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BANACH BUNDLES IN THE THEORY

OF LATTICE-NORMED SPACES. IV

DISJOINTNESS PRESERVING OPERATORS

A.E.Gutman

Abstract

In the present article, we study disjointness preserving operators that act in
K-spaces and lattice-normed spaces. In particular, we �nd their analytic represen-
tations and decompositions into simpler components. We study orthomorphisms,
shift operators, weighted shift operators, and arbitrary disjointness preserving
operators.
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This is the fourth part of the article the author intended as a paper on
Banach bundles in the theory of lattice-normed spaces (LNSs). The �rst three
parts were published in [12{14] and we sometimes appeal to the material of
these papers without explicit reference.

Disjointness preserving operators have its own theory rich in results and
treating such questions as boundedness, continuity, spectral and geometric
properties, multiplicativity, compactness, etc. The list of publications de-
voted to disjointness preserving operators is so extensive that it could serve
as a reason for a separate review. Leaving aside many rather interesting di-
rections, we will only concentrate our attention on analytic representation
and decomposition of disjointness preserving operators. B. Z.Vulikh [29{31]
was one of the �rst who considered these questions. Later, disjointness pre-
serving operators were studied by Y.A.Abramovich, E. L.Arenson, D.R.Hart,
A.K.Kitover, A.V.Koldunov, P.T.N.MacPolin, A. I. Veksler, A.W.Wickstead,
A.C. Zaanen, and many others (see, for instance, [1, 2, 5, 6, 16, 22, 33, 34]).
We also observe that the question of analytic representation of disjointness
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preserving operators includes such an extensive direction as descriptions of
isometries of vector-valued Lp -spaces (so-called Banach{Stone theorems).

In the present article, we study disjointness preserving operators that act
in K-spaces and lattice-normed spaces. In particular, we �nd their analytic
representations and decompositions into simpler components. We begin with
studying general properties of disjointness preserving operators; then we con-
sider orthomorphisms, shift operators, weighted shift operators, and, �nally,
return to arbitrary operators and apply the accumulated experience.

0. Prerequisites

In this section, we present some preliminary information. Note that we
give only those facts and de�nitions that were not presented in the previous
three parts of the paper.

0.1. Proposition. Let A and B be Boolean algebras.

(a) The following properties of a Boolean homomorphism h : A → B are
equivalent:
(1) h is o-continuous;
(2) if a subset C ⊂ A has a supremum then h(supC) = suph[C];
(3) if a subset C ⊂ A has an in�mum then h(inf C) = inf h[C];
(4) if (aλ)λ∈� is a net in A and aλ ↑ 1 then supλ∈� h(aλ) = 1;
(5) if (aλ)λ∈� is a net in A and aλ ↓ 0 then infλ∈� h(aλ) = 0.

(b) The following properties of a Boolean homomorphism h : A → B are
equivalent:
(1) h is countably o-continuous;
(2) if a countable subset C ⊂ A has a supremum then h(supC) =

suph[C];
(3) if a countable subset C ⊂ A has an in�mum then h(inf C) =

inf h[C];
(4) if (an)n∈N is a sequence in A and an ↑ 1 then supn∈N h(an) = 1;
(5) if (an)n∈N is a sequence in A and an ↓ 0 then infn∈N h(an) = 0.

If the Boolean algebra A is complete (σ-complete) then each of the �ve con-

ditions (a)
(
respectively, (b)

)
is equivalent to the following one: suph[D] = 1

for every (countable) partition D of unity in A.

In view of the equivalence of conditions (a)(1){(a)(3), o-continuous ho-
momorphisms are often called full or complete. Observe that the implication
(b)(5)⇒(b)(1) implies equivalence of countable and sequential o-continuity of
a Boolean homomorphism.
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0.2. Let A and B be Boolean algebras. We say that a ring homomor-

phism h : A → B dominates a function h0 : A → B (and write h0 6 h),

if h0(a) 6 h(a) for all a ∈ A.

Proposition. Let A and B be Boolean algebras. A ring homomorphism

h : A → B dominates a ring homomorphism h0 : A → B if and only if h0(a) =

h0(1) ∧ h(a) for all a ∈ A.

▹ The equality h0(a) = h0(1) ∧ h(a) readily ensues from the following

relations:

h0(a) 6 h0(1) ∧ h(a),

h0(a
⊥) 6 h0(1) ∧ h(a⊥),

h0(a) ∨ h0(a
⊥) = h0(1). ◃

0.3. Let f be an arbitrary positive element of a vector lattice E. We say

that an s ∈ E is an f -step element, if s =
∑n

i=1 λiπif for some λ1, . . . , λn ∈ R
and π1, . . . , πn ∈ Pr(E).

Proposition. Suppose that a vector lattice E possesses the principal

projection property (for instance, E is a Kσ -space). Let Ef be the ideal of E

generated by a positive element f ∈ E. Then, for every element e ∈ Ef and
every number ε > 0, there is an f -step element s ∈ Ef such that |s| 6 |e| and
|e− s| 6 εf . In particular, the set of all f -step elements is r-dense in Ef .

▹ Assume all the hypotheses of the proposition to be satis�ed and con-

sider an arbitrary element e ∈ Ef and a number ε > 0. Let numbers m,n ∈ N
be such that |e| 6 mf and 1/n 6 ε. Then the sum

−1∑
i=−mn

i

n

⟨
i− 1

n
f < e 6 i

n
f

⟩
f +

mn∑
i=1

i

n

⟨
i

n
f 6 e <

i+ 1

n
f

⟩
f

is a desired f -step element. ◃

0.4. Let U be an arbitrary, not necessarily d-decomposable LNS over
an arbitrary vector lattice E. Suppose that a d-decomposable LNS U over E
contains U as a subspace with the induced norm. We say that the LNS U is
a d-decomposable hull of U , if dfinU = U , i.e., U is a minimal d-decomposable

LNS that contains U as a subspace with the induced norm.
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Proposition. Suppose that a vector lattice E possesses the principal

projection property. Then every (not necessarily d-decomposable) LNS over E

has a d-decomposable hull which is unique to within an isometry.

▹ In order to construct a d-decomposable hull of an LNS U over E, we

employ the schema of formal mixing which is traditionally used in similar

situations (cf. [20, 27, 28]). Denote by Ũ the totality of all �nite families(
(πi, ui)

)
i∈I of elements in Pr(E)× U such that (πi)i∈I is a partition of unity

in the Boolean algebra Pr(E). Introduce in Ũ the equivalence relation by

letting
(
(πi, ui)

)
i∈I ∼

(
(ρj , vj)

)
j∈J if and only if πiρj

ui − vj
= 0 for all i ∈ I

and j ∈ J . De�ne U to be the quotient set Ũ/∼ and agree to denote the coset

of a family
(
(πi, ui)

)
i∈I by

∑
i∈I πiui. By identifying the elements u ∈ U with

\monomials" 1u ∈ U , we assume that U ⊂ U . It is easy to become convinced
that U is an LNS over E under the operations

∑
i∈I

πiui +
∑
j∈J

ρjvj :=
∑

i∈I,j∈J
πiρj(ui + vj),

λ
∑
i∈I

πiui :=
∑
i∈I

πiλui,
∑
i∈I

πiui

:=
∑
i∈I

πi
ui

and is a d-decomposable hull of U . Uniqueness of a d-decomposable hull is

obvious. ◃

0.5. Let E be a universally complete K-space and let (Eξ)ξ∈� be a family
of pairwise disjoint ideals of E. The symbol

⊕
ξ∈�Eξ denotes the ideal of

the K-space E constituted by all elements e ∈ E that satisfy the relation

⟨Eξ⟩e ∈ Eξ for each ξ ∈ �. Obviously,

⊕
ξ∈�

Eξ =

{
o-
∑
ξ∈�

eξ : (eξ)ξ∈� ∈
∏
ξ∈�

Eξ

}
.

Suppose that, for every ξ ∈ �, we are given an LNS Uξ over Eξ. It is not
di�cult to become convinced that the vector space

∏
ξ∈� Uξ is an LNS over⊕

ξ∈�Eξ with respect to the norm
(uξ)ξ∈�= o-

∑
ξ∈�

uξ. This LNS is

denoted by
⊕

ξ∈� Uξ and called the disjoint sum of the family of LNSs (Uξ)ξ∈�.
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0.6. Let E and F be K-spaces and let U be an LNS over E. Suppose

that a function S : E → F satis�es the following conditions:

(a) S(e1 + e2) 6 Se1 + Se2 for all positive e1, e2 ∈ E;

(b) S(λe) = λSe for all positive e ∈ E and λ ∈ R;
(c) if 0 6 e1 6 e2 then Se1 6 Se2.

Consider the vector subspace U0 := {u ∈ U : S
u= 0} and agree to denote

by SUu the coset in U/U0 containing an u ∈ U . It is easy to become convinced

that the space U/U0 is an LNS over F with respect to the norm
SUu

:= S
u.

Observe that the LNS U/U0 need not be d-decomposable
(
for instance, in case

U = E = F = R2 and S(x, y) = (x, x)
)
. Slightly abusing the language, we

call a d-decomposable hull of the LNS U/U0 the norm transformation of U by

means of S and denote it by SU . The linear operator SU : U → SU is called

the operator of norm transformation of U by means of S.

0.7. As is known, every universally complete K-space E can be endowed

with multiplication so that E becomes a commutative ordered algebra. If we

additionally �x an order unity in E and require it to be a multiplication unity

then the way of introducing multiplication in E becomes unique. Furthermore,

for every f ∈ E, there exists a unique element g ∈ E such that fg = ⟨f⟩1,
where 1 ∈ E is the multiplication unity. We denote such an element g by 1/f .

The product e(1/f) is denoted by e/f for brevity.

As is known, every Banach{Kantorovich space (BKS) U over a univer-

sally complete K-space E with a �xed order unity 1E can be endowed with

the structure of a module over E so that

1E u = u,
eu= |e|

u (e ∈ E, u ∈ U).

Below (see 2.8) we will see that the relation
eu= |e|

uuniquely determines

the structure of a module in U .
Let U be an arbitrary BKS over an order-dense ideal E of a universally

complete K-space E with a �xed order unity. Given arbitrary e ∈ E and u ∈ U ,
we say that the product eu is de�ned in U (and write eu ∈ U), if the product eu
calculated in the universal completion of U belongs to U . Obviously, the latter
is true if and only if |e|

u∈ E.

