in the space R.

Thus, the function g is continuous. Obviously, g ¢ s = f. This im-
plies that g € Coo(R) (if lg| = oo on a nonempty open set W C R then
|f| = |g ® s| = 0o on the nonempty open set s~ '[IW], which contradicts the con-
tainment f € C’OQ(Q)). According to the Tietze-Urysohn theorem, there exists
a function e € Cso(P) such that e = g on R. Obviously, e is the desired func-
tion. Observe that positiveness and/or boundedness of the function f imply
the same property of g, which in turn allows us to choose a function e with
the appropriate property. >
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Example. Asis known, the remainder SN\N contains a discrete set D
of cardinality continuum (see [7: Chapter IV, Problem 52]). Let s: 8D — N
be the continuous extension of the identity mapping of D. Introduce the no-
tation

{e € C(BN): e =0on D\D},
—{/€C(8D): [ =00n BD\D},

and assign Se := eo s for all e € E. Then S: E — F'is a surjective shift
operator, while its shift function s is not injective.

< First of all, show that s is actually the shift function of the operator S.
To this end, we should establish the equality suppim S = 5D (see 5.8). Since
the subset D C SN is discrete, each point ¢ € D has a neighborhood U C SN
such that U N D = {q}. Then xy € F and

(Sxv)(q) = xv(s(q) = xv(g) = 1.

Thus, D C suppim .S, whence suppim .S = 5D.

Now, show that the operator S is surjective. Fix an arbitrary element
f € F and assign D := N\(D\D). Then D is an open subset of SN,
s7UD]=s"1D]= D, s is injective on D, and f is the identical zero outside D.
Therefore, in view of the last lemma, there exists a function e € C(SN) such
that f = eos. It is clear that e € E and, therefore, f € im S.

It remains to observe that the function s: 5D — SN is not injective, since
(see [7: Chapter VI, Problem 180])

1| i
8D = 227 > 22 = |pN|,

where |X| stands for the cardinality of a set X. >

6.12. Theorem. Suppose that E and F' are order-dense ideals of C(P)
and C(Q) (respectively), T: E — F is a disjointness preserving regular
operator and s € Cy(Q, P) is its shift function. The image of T is an ideal
of F' if and only if, for every element e € E, the function s is injective on the set
supp T'e. The last property of the function s is equivalent to its injectivity on
the union U{supp Te : e € E} (which is an open dense subset of dom s).

< Necessity: Suppose that the image of 7" is an ideal and consider
an arbitrary element e € E. It is clear that the image of the composition
(T'e) o T is an ideal too and, in view of Proposition 6.10, its shift function is
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injective. It remains to observe that the shift function of the operator (T'e)oT
coincides with the restriction of s onto supp Te.

Sufficiency: Theorem 1.1 allows us to assume that the operator 7" is posi-
tive. Fix arbitrary positive elements e € F and f € F satisfying the inequality
f < Te and show that f € im7T. Since the function s is injective on the set
supp Te, in view of Proposition 6.10, the image of the composition (Te¢) o T
is an ideal of F'. According to Lemma 6.9, the inequalities 0 < f < (Te)Te
imply existence of an element ey € F such that 0 < ey < e and (Te)Tey = f;
whence Teg = f.

Injectivity of the function s on each set of the form supp Te (e € E) implies
injectivity of s on the union U{suppTe : e € E}, since the containments
q1 € supp Te1 and g9 € supp Tes yield g1, g2 € suppT(\el| V |62|). >

Remark. Under the hypotheses of the last theorem, injectivity of
the function s on the union U{Supp Te : e € E} is not sufficient for the image
of T to be an ideal (here Suppf = {q € Q : flq) # 0}) Indeed, assign
P =@ = PN, fix a point p € P\N, and, naturally identifying C'(Q) and ¢*°,
consider the operator T': C'(P) — C((Q)) acting by the rule

e(p) ifn=1,
e(n)/n ifn>1

(Te)(n) = { (nen)

for all e € C(P). The image of T is not an ideal, since, for instance,
(1, %, . %, ...) belongs to im 7', but (1,0,0,...) does not. However, the shift
function s of the operator 7' is injective on the set U{SuppTe: e € E} = N,
since s(1) = p and s(n) = n whenever n € N\{1}.

6.13. As is known (see 2.8), every BKS over an order-dense ideal of
Coso(P) is a module over C'(P). A subset Uy of such BKS is called a C(P)-sub-
module of it, if au € Uy for all u € Uy and o € C(P).

Lemma. Suppose that E and F' are order-dense ideals of Coo(P) and
Coo(Q) (respectively), U is a BKS over E, and V is a BKS over F. The fol-
lowing properties of an operator T': U — V are equivalent:

(1) T takes C'(P)-submodules of U into C'(Q)-submodules of V;
(2) foreveryu € U and every € C(Q), there exists a function o € C(P)
such that T'(au) = fTu.