0.8. The module structure of a BKS is often used for �nding elements

that satisfy certain conditions imposed on their norm. Here is one of typical

examples.
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Lemma. Let U be a BKS over E. For all u ∈ U and e ∈ E+, there exists

an element ue ∈ U such that
ue= e and

u− ue
= |

u− e|.

▹ Fix an order unity 1 in the universal completion E of the K-space E,
endow E with the corresponding multiplication and introduce in the universal
completion U of U the structure of a module over E. Let �u be an element
of U such that

�u= 1 and u =
u�u. Obviously, ue := e�u is the desired

element. ◃

0.9. Let X and Y be continuous Banach bundles (CBBs) over a topo-

logical space Q. A homomorphism i ∈ HomQ(X ,Y) is called an isometric

embedding of X into Y if, for each q ∈ Q, the operator i(q) is an isometric em-

bedding of X (q) into Y(q). If, in addition, all the operators i(q) are surjective

then the embedding i is called an isometry of X onto Y .
The following assertion ensues immediately from de�nitions: if i is an iso-

metric embedding of X into Y then there exists a (unique) subbundle Y0 in Y
such that i is an isometry of X onto Y0.

0.10. Let Q be a nonempty extremally disconnected compact space, let X
be a CBB over Q, and let E be an ideal of C∞(Q). If U ⊂ E(X ) then the set

cl
∪

u∈U suppu is called the support of U and denoted by suppU . Obviously,

⟨suppU⟩ = ⟨U⟩, i.e., the operator u 7→ ext
(
χsuppUu

)
is the order projection

onto the band generated by U . In particular, ⟨suppu⟩ = ⟨u⟩ for every section

u ∈ E(X ).

0.11. Let U and V be LNSs over respective vector lattices E and F .

A positive operator S : E → F is said to be a dominant of an operator

T : U → V if
Tu6 S

ufor all u ∈ U . An operator possessing a dominant

is called dominated. The totality of all dominated operators from U into V is

denoted by M(U ,V). Obviously, M(U ,V) is a vector subspace of the space of
all linear operators from U into V .

Proposition. Let E and F be vector lattices and let U and V be LNSs.

(1) An operator T : E → F is regular if and only if it is dominated.

(2) If an operator T : U → V is dominated then it is bounded.

(3) If F is a K-space and an operator T : E → F is bounded then it is

dominated (= regular).

▹ Assertions (1) and (2) are obvious. A proof of (3) is presented in

[17: VII.1.27; 32: Theorem VIII.2.2]. ◃
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R ema r k . A bounded operator need not be dominated. Indeed, by en-
dowing the vector space ℓ∞ of bounded numeric sequences with coordinatewise
order, we obtain a K-space (hence, a BKS) which is denoted by U . On the
other hand, by endowing ℓ∞ with the uniform norm, we obtain a Banach space
(hence, a BKS) which is denoted by V . Then the identity mapping of ℓ∞ onto
itself, as an operator from U into V , is bounded but not dominated.

0.12. Theorem [20]. Let U be an LNS over E and let V be an LNS
over F .

(1) Every dominated operator T : U → V possesses a least dominant(
with respect to the order of the vector lattice M(E,F ) of regular operators

)
,

denoted by
Tand called the exact dominant of T .

(2) If V is a BKS then the mapping
·: T 7→

T is a decomposable
M(E,F )-valued norm on M(U ,V) under which M(U ,V) is a BKS.

0.13. Theorem [20]. Consider a BKS U over E, an LNS V over F , and
a linear operator T : U → V . For each positive element e ∈ E, assign

T6(e) := {
Tu1+ · · ·+

Tun : ui ∈ U ,
u1+ · · ·+

un6 e},
T=(e) := {

Tu1+ · · ·+
Tun : ui ∈ U ,

u1+ · · ·+
un= e},

T⊥(e) := {
Tu1+ · · ·+

Tun : ui ∈ U are pairwise disjoint,u1+ · · ·+
un6 e}.

The operator T is dominated if and only if, for every positive element e ∈ E,
one (hence, each) of the sets T6(e), T=(e), or T⊥(e) is bounded. In this case,Te = supT6(e) = supT=(e) = supT⊥(e) for all e > 0.

1. The shadow of an operator

Our main tool for studying disjointness preserving operators is the so-
called shadow, a ring homomorphism in Boolean algebras which is generated
by the action of the operator on bands. Many properties of an operator are
expressible in terms of its shadow. In particular, this is true of certain questions
of continuity.

1.1. Let U and V be LNSs. An operator T : U → V is said to be disjoint-
ness preserving whenever u1 ⊥ u2 implies Tu1 ⊥ Tu2 for all u1, u2 ∈ U . It is
not di�cult to become convinced that every disjointness preserving positive
operator in K-spaces is a lattice homomorphism. The following assertion shows
that all disjointness preserving operators, not only positive, are closely related
to lattice homomorphisms.
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Theorem. Let E be a vector lattice, let F be a K-space, and let
T : E → F be a regular disjointness preserving operator. Put ρ :=

⟨
T+[E+]

⟩
.

Then the operators ρ◦T and−ρ⊥◦T are lattice homomorphisms. In particular,
T = (ρ− ρ⊥)|T |.

▹ The claim follows directly from [4: Theorem 3.3]. ◃

In the sequel, we repeatedly use the last theorem in order to reduce con-

sideration of an arbitrary regular disjointness preserving operator to the case

of a positive operator.

1.2. The shadow of a linear opera-T

u
Tu

h

π h(π)

tor T : U → V is de�ned to be the map-

ping h : Pr(U) → Pr(V) acting by the rule
h(π) = supu∈U⟨Tπu⟩. In other words,

h(π) =
⟨
T [πU ]

⟩
.

Proposition. A linear operator in

LNSs is disjointness preserving if and only

if its shadow is a ring homomorphism.

▹ Only necessity requires proving. Consider a disjointness preserving

linear operator T : U → V in LNSs U and V . Without loss of generality, we

may assume that (imT )⊥⊥ = V . Prove that the shadow h : Pr(U) → Pr(V)
of T is a Boolean homomorphism. To this end, use the proposition stated

in [14] (see the introduction therein). Let (π1, π2, π3) be a partition of unity

in the algebra Pr(U). Then

h(π1) ∧ h(π2) = sup
u1∈U

⟨Tπ1u1⟩ ∧ sup
u2∈U

⟨Tπ2u2⟩ = sup
u1,u2∈U

⟨Tπ1u1⟩ ∧ ⟨Tπ2u2⟩ = 0,

i.e., h(π1) ⊥ h(π2). The relations h(π1) ⊥ h(π3) and h(π2) ⊥ h(π3) can be

established similarly. Moreover,

h(π1) ∨ h(π2) ∨ h(π3) = sup
u1,u2,u3∈U

⟨Tπ1u1⟩ ∨ ⟨Tπ2u2⟩ ∨ ⟨Tπ3u3⟩

= sup
u1,u2,u3∈U

⟨
T (π1u1 + π2u2 + π3u3)

⟩
= sup

u∈U
⟨Tu⟩ = 1,

whence it follows that
(
h(π1), h(π2), h(π3)

)
is a partition of unity in the algebra

Pr(V). ◃
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1.3. Proposition. Consider LNSs U and V , a linear operator T : U → V
and a ring homomorphism h : Pr(U) → Pr(V). The following assertions are
equivalent:

(1) h dominates the shadow of T (see 0.2);
(2) ⟨Tu⟩ 6 h⟨u⟩ for all u ∈ U ;
(3) Tπu = h(π)Tu for all u ∈ U and π ∈ Pr(U).

If, in addition, h(1) = ⟨imT ⟩ then each of conditions (1){(3) is equivalent to
coincidence of the shadow of T with h.

▹ The implications (3)⇒(1)⇒(2) are obvious. Assume (2) to be satis-
�ed and prove (3). Fix arbitrary elements u ∈ U and π ∈ Pr(U). From (2) it

follows that Tπu and Tπ⊥u are disjoint. Consequently, there exist a projec-
tion ρ ∈ Pr(V) such that Tπu = ρTu and Tπ⊥u = ρ⊥Tu. In order to ensure
the equality ρTu = h(π)Tu, it is su�cient to show that ρ⟨Tu⟩ = h(π)⟨Tu⟩.
The relations ρ⟨Tu⟩ = ⟨Tπu⟩ 6 h(π) imply the inequality ρ⟨Tu⟩ 6 h(π)⟨Tu⟩.
One can establish similarly that ρ⊥⟨Tu⟩ 6 h(π⊥)⟨Tu⟩. The two last inequali-
ties directly imply the equality ρ⟨Tu⟩ = h(π)⟨Tu⟩.

According to Proposition 0.2, condition (1) and the equality h(1) = ⟨imT ⟩
imply that the shadow of T coincides with h. ◃

1.4. Proposition. Let T be a dominated operator acting from a BKS
into an LNS. Then the shadows of T and

Tcoincide.

▹ Let an operator T acts from a BKS U over E into an LNS V over F .
Denote the shadow of T by hT and the shadow of

T by h|T|. Of course,
coincidence of the functions hT : Pr(U) → Pr(V) and h|T|: Pr(E) → Pr(F ) is
understood with the identi�cations Pr(U) = Pr(E) and Pr(V) = Pr(F ) taken
into account (see the introduction in [14]). For every π ∈ Pr(E), the inequality
hT (π) 6 h|T|(π) is obvious. To prove the reverse inequality, it is su�cient to
observe, that the conditions

e ∈ E, π ∈ Pr(E), u1, . . . , un ∈ U ,
u1+ · · ·+

un6 πe

imply

⟨
Tu1+ · · ·+

Tun⟩ = ⟨
Tπu1+ · · ·+

Tπun⟩
= ⟨Tπu1⟩ ∨ · · · ∨ ⟨Tπun⟩
6 hT (π),

and to use the formula
Tπe = supT6(πe) (see 0.13). ◃

Corollary. A dominated operator T from a BKS into an LNS is disjoint-
ness preserving if and only if its exact dominant

Tis disjointness preserving.
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1.5. Let U and V be LNSs and let h : Pr(U) → Pr(V) be a ring homomor-

phism. Following general rules, we say that the mapping T : U → V is h-o-con-

tinuous whenever h- lim
α∈A

uα = u (see [14: 1.12]) implies o- lim
α∈A

Tuα = Tu for

every net (uα)α∈A in U and every u ∈ U .

Theorem. Let E and F be K-spaces. Every disjointness preserving

operator T : E → F is h-o-continuous, where h is the shadow of T .

▹ Since the shadow of |T | coincides with the shadow of T (see Proposi-

tion 1.4), we may assume that the operator T is positive. To prove h-o-conti-

nuity of T , it is su�cient to consider a net (eα)α∈A in E, which is h-convergent

to zero, and to show that o- lim
α∈A

Teα = 0. Asymptotic boundedness of the net

(Teα)α∈A follows from that of (eα)α∈A and from boundedness of T . According

to Lemma [14: 1.10] (2), o-convergence of Teα to zero will be established if we

prove that o- lim
α∈A

⟨Te⟩⟨Teα > Te/n⟩ = 0 for all e ∈ E and n ∈ N. The latter

relation can be obtained as follows:

⟨Te⟩⟨Teα > Te/n⟩ = ⟨Te⟩
⟨(
T (eα − e/n)

)+⟩
= ⟨Te⟩

⟨
T
(
(eα − e/n)+

)⟩
6 h

(
⟨e⟩

)
h
(⟨
(eα − e/n)+

⟩)
= h

(
⟨e⟩⟨eα > e/n⟩

) o→ 0. ◃

Corollary. Every disjointness preserving dominated operator from a BKS

into an LNS is h-o-continuous, where h is its shadow.

▹ The claim follows from Proposition 1.4 and the last theorem. ◃

Rema r k . It is sometimes useful to take the following fact into account

(the fact follows directly from the last assertion): if U is a BKS, V is an LNS,

and a ring homomorphism h : Pr(U) → Pr(V) dominates the shadow of an op-

erator T : U → V , then the latter is h-o-continuous.

1.6. Corollary. The following properties of a disjointness preserving

dominated operator T from a BKS into an LNS are equivalent:

(1) T is (sequentially) o-continuous;

(2)
Tis (sequentially) o-continuous;

(3) the shadow of T is (sequentially) o-continuous.

Countable and sequential o-continuity of the operator T are equivalent.

▹ It is su�cient to combine 1.4, 0.1, [14: 1.12], and 1.5. ◃
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1.7. Corollary. Consider a BKS U and an LNS V and assume that
the shadows of two dominated operators S, T : U → V are dominated by
the same ring homomorphism h : Pr(U) → Pr(V). If S and T coincide on
some h-approximating subset of U (see [14: 1.14]) then they coincide on the en-
tire U .

▹ The claim follows from Remark 1.5 and Propositions [14: 1.16, 1.17]. ◃

1.8. Proposition. Let U be an LNS over E, let V be a vector subspace
of F , let U0 let U , T0 : U0 → V be a linear operator, let S : E → F be a disjoint-
ness preserving positive operator, and let h : Pr(E) → Pr(F ) be the shadow
of S. Denote by hU0 the LNS of all elements of U that are h-approximated
by U0 (see [14: 1.14, 1.15]). Assume that

T0u0 6 S
u0 (

respectively,T0u0= S
u0) for all u0 ∈ U0. Then there exists a unique linear exten-

sion T : hU0 → V of the operator T0 such that
Tu6 S

u(
respectively,Tu= S

u) for all u ∈ hU0.

▹ First, we prove the assertion about extension preserving the inequal-
ity. If π ∈ Pr(U) and u0 ∈ U0 are such that πu0 = 0, then h(π)T0u0 = 0,
since

h(π)
T0u06 h(π)S

u0= Sπ
u0= 0.

This fact implies that the following de�nition of an operator T 0 is sound:

T 0

( n∑
i=1

πiui

)
:=

n∑
i=1

h(πi)T0ui
(
πi ∈ Pr(U) are pairwise disjoint, ui ∈ U0

)
,

which extends T0 onto d�nU0 and satis�es the inequality
T 0u

6 S
ufor all

u ∈ d�nU0. In view of Proposition [14: 1.15], for every u ∈ hU0, there exists
a net (uα)α∈A in d�nU0 that is h-convergent to u. From the inequalityT 0uα − T 0uβ

6 S
uα − uβ


and h-o-continuity of S (see 1.5) it follows that the net (T 0uα)α∈A is o-fun-
damental. Since the LNS V , is o-complete, it contains an o-limit of the net.
Obviously, the limit depends only on u and, therefore, can be denoted by Tu.
It is not di�cult to become convinced that the operator T : hU0 → V thus ob-
tained is the desired one. Uniqueness of the extension constructed is ensured
by its h-o-continuity inherited from S.

Assume now that
T0u0= S

u0 for all u0 ∈ U0. In view of what was
proven above, there exists an extension T : hU0 → V of the operator T0 such
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that
Tu 6 S

u for all u ∈ hU0. For every u0 ∈ U0 and π ∈ Pr(U),
the relations

S
u0=

Tu0=
Tπu0+

Tπ⊥u06 S
πu0+ S

π⊥u0= S
u0

and the inequalities
Tπu06 S

πu0 and
Tπ⊥u06 S

π⊥u0 implyTπu0= S
πu0. Since u0 ∈ U0 and π ∈ Pr(U) were chosen arbitrarily,

we have
Tu= S

u for all u ∈ d�nU0. The equality
Tu= S

u for all
u ∈ hU0 is now deduced from what was proven with the help of Proposi-
tion [14: 1.16]. ◃

Corollary. Let U be an LNS over E, let V be a BKS over F , let U0
be an approximating vector subspace of U , let T0 : U0 → V be a linear op-
erator, and let S : E → F be a disjointness preserving o-continuous positive
operator. Assume that

T0u06 S
u0(

respectively,
T0u0= S

u0) for all
u0 ∈ U0. Then there exists a unique linear extension T : U → V of T0 such
that

Tu6 S
u(

respectively,
Tu= S

u) for all u ∈ U .

1.9. IfD is a subset of a K-space E then |D| denotes the set {|d| : d ∈ D},
and lin|D| stands for the linear span of |D|. The smallest ideal of E that
contains D is conventionally denoted by ED.

Lemma. Let E be a K-space, let D be a subset of E, let V and W be
arbitrary LNSs over the same K-space F , and let S : E → V and T : E → W
be dominated operators. Assume that the shadows of S and T are dominated
by the same ring homomorphism h : Pr(E) → Pr(F ) and denote the h-closure
of the ideal ED by hED.

(1) If V = W and the operators S and T coincide onD, then they coincide
on hED.

(2) If
Se=

Tefor all e ∈ lin|D| then
Se=

Tefor all e ∈ hED.

▹ We only prove assertion (1), since (2) can be proven similarly and
even easier. Assume that the operators S and T meet all the hypotheses of
the lemma and coincide on D. We will prove that S and T agree on hED in
several steps.

(a) Suppose that e ∈ |D|, i.e., e = |d| for some d ∈ D. Then

Se = S⟨d+⟩d+ S⟨d−⟩d = h
(
⟨d+⟩

)
Sd+ h

(
⟨d−⟩

)
Sd

= h
(
⟨d+⟩

)
Td+ h

(
⟨d−⟩

)
Td = T ⟨d+⟩d+ T ⟨d−⟩d = Te.

(b) From (a) it follows that S and T agree on the set lin|D|.
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(c) Let e be a d-step element of E with d ∈ lin|D|, i.e., e =
∑n

i=1 πiλid
for some numbers λi and pairwise disjoint projections πi ∈ Pr(E). Then, in

view of (b), we have

Se =
n∑

i=1

S(πiλid) =
n∑

i=1

λih(πi)Sd =
n∑

i=1

λih(πi)Td =
n∑

i=1

T (πiλid) = Te.

(d) Suppose now that e ∈ ED. Then |e| 6 d for some d ∈ lin|D|.
In view of 0.3, there exists a sequence (en)n∈N of d-step elements of E that

is r-convergent to e. According to (c), the operators S and T coincide on

the elements en. Therefore, using r-continuity of S and T , we arrive at

the equality Se = Te.

(e) Finally, if e is an arbitrary element of hED then the equality Se = Te

follows from (d) and h-o-continuity of S and T . ◃

Corollary. Let U be a BKS over E, let D be a set of positive elements

in E, let V and W be arbitrary LNSs over the same K-space F , and let

S : U → V and T : U → W be dominated operators. Assume that the shadows

of S and T are dominated by the same ring homomorphism h : Pr(E) → Pr(F )

and denote by hED the h-closure of the ideal ED.

(1) If V = W and the operators S and T coincide on the set {u ∈ U :u∈ D} then they coincide on the set {u ∈ U :
u∈ hED}.

(2) If
Su=

Tufor all u ∈ U with norm
u∈ linD then

Su=
Tu

for all u ∈ U with norm
u∈ hED.

▹ Prove assertion (1) (assertion (2) can be proven similarly). Assume

that the operators S and T meet all the hypotheses of the corollary and coincide

on the set {u ∈ U :
u∈ D}. Consider an arbitrary element u ∈ U with normu∈ hED and establish the equality Su = Tu.

Fix an order unit 1 in a universal completion E of the K-space E, in-
troduce the corresponding multiplication in E and endow a universal com-
pletion U of U with the structure of a module over E (see 0.7). Let �u

be an element of U such that
�u= 1 and u =

u�u. Consider operators

Su, Tu : E → V acting by the rules Sue = S(e�u) and Tue = T (e�u). It is clear

that the shadows of Su and Tu are dominated by the homomorphism h and

the operators themselves coincide on D. Therefore, according to assertion (1)

of the last lemma, the operators Su and Tu coincide on hED. In particular,

Su = Su
u= Tu

u= Tu. ◃
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1.10. As is seen from the following theorem, all the four types of bound-

edness introduced in [14: 2.3] coincide for each disjointness preserving operator

de�ned on a vector lattice.

Theorem. Let E be a vector lattice and let V be an LNS. The following

properties of a disjointness preserving operator T : E → V are equivalent:

(1) T is bounded;

(2) T is countably bounded;

(3) T is sequentially bounded;

(4) T is semibounded;

(5) if e1, e2 ∈ E and |e1| 6 |e2| then
Te16Te2.

▹ The implications (5)⇒(1)⇒(2)⇒(3)⇒(4) are obvious. The proof of

Theorem 2.1 in [22] that establishes the implication (4)⇒(5) is presented for

the case V = E; however, it remains valid for an operator with values in

an arbitrary LNS. ◃

The proof of the implication (4)⇒(5) becomes particularly simple and

clear in the case when E possesses the principal projection property (for in-

stance, when E is a Kσ -space). Indeed, assume that an operator T meets con-

dition (4), �x arbitrary elements e1, e2 ∈ E satisfying the inequality |e1| 6 |e2|,
and denote by S the set

{ n∑
i=1

πiλi|e2| : πi ∈ Pr(E), |λi| 6 1

}
.