< It is sufficient to observe that the set {au: o € C(P)} is a C(P)-sub-
module of 4. >
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6.14. Proposition. Suppose that E and F' are order-dense ideals of
Coo(P) and Cuo(Q) (respectively), U is a BKS over E, V is a BKS over F,
T:U — V is a disjointness preserving bounded operator, and s € Cy(Q, P)
is its shift function. Assume that (Tu) = (imT) for some element u € U.
The operator T' takes C(P)-submodules of U into C(Q)-submodules of V if
and only if the function s is injective.

< For convenience, we assume that (im7") = 1, i.e., dom s = Q). Suppose
that T" takes C'(P)-submodules of ¢ into C'(Q)-submodules of V. In view of 6.8,
to prove injectivity of s, it is sufficient to fix an arbitrary function 5 € C(Q)
and represent it as a o s, where o € C(P). According to Lemma 6.13, there
exists a function a € C(P) such that T'(ou) = fTu. Then, due to 3.13, we
have

laos— || Tu| = |(a os)Tu— ﬁTﬂl = |T(aﬂ) — ﬂTﬂl = 0;

whence oo s =  in view of the equality (Tu) = 1.

Now, suppose that s is injective. Fix arbitrary elements v € U and
p € C(Q). According to surjectivity of the operator (e — eos): C(P) — C(Q)
(see 6.8), there exists a function o« € C'(P) such that « o s = . Then, due
to 3.13, we have

T(au) = (o s)Tu = Tu.
It remains to employ Lemma 6.13. >

6.15. Lemma. Let U be a BKS over an order-dense ideal of Cso(Q).
For any u,v € U, there is a function f € C(Q) such that

(u+ fo) = (u) Vv (v).

< As f we can take any function that is different from |u|/|v| every-
where. For instance, we may let

f=(Jul/lvl <2)3+ (Jul/lv] > 2)1.

Then the equality (u + fv) = (u) V (v) ensues from the following relations:

(u) v (v) < (lul # flol) < (u+ fo) <(u) V(v). >
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Theorem. Suppose that E and F are order-dense ideals of C(P) and
Coo(Q) (respectively), U is a BKS over E, V is a BKS over F, T: U — V
is a disjointness preserving bounded operator, and s € Cy(Q, P) is its shift
function. The operator T takes C(P)-submodules of U into C'(Q)-submodules
of V if and only if, for every element w € U, the function s is injective on the set
supp |Tu|. This property of the function s is equivalent to its injectivity on
U{supp |Tu| : w € U} (which is an open dense subset of dom s).

< Necessity: Suppose that the operator 1" takes C'(P)-submodules of U
into C(Q)-submodules of V and consider an arbitrary element v € U. It is
clear that the composition (T'u) o T preserves submodules too and, in view
of Proposition 6.14, its shift function is injective. It remains to observe that
the shift function of the operator (T'u) o T' coincides with the restriction of s
onto supp |Tu].

Sufficiency: Fix arbitrary elements v € U and S € C(Q). Since the func-
tion s is injective on the set supp |7Tu|, in view of Proposition 6.14, the com-
position (T'u) o T takes C'(P)-submodules of U into C'(Q)-submodules of V.
According to Lemma 6.13, there exists a function a € C(P) such that
(Tw)T(ovu) = BTu; whence, due to the relations

(T(ow)) = ((a e s)Tu) < (Tw),

we have T'(au) = fTu.

Show that injectivity of the function s on each set of the form supp |Tu|
(u € U) implies injectivity of s on the union U{supp |Tu| : v € U}. To this
end, it is sufficient to fix arbitrary elements uy,us € U and find a v € U such
that

supp |Tu| = supp | Tui | Usupp |Tus|.

According to the last lemma, there is a function § € C(Q) that satisfies
the relation

supp | Tuy + STuz| = supp | Tus | U supp | Tug|.
Injectivity of s on the set supp |T'uz]|, in view of Lemma 6.8, implies existence
of a function € C(P) such that « o s = 8 on supp |Tug|. It remains to

observe that

T(u; + aug) =Tuy + (e s)Tug = Tuy + fTug. >
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7. Comments

It is worth noting that as a rule we confine ourselves to considering
K-spaces and Banach—Kantorovich spaces. Generalizations of the obtained
results to the case of arbitrary vector lattices and lattice-normed spaces will
appear elsewhere.

7.0. Section 0 only contains the information that was not exposed in
the previous parts of the paper. For the basic definitions and facts about
the objects under consideration, we refer the reader to [12-15].

The schema of a formal mixing employed in the proof of Proposition 0.4
stems from [20,27,28]. The notion of the disjoint sum of a family of LNSs
(see 0.5) is introduced to be employed in the main result 4.8 on decomposition
of a disjointness preserving operator into weighted shift operators. The new
notion of the norm transformation of an LNS (see 0.6) is used for describing
vector shift operators in Section 3.