It is not di�cult to become convinced that
Ts6Te2for all s ∈ S. More-

over, in view of 0.3, there exists a sequence (sn)n∈N of elements in S r-con-

vergent to e1 with regulator |e2|. Condition (4) together with the relationsTe1 6 Te1 − Tsn
+

Te2 (n ∈ N) now yields the desired inequalityTe16Te2.
1.11. The analog of Theorem 1.10 for operators de�ned on LNSs is not

true. Moreover, all the four types of boundedness are pairwise di�erent for this

class of operators. Indeed, every normed space is an LNS over R and every

linear operator from a normed space into an arbitrary LNS is disjointness

preserving. Consequently, operators considered in the Examples [14: 2.4{2.6]

act from BKSs into BKSs and are disjointness preserving.
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1.12. Lemma. Let U be a BKS over E, let V be an LNS, let T : U → V
be a disjointness preserving semibounded operator, and let e be a positive
element of E. For each u ∈ U satisfying the inequality

u6 e, there is
an element �u ∈ U such that

�u= e and
Tu6T �u.

▹ Suppose that
u6 e. In view of the equality {

u : u ∈ U} =
{e ∈ E : e > 0}, we do not restrict generality by assuming that ⟨u⟩ = ⟨e⟩.
Obviously, the product (e′/

u)u is de�ned in U for all e′ ∈ E (see 0.7).

De�ne an operator S : E → V by the formula S(e′) = T
(
(e′/

u)u) and

assign �u := (e/
u)u. It is easy to see that the operator S is disjointness

preserving and semibounded. According to Theorem 1.10, the operator S
meets condition 1.10 (5). This allows us to conclude that

Tu= S
u6 Se =T �u. It remains to observe that

�u= e. ◃

Proposition. Let U be a BKS over E and let V be an LNS. A disjointness
preserving operator T : U → V is dominated if and only if it is bounded.
Furthermore, for all positive e ∈ E,Te = sup{

Tu: u ∈ U ,
u6 e}

= sup{
Tu: u ∈ U ,

u= e}

▹ For an arbitrary positive element e ∈ E, the equalityTe = sup{
Tu: u ∈ U ,

u6 e}

is easily deduced from the criterion 0.13 involving the set T⊥(e). It remains to
employ the lemma proven above. ◃

The last result does not provide any new information about operators in
vector lattices, since dominatedness and boundedness are always equivalent
for operators with values in a K-space

(
see Proposition 0.11 (3)

)
. However,

an analog of the last proposition is true in the case of vector lattices:

Theorem [23]. Let E and F be arbitrary vector lattices. A disjointness
preserving operator T : E → F is regular (= dominated) if and only if it is
bounded.

1.13. As was noted in 1.11, countable boundedness is not su�cient for
boundedness of a disjointness preserving operator. It is interesting to clarify
which (easily veri�ed) additional assumptions yield boundedness of operators
bounded in a weaker sense. Leaving this question open, we only formulate one
corollary to Lemma 1.12 which is a small step in the indicated direction.
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Proposition. Let U be a BKS over E and let V be an LNS over F .

A disjointness preserving operator T : U → V is bounded if and only if it is

semibounded and, for every positive element e ∈ E, the set {
Tu : u ∈ U ,u= e} is order-bounded in F .

Note that any semibounded disjointness preserving operator de�ned on

a vector lattice obviously meets the hypotheses of the last proposition. This

allows us to consider Proposition 1.13 as a generalization of Theorem 1.10.

1.14. One of the main results concerning disjointness preserving opera-

tors provides their representation as sums of certain special operators taking

pairwise disjoint values (see Section 4). Here we pay attention to such sums.

Lemma. Let U and V be LNSs and let S, T : U → V be linear operators.

The following assertions are equivalent:

(1) Su ⊥ Tu for all u ∈ U ;
(2) Su1 ⊥ Tu2 for all u1, u2 ∈ U , i.e., imS ⊥ imT .

▹ Only the implication (1)⇒(2) requires proving. Let u1 and u2 be

arbitrary elements of U . The relations Su1 ⊥ Tu1 and Su2 ⊥ Tu2 imply:

Su1∧
Tu2=

Su1∧
Tu1 + Tu2

6
T (u1 + u2)

,Su1∧
Tu2=

Su1 + Su2
∧

Tu26
S(u1 + u2)

.
It remains to observe that S(u1 + u2) ⊥ T (u1 + u2). ◃

Operators S and T meeting each of the equivalent conditions (1) or (2)

are called strongly disjoint. Let U and V be LNSs and let (Tξ)ξ∈� be a family

of linear operators from U into V . We say that an operator T : U → V
is decomposable into the strongly disjoint sum of operators Tξ

(
and write

T =
⊕

ξ∈� Tξ
)
, whenever the operators Tξ are strongly disjoint and, for every

u ∈ U , the relation Tu = o-
∑

ξ∈� Tξu holds.

Assume that T =
⊕

ξ∈� Tξ and assign ρξ := ⟨imTξ⟩ for each ξ ∈ �.

According to the lemma, the projections ρξ are pairwise disjoint; therefore,

for all ξ ∈ � the equality Tξ = ρξ ◦ T holds. In particular, this implies that
the strongly disjoint sum

⊕
ξ∈� Tξ is disjointness preserving if and only if so

is each summand Tξ.
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2. Orthomorphisms

This section is devoted to one of the simplest classes of disjointness pre-
serving operators, the class of band preserving operators.

Throughout the section, G is a universally complete K-space with a �xed
order unity 1G, Q is the Stone compact space of the Boolean algebra Pr(G)
(recall that this algebra is the base of G), E and F are order-dense ideals
of G, and U and V are LNSs over E and F , respectively. We introduce
a multiplication in the K-space G which makes it a commutative ordered
algebra with unity 1G (see 0.7). Recall also that we identify the Boolean
algebras Pr(G), Pr(E), Pr(F ), Pr(U) and Pr(V).

2.1. A linear operator T : U → V is said to be band preserving if it
satis�es one of the following equivalent conditions:

(1) ⟨Tu⟩ 6 ⟨u⟩ for all u ∈ U ;
(2) Tπu = πTu for all u ∈ U and π ∈ Pr(G);
(3) πu = 0 implies πTu = 0 for all u ∈ U and π ∈ Pr(G);
(4)

u⊥ g implies
Tu⊥ g for all u ∈ U and g ∈ G;

(5)
u⊥ g implies

Tu⊥ g for all u ∈ U and all elements g of some
order-dense ideal of the K-space G.

Obviously, the last de�nition generalizes the familiar notion of band preserving
operator acting in vector lattices (see [5, 6, 22, 33, 34]).

2.2. Bounded band preserving operators are called orthomorphisms.
The totality of all orthomorphisms from U into V is denoted by Orth(U ,V).
We write Orth(U) instead of Orth(U ,U).

It seems interesting to clarify the additional requirements that, being im-
posed on band preserving operators, yield their boundedness. Of course, band
preserving operators are disjointness preserving and, therefore, they are subject
for such boundedness criteria as 1.10 and 1.13. It is known (see [14: 2.4{2.6]),
that semiboundedness, sequential boundedness, and even countable bounded-
ness of a disjointness preserving operator do not imply its boundedness. In the
case of band preserving operators, the situation is di�erent:

Theorem. The following properties of a band preserving operator T from
a BKS into an LNS are equivalent:

(1) T is bounded;
(2) T is countably bounded;
(3) T is sequentially bounded;
(4) T is semibounded.
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▹ The implications (1)⇒(2)⇒(3)⇒(4) are obvious. It remains to show
that (4)⇒(1). Assume that an LNS U is order-complete and an operator
T : U → V is band preserving and semibounded. Fix an arbitrary positive
element e ∈ G and prove that the set {

Tu:
u6 e} is order-bounded in F .

We divide the proof into two steps.
(a) Show �rst that the set {

Tu:
u6 e} is order-bounded in the uni-

versally complete K-space G. Without loss of generality, we may assume that
G = C∞(Q), where Q is an extremally disconnected compact space (see The-
orem [12: 0.3.4]). Denote by D the totality of those points q ∈ Q, for which

sup{
Tu(q) :u6 e} = ∞.

Assume that the set {
Tu :

u 6 e} is not bounded in C∞(Q). Then,
according to [17: Chapter XIII, Theorem 2.32], the clopen set U := int clD is
nonempty. For each natural n and each point q ∈ U ∩D, consider an element
uqn ∈ U satisfying the conditions

uqn6 e and
Tuqn(q) > n. Denote by U q

n

a clopen subset of Q such that q ∈ U q
n ⊂ U and

Tuqn(p) > n for all

p ∈ U q
n. It is clear that, for each n ∈ N the relation supq∈U∩D U q

n = U holds

in the Boolean algebra Clop(Q). In view of the exhaustion principle, there

exists a family
(
V q
n

)
q∈U∩D of pairwise disjoint elements of Clop(Q) such that

V q
n ⊂ U q

n for all q ∈ U ∩ D, and supq∈U∩D V q
n = U . According to [12: 0.4.3],

the sum o-
∑

q∈U∩D
⟨
V q
n

⟩
uqn exists in the BKS U . Denote the sum by un. For all

n ∈ N and q ∈ U ∩D, we have⟨
V q
n

⟩Tun=
T⟨V q

n

⟩
un
=

T⟨V q
n

⟩
uqn
=

⟨
V q
n

⟩Tuqn> nχV q
n
.

After passing to the supremum over q ∈ U ∩ D, we obtain
Tun> nχU for

all n ∈ N; which, together with the inequalities
un6 e, yields a contradiction

with semiboundedness of T .
(b) Denote by f the upper envelope of the set {

Tu :
u 6 e} in

the K-space G and show that f ∈ F . Without loss of generality, we may as-
sume that f > 0 on some comeager subset of Q. Then, according to [17: Chap-
ter XIII, Theorem 2.32], the set of all points q ∈ Q, for which

0 < sup{
Tu(q) :u6 e} = f(q) < ∞,

is comeager in Q. For any such point q, consider an element uq ∈ U satisfying

the conditions
uq6 e and

Tuq(q) > f(q)/2. By repeating the idea of

step (a) and \mixing up" the elements uq in an appropriate way, we can
construct an element u ∈ U such that

Tu> f/2; whence the containment
f ∈ F follows directly. ◃



Disjointness Preserving Operators 53

Additional requirements, yielding boundedness of band preserving opera-
tors, can be imposed on the spaces rather than on operators acting in them.
In the present article, we are not going to develop this idea. We only observe
that many results in the indicated direction are presented in [5: Theorem 2;
6: Theorem 3.2 and 3.3; 22: Corollaries 2.3 and 2.4].

2.3. It is easy to become convinced that Orth(E,F ) is an ideal of
the K-space M(E,F ) and, therefore, is also a K-space.

If an element g ∈ G is such that g · e ∈ F for all e ∈ E then the op-
erator of multiplication by g is obviously an orthomorphism from E into F .
Many papers about disjointness preserving operators contain results in this
direction (see, for instance, [2, 5, 6, 8, 9, 33, 34]). The following statement gen-
eralizes, in a sense, the experience from �nding multiplication representation
of orthomorphisms acting in K-spaces.

Theorem. For every orthomorphism T : E → F , there exists a unique
element gT ∈ G such that Te = gT ·e for all e ∈ E. The mapping T 7→ gT per-
forms a linear and order isomorphism of the K-space Orth(E,F ) onto the ideal
{g ∈ G : g · e ∈ F for all e ∈ E} of the K-space G.

Identifying an orthomorphism T with the element gT ∈ G, we assume
in the sequel that Orth(E,F ) ⊂ G. Obviously, Orth(E) contains 1G and
is a subalgebra of G. In particular, Orth(E) is an f -algebra (see [16, 34]).
The last theorem justi�es the term weight operator which is sometimes used
instead of \orthomorphism."

2.4. Proposition. Let an LNS U be order-complete. A linear operator
T : U → V is an orthomorphism if and only if it is dominated and its exact dom-
inant

T: E → F is an orthomorphism. In particular, the space Orth(U ,V)
endowed with the dominant-norm is a BKS over the K-space Orth(E,F ).

▹ The claim follows directly from Propositions 1.12 and 1.4. ◃

2.5. Corollary. Every orthomorphism from a BKS into an LNS is
o-continuous.

2.6. Corollary. If two orthomorphisms from a BKS U into an LNS V
coincide on some order-approximating subset of U (see [14: 1.2]), then they
coincide on the entire U .

▹ The claim follows from 2.5 and Proposition [14: 1.4]. ◃

2.7. Corollary. If two orthomorphisms S, T ∈ Orth(E,V) coincide on
a subset E0 ⊂ E then they coincide on E⊥⊥

0 . In particular, if the K-space E
has an order unity 1 and S(1) = T (1) then S = T .
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2.8. Proposition. For every BKS U over E there exists a unique op-
eration Orth(E) × U → U making U a module over Orth(E) such thatgu= |g|

u for all g ∈ Orth(E) and u ∈ U . Furthermore, U is a unital
module, i.e., 1Gu = u for all u ∈ U . For every g ∈ Orth(E) and u ∈ U , the el-
ement gu coincides with the product of g and u calculated in the universal
completion of U (see 0.7).

▹ Let a BKS mU over G be a universal completion of U . Then U =
{u ∈ mU :

u∈ E}. In view of 0.7, the space mU can be endowed with
the structure of a module over the ring G so that 1Gu = u and

gu= |g|
u

for all g ∈ G and u ∈ mU . In order to prove existence of a desired module
structure in the BKS U , it is su�cient to observe that, for all g ∈ Orth(E)
and u ∈ U , we have |g|

u∈ E and, consequently, gu ∈ U .
We now prove uniqueness. Assume that, together with the operation

(g, u) 7→ gu introduced above, there is another one, (g, u) 7→ g ∗ u, also
making U a module over Orth(E) and satisfying the condition

g ∗ u= |g|
u

for all g ∈ Orth(E) and u ∈ U . Fix an element u ∈ U and de�ne the mappings
S, T : Orth(E) → V by the formulas S(g) = gu and T (g) = g ∗ u. Obviously,
S and T are orthomorphisms. Observe that T (1G) = S(1G), i.e., 1G ∗ u = u.
Indeed,

1G ∗ u− u
= 1G ·

1G ∗ u− u
=

1G ∗ (1G ∗ u− u)


=
(1G · 1G) ∗ u− 1G ∗ u

= 0.

For proving the equality S = T , it remains to employ 2.7. ◃

The fact that any BKS overG can be endowed with the structure of a mod-
ule over G allows us to de�ne a simple class of orthomorphisms. If a BKS U
over E and a BKS V over F are order-dense ideals of the same BKS over G
and g ∈ Orth(E,F ), then the operator u 7→ gu is an orthomorphism from U
into V . We call such operators scalar orthomorphisms.

2.9. Proposition. Let U be an order-complete LNS, T ∈ Orth(U ,V),
g ∈ G, and u ∈ U . If the product gu is de�ned in U (see 0.7) then the prod-
uct gT (u) is de�ned in V and the equality T (gu) = gT (u) holds. In particular,
T ◦ g = g ◦ T for every orthomorphism g ∈ Orth(E).

▹ Fix an arbitrary element u ∈ U and denote by Gu the order-dense
ideal {g ∈ G : gu ∈ U} of the K-space G. Let mV be the universal comple-
tion of V . Consider the mappings L,R : Gu → mV de�ned by the formulas
L(g) = T (gu) and R(g) = gT (u). Obviously, L and R are orthomorphisms
and L(1G) = R(1G). From 2.7 it follows that L = R. ◃
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2.10. We conclude this section by a useful fact, which will be repeatedly

employed in the sequel.

Theorem [21]. Let E be a vector lattice and let F be a K-space. A pos-

itive operator T : E → F is disjointness preserving if and only if, for every

operator S : E → F satisfying the inequalities 0 6 S 6 T , there is an or-

thomorphism g ∈ Orth(F ) such that 0 6 g 6 idF and S = g ◦ T , where

idF : F → F is the identity operator.

Combining the last theorem with Theorem 1.1, we obtain the following

result.

Corollary. Let E be a vector lattice and let F be a K-space. A regular

operator T : E → F is disjointness preserving if and only if, for every regular

operator S : E → F satisfying the inequality |S| 6 |T |, there is an orthomor-

phism g ∈ Orth(F ) such that |g| 6 idF and S = g ◦ T , where idF : F → F is

the identity operator.

3. Shift operators

Another class of disjointness preserving operators is considered in this

section. Here, we introduce and study so-called shift operators, which are ab-

stract analogs of the composition mappings f 7→ f ◦ s. This class of operators
is closely related to another notion discussed here, the notion of operator \wide

on a set." While studying shift operators, we suggest their equivalent charac-

terizations, describe the maximal domain of de�nition on which they can be

extended, and show that the notions of shift operator and that of a multi-

plicative operator coincide. We also introduce here the notion of the shift of

a disjointness preserving operator, which in a sense concentrates multiplicative

properties of the operator.

Throughout the section, E and F are universally complete K-spaces.

In case order unities 1E and 1F are �xed in E and F , we regard the K-spaces as

ordered algebras with unities 1E and 1F (see 0.7). The ideal of the K-space E
generated by d ∈ E is denoted by Ed. In particular, E1 stands for the ideal of E
generated by 1E . We point out that some notions introduced in this section

depend on a concrete choice of 1E and 1F .

3.1. Let E be a K-space, let D be a subset of E, and let V be an LNS.

We say that an operator T : E → V is wide on the set D whenever the equality
T [D]⊥⊥ = T [E]⊥⊥ holds.
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Proposition. Suppose that E is a K-space, D is a subset of E, V is
an LNS, T : E → V is a disjointness preserving operator, and h : Pr(E)→Pr(V)
is its shadow. The following assertions are equivalent:

(1) T is wide on the set D;
(2) T is wide on the ideal ED;
(3) the shadow of the restriction of T onto ED coincides with the shadow

of T ;
(4) the set T [ED] is o-dense in T [E];
(5) the ideal ED h-approximates the space E.

▹ The implications (1)⇒(2)⇐(4) are obvious. Since the shadow of T
dominates that of the restriction of T onto ED, the equivalence (2)⇔(3) readily
follows from Proposition 0.2. We show that (1)⇐(2)⇒(5)⇒(4).

(2)⇒(5): Assume condition (2) to be satis�ed, consider an arbitrary
element e ∈ E, and show that h-infπ∈� πe = e, where � = {π ∈ Pr(E) :

πe ∈ ED}. For every n ∈ N and d ∈ ED, assign πdn :=
⟨
|e| 6 n|d|

⟩
. Obviously,

πdn ∈ �. Since ∣∣∣d− πdnd
∣∣∣ = (

πdn
)⊥|d| 6 (

πdn
)⊥|e|/n 6 |e|/n

for all n ∈ N, we have r- lim
n→∞

πdnd = d. Using r-continuity of the operator T

and taking account of the equality T
(
πdnd

)
= h

(
πdn

)
Td, we arrive at the relation

supn∈N h
(
πdn

)
> ⟨Td⟩. Since the element d ∈ ED was chosen arbitrarily, we

conclude by (2) that supπ∈� h(π) = h(1) and, consequently, h-infπ∈� πe = e.
(5)⇒(4): Consider an arbitrary element e ∈ E. From (5) and Proposi-

tion [14: 1.3] it follows that e is the h-limit of some net (eα)α∈A of elements
in ED. In view of Corollary 1.5, we have o- lim

α∈A
T (eα) = Te.

(2)⇒(1): For every element e ∈ ED, there exist d1, . . . , dn ∈ D such
that |e| 6 |d1| + · · · + |dn|. In view of Theorem 1.10, we conclude that
⟨Te⟩ 6 ⟨Td1⟩ ∨ · · · ∨ ⟨Tdn⟩. It remains to employ condition (2). ◃

Rema r k . As is seen from the last proposition, the fact that an oper-
ator T is wide on a set D re
ects the connection of D with the domain of
de�nition and with the shadow of T rather then with the operator T itself.

3.2. Let U and V be LNSs and let D be a subset of the norming lattice
of U . We say that an operator T : U → V is wide on the set D, whenever
{Tu :

u ∈ D}⊥⊥ = (imT )⊥⊥. If U and V are K-spaces then the last
de�nition is equivalent to that given in 3.1, which justi�es preservation of
terminology.
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Lemma. Let U be a BKS over a K-space E, let V be an arbitrary LNS,

and let D be a subset of positive elements in E. A disjointness preserving

operator T : U → V is wide on D if and only if its exact dominant
Tis wide

on D.

▹ A proof can be easily obtained with the help of Proposition 1.12.