7.1. The shadow of an operator as a Boolean homomorphism (without
introducing the corresponding term) was first considered in [19] for lattice ho-
momorphisms and disjointness preserving operators in lattice-normed spaces.

In Section 1, we develop this notion and show that many properties of
disjointness preserving operators can be expressed in terms of their shadows.
In particular, this is true of certain questions of continuity. Most results stated
in Section 1 are published for the first time.

The problem of finding sufficient conditions for an operator to be bounded
or dominated is traditionally studied for disjointness preserving operators
(see [19: 6.5]). Y. A. Abramovich’s condition (R) [1: Theorem A] was the first
equivalent for boundedness of disjointness preserving operators weaker than se-
quential r-o-continuity. Later, this condition was also weakened. P.T.N. Mac-
Polin and A. W. Wickstead showed [22: Theorem 2.1| that, for a disjointness
preserving operator in vector lattices to be bounded, it is sufficient that the op-
erator under test be semibounded (the latter term is introduced in [14: 2.3]
and the result is presented in 1.10).

Attempts at generalizing the Abramovich-MacPolin-Wickstead criterion
to the case of operators in lattice-normed spaces cannot lead to a success,
since all the four types of boundedness considered in [14: 2.3] are pairwise dif-
ferent for that class of operators (the corresponding examples are presented
in [14: 2.4-2.6]). Thus the main problem about sufficient conditions for bound-
edness remains open for disjointness preserving operators in LNSs. A small
step in this direction is made in 1.13.



Disjointness Preserving Operators 99

7.2. An orthomorphism is a band preserving operator that is order-
bounded. The problem of finding sufficient conditions for boundedness of
disjointness preserving operators is actually solved for operators in vector
lattices (see [1: Theorem A; 22: Theorem 2.1] and Theorem 1.10). However,
the problem remains actual for operators in lattice-normed spaces (see 7.1).
Our Theorem 2.2 asserts that, for band preserving operators in LNSs, all
the types of boundedness coincide.

Subsections 2.3-2.10 are devoted to a study of the module structure in
a Banach—Kantorovich space and its relation to the notion of orthomorphism.
The results presented here are essentially known (see, for instance, [18]).

7.3. The study of multiplicative operators in vector lattices was initi-
ated by B.Z. Vulikh [29,31] who proved that o-continuous shift operators in
K-spaces with unity are multiplicative. Theorem 3.10 generalizes this result to
the case of arbitrary shift operators in arbitrary K-spaces. The idea of con-
sidering the shift of a disjointness preserving operator is not new. Analogs of
this notion occur, for instance, in [16] and in many papers about isometries of
LP-spaces.

7.4. The main criterion for WSW-representability stated in 4.2 is close
to [4: 3.12]. Some of the criteria presented in 4.4 and 4.7 are also known
(see [2-4]). Note that one of the sufficient conditions for WSW-representability
(the second proposition in 4.4) is not necessary. The corresponding counterex-
ample is given in 4.4. Existence of a similar example due to A.V. Koldunov is
mentioned in [4: 3.14].

It is worth observing that our notion of weighted shift operator differs
slightly from the analogous construction in the literature. The classical con-
struction does not contain an inner weight (see [5: Theorem 6; 6: Theorem 4.1;
19: Theorems 2.8 and 2.9; 2: Theorem 6; 4: 3.8-3.18]). We regard this circum-
stance as a small demerit of the theory which, in particular, restricts the class
of representations of vector lattices providing the WSW-representability and
makes the problem of a global WSW-representation more difficult.

None of the known results ensured representation of an arbitrary bounded
disjointness preserving operator on the entire domain of definition. Each rep-
resentation theorem either restricted the class of operators under consideration
(for instance by requiring order continuity), or restricted the class of spaces (for
instance, by considering only Banach lattices), or did not guarantee a represen-
tation on the entire domain of definition (but only, for instance, on its principal
ideals). In our opinion, the failure in searching for a global representation of
disjointness preserving operators is mainly determined by the absence of an in-
ner weight in the definition of a weighted shift operator. Involving an inner
weight allows us to decompose an arbitrary bounded disjointness preserving
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operator in lattice-normed spaces into the strongly disjoint sum of weighted
shift operators (Theorem 4.8). This result is new even for the case of operators
in K-spaces (Theorem 4.5).

7.5. Many facts presented in Section 5 are essentially known. Some of
them just repeat Y. A. Abramovich’s results and treat the corresponding rep-
resentations in more detail. Items 5.12-5.19 contain new material. The main
Theorems 5.12 and 5.19 interpret the decompositions 4.5 and 4.8 of disjoint-
ness preserving operators into sums of weighted shift operators in terms of
their functional representations.

7.6. The global representations 5.12 and 5.19 for a disjointness preserving
operator, as well as the notions of the shift of an operator and the correspond-
ing shift function, allow us to interpret the abstract properties of the operator
in terms of its concrete function representation or in terms of the properties of
its shift function. Some examples of similar interpretations can be found, for
instance, in [2-4].
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