Indeed, the relations⟨Te⟩ = sup
|u|=e

⟨Tu⟩ 6 sup
|u|∈D

⟨Tu⟩ = sup
d∈D

sup
|u|=d

⟨Tu⟩ = sup
d∈D

⟨Td⟩,
which hold for every positive element e ∈ E, prove necessity; whereas the re-

lations

⟨Tu⟩ 6
⟨Tu⟩ 6 sup

d∈D

⟨Td⟩ = sup
d∈D

sup
|u|=d

⟨Tu⟩ = sup
|u|∈D

⟨Tu⟩,

that are valid for each element u ∈ U , establish su�ciency. ◃

Proposition. Suppose that U is a BKS over a K-space E, D is a subset of

positive elements in E, V is an arbitrary LNS, T : U → V is a disjointness pre-

serving bounded operator, and h : Pr(U) → Pr(V) is its shadow. The following
assertions are equivalent:

(1) T is wide on the set D;

(2) T is wide on the ideal ED;

(3) the shadow of the restriction of T onto the set {u ∈ U :
u∈ ED}

coincides with the shadow of T ;

(4) the set {Tu :
u∈ ED} is o-dense in imT ;

(5) the ideal ED h-approximates the space E.

▹ The equivalence (2)⇔(3) is established in the same way as in 3.1.

Equivalence of assertions (1), (2), and (5) ensues from Propositions 1.4 and 3.1

and the last lemma. The implication (4)⇒(2) is obvious. It remains to show

that (5)⇒(4).

Let u be an arbitrary element of U . From (5) and Proposition [14: 1.3] it

follows that
uis the h-limit of some net (eα)α∈A of positive elements in ED.

In view of Lemma 0.8, there exists a net (uα)α∈A in U such that
uα= eα andu− uα

= |
u− eα|. Then h- lim

α∈A
uα = u and, according to Corollary 1.5, we

have o-limα∈A Tuα = Tu. ◃
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3.3. Proposition. Let E be an ideal of E generated by a positive
element d ∈ E . For every ring homomorphism h : Pr(E) → Pr(F), the following
sets coincide:

(1) the h-closure of E;
(2) the h-cyclic hull of E;
(3) the countably h-cyclic hull of E;
(4) the set of such e ∈ E that infn∈N h⟨|e| > nd⟩ = 0.

▹ The relations (4)⊂(3)⊂(2)⊂(4) are obvious. The inclusion (4)⊂(1)
can be easily established with the help of the �rst corollary in [14: 1.18].
It remains to show that (1)⊂(4). Suppose that a net (eα)α∈A of elements
in E h-converges to e ∈ E . For each α ∈ A, denote by nα the natu-
ral number satisfying the inequality |eα| 6 nαd. By using the relations
h-infα∈A |e− eα| = 0 and

h⟨|e| > 2nαd⟩ 6 h⟨|e| > 2|eα|⟩

= h
(
⟨e⟩

⟨
|e| − |eα| > |e|/2

⟩)
6 h

(
⟨e⟩

⟨
|e− eα| > |e|/2

⟩)
,

we obtain the desired equality infn∈N h⟨|e| > nd⟩ = 0. ◃
The coincident sets (1){(4) described in the last proposition are denoted

by hE.

3.4. Proposition. Fix an order unity 1E in the K-space E . Then the set
hE1 is a subalgebra of E .

▹ This fact ensues from 3.3 (we mean the equality hE1 = (4) for d = 1E)
and from the following relations:

inf
n∈N

h⟨|ef | > n1E⟩ = inf
m,n∈N

h⟨|ef | > mn1E⟩

6 inf
m,n∈N

h
(
⟨|e| > m1E⟩ ∨ ⟨|f | > n1E⟩

)
= inf

m,n∈N

(
h⟨|e| > m1E⟩ ∨ h⟨|f | > n1E⟩

)
= inf

m∈N
h⟨|e| > m1E⟩ ∨ inf

n∈N
h⟨|f | > n1E⟩. ◃

3.5. Lemma. Let d be an arbitrary order unity in E . For every sequence
(πn)n∈N of projections in Pr(E) that decreases to zero, there is an element e ∈ E
such that πn = ⟨|e| > nd⟩ for all n ∈ N.

▹ Since the K-space E is universally complete, the series
∑∞

n=1 πnd has
an o-sum in it. Denote the sum by s. It is clear that ⟨s > nd⟩ = πn+1 for
all n ∈ N and, consequently, we can take s+ d as the desired element e. ◃
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Corollary. Let h : Pr(E) → Pr(F) be a ring homomorphism and let d
be an arbitrary order unity in E . The equality hEd = E holds if and only if
the homomorphism h : Pr(E) → Pr(F) is sequentially o-continuous.

3.6. Let U be an LNS over an order-dense ideal E of the universally
complete K-space E , let d be a positive element of E , and let V be an arbitrary
LNS. We say that an operator T : U → V is wide at the element d whenever it
is wide on the set {e ∈ E : e is a fragment of d}.

Lemma. Suppose that E is an order-dense ideal of E , d is a positive
element of E , V is an LNS, T : E → V is a disjointness preserving bounded op-
erator, and h is its shadow. Assign � := {π ∈ Pr(E) : πd ∈ E}. The following
assertions are equivalent:

(1) the operator T is wide at the element d;
(2) supπ∈� h(π) = h(1) and, for all π ∈ � the equality ⟨Tπd⟩ = h(π)

holds;
(3) E ⊂ hEd.

▹ The equivalence of (1) and (3) is contained in Proposition 3.1, the im-
plication (2)⇒(1) is obvious. It remains to show that (1)⇒(2). If (1) is valid
then, for every projection π0 ∈ �, we have

h(π0) = h(π0) sup
e∈E

⟨Te⟩ = h(π0) sup
π∈�

⟨Tπd⟩ = sup
π∈�

⟨Tπ0πd⟩ = ⟨Tπ0d⟩. ◃

3.7. Proposition. Fix arbitrary order unities 1E and 1F in the K-spaces
E and F . For every ring homomorphism h : Pr(E) → Pr(F), there exists
a unique regular operator S : hE1 → F such that the shadow of S is equal to h
and S(1E) = h(1)1F . Furthermore, the operator S is positive.

▹ For the sake of convenience, assume that h(1) = 1. We construct
the operator S in three steps.

1. De�ne the operator S on the set of step-elements of E by letting

S

( n∑
i=1

λiπi1E

)
:=

n∑
i=1

λih(πi)1F

for arbitrary λ1, . . . , λn ∈ R and π1, . . . , πn ∈ Pr(E).
2. Extend the operator S onto E1. To this end, �x an arbitrary element

e ∈ E1 and choose a sequence (en)n∈N of step-elements in E so that it r-con-
verges to e with regulator 1E . It is easy to verify that the sequence (Sen)n∈N
is r-fundamental (with regulator 1F ). Assign Se := r- lim

n→∞
Sen.
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3. Finally, extend S onto the entire set hE1. Every element e ∈ hE1 can
be represented as the mixing o-

∑
n∈N πnen of elements en ∈ E1 by means of

an h-partition (πn)n∈N. Assign Se := o-
∑

n∈N h(πn)Sen.
It is easy to verify that the de�nition of S is sound at each of the steps.

Obvious positiveness of S ensures its regularity. In order to prove uniqueness
of S, it is su�cient to observe that, at step 3, the sequence

(∑m
n=1 πnen

)
m∈N

is r-convergent to e with regulator o-
∑

n∈N nπn|en| ∈ hE1. ◃

The operator S, whose existence is asserted in the last proposition, is
called the shift by h and denoted by Sh. Let E be an order-dense ideal of E
and F be an order-dense ideal of F . We say that an operator S : E → F is
a shift operator, if there exists a ring homomorphism h : Pr(E) → Pr(F) such
that E ⊂ hE1 and S = Sh on E. It is clear that, in this case, the homomor-
phism h is the shadow of S. Observe that the notion of the shift and that
of shift operator depend on the choice of unities 1E and 1F in the K-spaces E
and F .

3.8. Proposition. Fix order unities in the universally complete K-spaces
E and F . Let E be an order-dense ideal of E , let F be an order-dense ideal
of F , and let S, S : E → F be shift operators. If S 6 S then S = ρ ◦ S for
some projection ρ ∈ Pr(F ).

▹ The claim ensues from Propositions 0.2 and 3.7. ◃

Let ρ ∈ Pr(F), let h : Pr(E) → Pr(F) be a ring homomorphism, and
let S be the shift by h. Then the shift by the homomorphism ρ ◦ h is denoted
by ρS. Observe that, in general, dom ρS is wider than domS; therefore, ρS
di�ers from the composition ρ ◦ S. However, in view of the last proposition,
the operators ρS and ρ ◦ S coincide on domS and, thus, ρS extends ρ ◦ S.

3.9. Theorem. Fix order unities 1E and 1F in the K-spaces E and F .
Let E be an order-dense ideal of E and let F be an order-dense ideal of F .
A linear operator S : E → F is a shift operator if and only if it satis�es
the following conditions:

(a) S is disjointness preserving;
(b) S is regular;
(c) S takes fragments of 1E into fragments of 1F ;
(d) S is wide at 1E .

▹ Necessity of conditions (a){(c) is obvious and necessity of (d) follows
from 3.6. Let us show su�ciency. Suppose that the operator S satis�es
conditions (a){(d), denote the shadow of S by h and assign � := {π ∈ Pr(E) :
π1E ∈ E}. Lemma 3.6 implies the equality

⟨
S(π1E)

⟩
= h(π) for each π ∈ �,
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which, together with condition (c), yields S(π1E) = Sh(π1E). The same lemma
ensures the inclusion E ⊂ hE1. In view of Lemma 1.9, we now conclude that
S = Sh on E. ◃

Corollary. Fix order unities 1E and 1F in the K-spaces E and F . Let E
be an order-dense ideal of E containing 1E and let F be an arbitrary order-
dense ideal of F . A linear operator S : E → F is a shift operator if and only
if it satis�es the following conditions:

(a) S is disjointness preserving;
(b) S is regular;
(c) S(1E) is a fragment of 1F ;

(d)
{
S(1E)

}⊥⊥
= (imS)⊥⊥.

Rema r k . Conditions (d) in the statements of the theorem and the corol-
lary may not be omitted. Indeed, let F = R, let E be the space of all se-
quences, and let E be the ideal of E generated by the sequence e0(n) = n

(n ∈ N). Denote by Q the Stone-�Cech compacti�cation of the discrete topo-
logical space N and �x an arbitrary point q ∈ Q\N. Naturally identifying
the spaces E and C∞(Q), de�ne an operator S : E → F by the formula

Se =
(
e/e0

)
(q). Letting 1E(n) = 1 (n ∈ N) and 1F = 1, we see that the oper-

ator S satis�es conditions (a){(c) of the last lemma, but S(1E) = 0.

R ema r k . From the last corollary it is clear that the domain of de�-
nition hE1 of the shift by h is maximally wide. More precisely, hE1 contains
the domain of de�nition of every regular operator S acting from an order-dense
ideal of E into F , having shadow h, and satisfying the equality S(1E) = h(1)1F .

3.10. Fix order unities 1E and 1F in the K-spaces E and F . A linear
operator S : E → F de�ned on an order-dense ideal E ⊂ E is called multi-

plicative if Se1Se2 = S(e1e2) for any two elements e1, e2 ∈ E, whose product
belongs to E. Observe that the notion of multiplicative operator depends on
the choice of unities 1E and 1F .

Theorem. Let E be an order-dense ideal of E . A linear operator
S : E → F is a shift operator if and only if it is multiplicative.

▹ The fact that every shift operator is multiplicative is easily established
by checking all the steps of its construction in 3.7. We will show that any
multiplicative operator S : E → F is a shift operator by verifying conditions
(a){(d) of Theorem 3.9.

(a) Disjointness of elements e1, e2 ∈ E is equivalent to the equality
e1e2 = 0. The same is true for elements of F . Consequently, S is disjointness
preserving.
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(b) We prove, that the operator S is positive, in three steps.

(b1) If e ∈ E and 0 6 e 6 1E then Se > 0. Indeed, in this case, e3 and e
√
e

belong to E in view of the inequalities e3 6 e and e
√
e 6 e; consequently,

(Se)3 = S(e3) = S
(
(e
√
e)2

)
= S

(
e
√
e
)2 > 0.

(b2) If e ∈ E and e > 1E then Se > 0. Indeed, in this case,
√
e ∈ E in

view of the inequality
√
e 6 e; consequently, Se = S

(
(
√
e)2

)
= S

(√
e
)2 > 0.

(b3) If e ∈ E and e > 0 then Se > 0. Indeed, Se = S⟨e 6 1E⟩e +
S⟨e > 1E⟩e > 0 in view of (b1) and (b2).

(c) The fact that an element e ∈ E is a fragment of 1E is equivalent to

the equality e2 = e. The same is true for fragments of 1F . Consequently, S
takes fragments of 1E into fragments of 1F .

(d) Show that {Se : |e| 6 1E}⊥⊥ = (imS)⊥⊥. Consider the projec-

tion ρ ∈ Pr(F) onto the band {Se : |e| 6 1E}⊥ and de�ne an operator
T : E → F by the formula Te = ρSe. The proof will be completed if
we establish that T = 0. Obviously, the operator T is multiplicative and
Te = 0 whenever |e| 6 1E . We also observe that, in view of (b), the op-
erator T is positive. Let e be an arbitrary positive element of E. For each
n ∈ N, the equality T (e/n) = Ten holds, where en = ⟨e/n > 1E⟩e/n. Since√
en 6 en 6 e/n, we have the inclusions

√
en, en ∈ E and the inequality

T
√
en 6 Ten. Consequently,

Te = nTen = nT
(√

en
2)

= n
(
T
√
en
)2 6 n(Ten)

2 = n(Te/n)2 = (Te)2/n

for all n ∈ N, which is possible only in case Te = 0. ◃

3.11. Rema r k . There are a number of results describing multiplicative
operators (= shift operators) as extreme points of certain sets of operators
(see [10, 11, 24]).

3.12. Rema r k . It is known (see [32: Theorem VIII.10.1]) that every
regular operator T : E1 → F admits an integral representation

Te =

∫ ∞

−∞
λ dφ

(
⟨e 6 λ1E⟩

)
(e ∈ E1),

where φ is an arbitrary order-bounded additive function from Pr(E) into F .
It is not di�cult to become convinced that T is a shift operator if and only if
the values of the function φ are fragments of 1F . Furthermore, the shadow h
of T is de�ned by the formula h(π) = ⟨φ(π)⟩. Some classes of multiplicative
operators (= shift operators) are described form the viewpoint of the integral
representation in the papers by B. Z.Vulikh [29, 31].
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3.13. Fix order unities 1E and 1F in the K-spaces E and F . Let U
and V be LNSs over order-dense ideals E ⊂ E and F ⊂ F , let T : U → V be

a disjointness preserving operator, and let h : Pr(E) → Pr(F ) be its shadow.

Then the shift Sh : hE1 → F by h is called the shift of the operator T .

Proposition. Let U and V be LNSs over order-dense ideals E ⊂ E
and F ⊂ F and suppose that the LNS U is order-complete. Assume that

T : U → V is a disjointness preserving bounded operator with shift S. If ele-

ments e ∈ domS and u ∈ U are such that the product eu is de�ned in U , then
the product S(e)T (u) is de�ned in V and the equality T (eu) = S(e)T (u) holds.

In particular, T ◦ g = S(g) ◦T for every orthomorphism g ∈ Orth(E)∩domS.

▹ Fix an arbitrary element u ∈ U and denote by Eu the order-dense

ideal {e ∈ domS : eu ∈ U} of the K-space E . Let mV be the universal com-

pletion of V . Consider the mappings L,R : Eu → mV de�ned by the formulas

L(e) = T (eu) and R(e) = S(e)T (u). Obviously, the operators L and R are

bounded (= dominated) and disjointness preserving; moreover, their shadows

are dominated by the shadow of T . Since L(1E) = R(1E) and Eu ⊂ domS,

Lemma 1.9 implies the equality L = R. ◃

3.14. Fix order unities 1E and 1F in the K-spaces E and F . Let U be

an LNS over an order-dense ideal E ⊂ E and let V be an LNS over an order-

dense ideal F ⊂ F . An operator S : U → V is called a shift operator if

there exists a shift operator s : E → F such that
Su= s

u for all u ∈ U .
Obviously, s =

S, i.e., the operator s is the exact dominant of S (see 0.12).

R ema r k . Thus, if S : U → V is a shift operator then it is dominated

and its exact dominant
S: E → F if a shift operator. The converse is false

in general. Indeed, if U and V are Banach spaces and the norm of an operator

S : U → V is equal to unity then its exact dominant
S: R → R is the identity

operator (and, hence, a shift operator), while the operator S itself is a shift

operator only if it is an isometric embedding.

Proposition. Let U be an LNS over an order-dense E -s F

6
|·|

U - VS

6
|·|

6
ι

Z
Z
Z
ZZ~

sU
sU

ideal E ⊂ E and let V be an LNS over an order-dense

ideal F ⊂ F . An operator S : U → V is a shift operator

if and only if there exist a shift operator s : E → F and

an F -isometric embedding ι : sU → V such that S = ι◦sU ,
where sU : U → sU is the norm transformation of U by

means of s (see 0.6).
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▹ Only necessity requires proving. An elementary veri�cation shows

that the formula

ι

( n∑
i=1

ρisUui

)
=

n∑
i=1

ρiSui
(
ui ∈ U , ρi ∈ Pr(V)

)
soundly de�nes a function ι : sU → V that is the desired isometry. ◃

3.15. The following description of shift operators generalizes criterion 3.9

to the case of LNSs.

Theorem. Fix order unities 1E and 1F in the K-spaces E and F . Let U
be a BKS over an order-dense ideal E ⊂ E and let V be an LNS over an order-

dense ideal F ⊂ F . An operator S : U → V is a shift operator if and only if it

satis�es the following conditions:

(a) S is disjointness preserving;

(b) S is bounded;

(c) if u ∈ U and
uis a fragment of 1E then

Suis a fragment of 1F ;

(d) S is wide at 1E .

▹ Necessity of conditions (a){(d) follows immediately from Theorem 3.9.

Assume that an operator S satis�es conditions (a){(d). Denote by
Sthe ex-

act dominant of S and show �rst that
S: E → F is a shift operator by

verifying conditions (a){(d) of Theorem 3.9. Condition (a) ensues from Corol-

lary 1.4, condition (b) is ensured by the fact that
Sis positive, condition (c)

follows from Proposition 1.12, and condition (d) from Lemma 3.2. Thus,
Sis

a shift operator. Since the shadows of S and
Scoincide (see Proposition 1.4),

the operator
Sis the restriction of the shift of S onto E.

Assign U1 :=
{
u ∈ U :

u is a fragment of 1E
}
, consider an arbitrary

element u ∈ U1, and show that
Su=

Su. For the sake of convenience,

we assume that
u= 1E and

S1E = 1F . This assumption does not restrict
generality, since S

[
⟨u⟩U

]
⊂ ⟨

Su⟩V , and, therefore, we may regard S as

an operator from ⟨u⟩U into ⟨
Su⟩V . Denote the projection ⟨Su⟩⊥ by ρ.

Since
Suis a fragment of 1F , it is su�cient to show that ρ = 0. Assume to

the contrary that ρ ̸= 0. Then, by Proposition 1.12, there is an element u1 ∈ U
such that

u1= 1E and ρSu1 ̸= 0. Assign e :=
u1 + 3u

. The equalitiesu=
u1= 1E readily imply 2 · 1E 6 e 6 4 · 1E ; hence, 1

41E 6 1/e 6 1
21E .

The last inequality proves that the product �u := (1/e)(u1+3u) is de�ned in U .
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By using Proposition 3.13 and the equality ρSu = 0, we obtain:

ρ
S�u= ρ

S((1/e)(u1 + 3u)
)

= ρ
S(1/e)S(u1 + 3u)


=
S(1/e)ρSu1 + 3ρSu


= ρ

S(1/e)Su1
= ⟨ρSu1⟩

S(1/e).
Observe that

�u= 1E and, consequently,
S�uis a fragment of 1F . Therefore,

the relations

ρ
S�u= ⟨ρSu1⟩

S(1/e) > ⟨ρSu1⟩
S(1

4
1E

)
=

1

4
⟨ρSu1⟩1F ,

yield the inequality ρ
S�u> ⟨ρSu1⟩1F which contradicts the following rela-

tions:

⟨ρSu1⟩1F 6 ρ
S�u= ⟨ρSu1⟩

S(1/e) 6 ⟨ρSu1⟩
S(1

2
1E

)
=

1

2
⟨ρSu1⟩1F .

Thus, we established that
Su=

Su for all u ∈ U1. Denote by h
the shadow of S. As is known, h coincides with the shadow of

S. Then,
applying Corollary 1.9 (2) to the operators S : U → V and

SU : U →
SU , we

obtain the equality
Su=

Sufor all u ∈ U with norm in hE1. It remains
to observe that {u ∈ U :

u∈ hE1} = U , since E = dom
S⊂ hE1. ◃

4. Weighted shift operators

Weighted shift operators considered in this section are the compositions
W ◦ S ◦ w of two orthomorphisms w and W and a shift operator S. Repre-
sentability of a disjointness preserving operator as such a composition is related
to existence of a bounded set on which the operator is wide. In addition to
this criterion, we also suggest some su�cient conditions for representability of
an operator in the form W ◦ S ◦ w. The main result of the present section is
representation of an arbitrary disjointness preserving operator as the strongly
disjoint sum of weighted shift operators. Thus, operators of the form W ◦S ◦w
play the role of simple elements, from which wider classes of operators are
constituted. In the sequel, this fact will allow us to construct one of analytic
representations of disjointness preserving operators.

Throughout the section, E and F and order-dense ideals of the K-spaces E
and F . In the spaces E and F , we �x order unities 1E and 1F and consider
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the multiplication that makes the spaces commutative ordered algebras with
unities 1E and 1F , respectively (see 0.7). We recall that orthomorphisms in
the K-spaces under consideration are multiplication operators and we identify
them with the corresponding multipliers (see 2.3). The ideal of the K-space E
generated by the element 1E is denoted by E1. Observe that some notions
introduced in this section depend on a concrete choice of unities 1E and 1F .

4.1. We say that a linear operator T : E → F is a weighted shift oper-

ator if there exist order-dense ideals E′ ⊂ E and F ′ ⊂ F ,

E
T−−−→ F

w

y xW

E′ S−−−→ F ′

orthomorphisms w : E → E′ and W : F ′ → F , and a shift
operator S : E′ → F ′ such that T = W ◦ S ◦ w. The com-
position W ◦ S ◦ w is called a WSW-representation of T ,
and the operators W , S, and w are called the outer weight,
the shift, and the inner weight of the representationW ◦S◦w.

Observe that, in view of Theorem 1.1, a regular operator T : E → F is
a weighted shift operator if and only if so is its modulus |T |. Moreover, if one of
the operators T or |T | admits a WSW-representation then the other one admits
a WSW-representation with the same shift and inner weight. Thus, while
discussing the question of whether an operator is a weighted shift operator, we
may always assume the operator positive.

From the viewpoint of the above de�nition, the property of a mapping to
be a weighted shift operator depends on the choice of 1E and 1F . Actually,
there is no such a dependence. Indeed, let an operator T admit a WSW-rep-
resentation

Te = W ∗ S(w ∗ e) (e ∈ E),

where \ ∗ " is the multiplication corresponding to the unities 1E and 1F . Then,
after replacing 1E and 1F by 1′E and 1′F and introducing the new multi-
plication \ · " in the K-spaces under consideration, the operator T remains
a weighted shift operator and admits the WSW-representation

Te = W · S′(w′ · e) (e ∈ E),

where

S′x = (1′F/1F ) · S(1E · x)
(
x ∈ (domS)/1E

)
and w′ = w/12E (here, the division and the power operation also correspond
to the new unities). Thus, the notion of a weighted shift operator T : E → F
makes sense for \pure" K-spaces E and F , without any dependence on their
embedding into universally complete K-spaces and introducing the multiplica-
tive structure. In particular, this implies that a positive operator T : E → F
is a weighted shift operator if and only if it can be made a shift operator by
an appropriate choice of unities 1E and 1F .
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Simple examples show that a single weighted shift operator can have di�er-

ent WSW-representations. However, variety of the components of a WSW-rep-

resentation for a given operator T is naturally restricted by their connection

with T and with each other. Two main aspects of this connection are re
ected

in the following proposition:

Proposition. Let T : E → F be a weighted shift operator and let

W ◦ S ◦ w be a WSW-representation of it. Assign ρ := ⟨imT ⟩.
(1) Denote the shift of T by ST . Then ST extends ρ ◦ S and the equality

W ◦ S ◦ w = W ◦ ST ◦ w holds.

(2) Identify w and W with the corresponding elements of E and F and

assign WT := o- lim
π∈�

Tπ(1E/w) ∈ F , where � = {π ∈ Pr(E) : π(1E/w) ∈ E}.
Then ρW = WT and W ◦ S ◦ w = WT ◦ S ◦ w.

▹ Assertion (1) readily follows from 3.7 and 3.8. Let us prove (2). Due

to the obvious equality T ◦⟨w⟩⊥ = 0, we do not restrict generality by assuming

that ⟨w⟩ = ⟨1⟩. Then

o- lim
π∈�

Tπ(1E/w) = o- lim
π∈�

WSTwπ(1E/w) = o- lim
π∈�

WSTπ1E =
(
sup
π∈�

h(π)
)
W,

where h is the shadow of T . Since ρ = h(1), it is su�cient to show the re-

lation supπ∈� h(π) = h(1). From E ⊂ dom(ST ◦ w) it follows that w[E] ⊂
domST = hE1 and, hence, E ⊂ hE1/w. It remains to employ Lemma 3.6. ◃

Thus, a WSW-representation of a concrete operator determines to a great

extent by the choice of the inner weight. Observe that every weighted shift

operator admits a WSW-representation with positive inner weight. Indeed,

consider an arbitrary WSW-representationW ◦S◦w. Identifying the orthomor-

phism w with an element of E (see 2.3), denote the projection ⟨w+⟩ ∈ Pr(E)

by π and assign ρ :=
⟨
S(π1E)

⟩
. Then

W ◦ S ◦ w = W ◦ S ◦
(
π|w| − π⊥|w|

)
= W ◦

(
ρ ◦ S ◦ |w| − ρ⊥ ◦ S ◦ |w|

)
= (ρW − ρ⊥W ) ◦ S ◦ |w|.

Rema r k . If W ◦ S ◦w is a WSW-representation of an operator T with

positive inner weight w, then the operators T+, T−, and |T | admit the following
WSW-representations: T+ = W+◦S◦w, T− = W−◦S◦w, and |T | = |W |◦S◦w.
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4.2. Theorem. Let w be an arbitrary positive element of E . A linear
operator T : E → F admits a WSW-representation with inner weight w if and
only if it is disjointness preserving, regular, and wide at the element 1E/w.

▹ Necessity ensues from Proposition 4.1 (2). Let us prove su�ciency.
Suppose that a disjointness preserving operator T : E → F is wide at 1E/w.
Without loss of generality, we may assume that the operator T is positive.
Assign � :=

{
π ∈ Pr(E) : π(1E/w) ∈ E

}
and denote by W the orthomor-

phism of multiplication by supπ∈� Tπ(1E/w) ∈ F . Consider the composition
(1F/W ) ◦ T ◦ (1E/w) as an operator from w[E] into F and denote it by S.
By proving that S is a shift operator, we will obtain the desired WSW-repre-
sentation W ◦ S ◦ w for T . In accordance with Theorem 3.9, it is su�cient to
show that the operator S satis�es conditions (a){(d) presented in the statement
of that theorem. Veri�cation of the conditions causes no di�culties. ◃

We say that a subset of the K-space E is E -bounded if it is bounded in E .
A subset U0 of an LNS over E is called E -bounded if the set

{u0: u0 ∈ U0
}

is E -bounded.

Corollary. A linear operator T : E → F is a weighted shift operator if
and only if it is disjointness preserving, regular, and wide on some E -bounded
subset of E.

▹ If the operator T is wide on a set D ⊂ E and an element e ∈ E is
such that |d| 6 e for all d ∈ D, then the operator T is wide at e and, in view of
the last theorem, it admits a WSW-representation with inner weight 1E/e. ◃

4.3. Proposition. Assume that regular operators T, T : E → F are dis-
jointness preserving and satisfy the inequality |T | 6

∣∣T ∣∣. Then T is a weighted

shift operator if and only if so is T . Moreover, the following assertions are true:
(1) If W ◦S◦w is aWSW-representation of T then the operator T admits

a WSW-representation of the form W ◦ S ◦ w, where |W | 6
∣∣W ∣∣.

(2) If W ◦S◦w is aWSW-representation of T then the operator T admits

a WSW-representation of the form W ◦ S ◦ w, where ⟨imT ⟩|W | 6
∣∣W ∣∣.

▹ Without loss of generality, we may assume that the operators T and T
are positive.

(1) The claim is ensured by Corollary 2.10.
(2) Assume that T admits a WSW-representationW ◦S◦w and assign ρ :=

⟨imT ⟩. According to Theorem 4.2, the operator T is wide at the element 1E/w.

Then the operator T also has this property and, by the same Theorem 4.2, it
admits a WSW-representation W ◦S ◦w. The desired interrelation between W
and W ensues from Proposition 4.1. ◃



Disjointness Preserving Operators 69

4.4. In accordance with Theorem 4.2, it seems interesting to study situa-
tions in which an operator T : E → F turns out to be wide on some E -bounded
subset of E. Without touching the general problem, we will only discuss several
particular cases.

First of all, we point out a trivial corollary to Theorem 4.2: if {Te}⊥⊥ =

(imT )⊥⊥ for some element e ∈ E then T is a weighted shift operator (and it
admits a WSW-representation with inner weight 1E/e). In particular, the fol-
lowing assertion holds:

Proposition. If there exists a strong order unity e in the K-space E then
every disjointness preserving regular operator T : E → F is a weighted shift
operator and admits a WSW-representation with inner weight 1E/e.

Of course, the indicated cases admit generalizations. For instance, since
every set of pairwise disjoint elements in E is E -bounded, we have the following:

Proposition. Let T : E → F be a disjointness preserving regular op-
erator. If {Teξ : ξ ∈ �}⊥⊥ = (imT )⊥⊥ for some family (eξ)ξ∈� of pairwise
disjoint elements in E, then T is a weighted shift operator.

The hypothesis of this proposition is not necessary. Indeed, let E =C∞(P ),
where P is an extremally disconnected compact space containing a noniso-
lated point p ∈ P . Denote by E the order-dense ideal {e ∈ E : e(p) = 0}
of the K-space E . Consider the set Q := P\{p} and let F be the K-space
of all real-valued functions de�ned on Q. De�ne an operator T : E → F as
follows: Te = e

∣∣
Q. Obviously, the operator T is wide on the E -bounded set

{e ∈ E : |e| 6 1} (and, therefore, it is a weighted shift operator), but the fam-
ily (eξ)ξ∈� mentioned in the statement of the last proposition does not exist.

Another class of weighted shift operators resulted by combining Lemma 3.6
and Corollaries 1.6 and 3.5.

Theorem. Every disjointness preserving sequentially o-continuous regu-
lar operator T : E → F is a weighted shift operator. Moreover, for every order
unity w ∈ E , such an operator T admits a WSW-representation with inner
weight w.

4.5. It is known that not every disjointness preserving regular operator
is a weighted shift operator. For the sake of completeness, we present here
the corresponding example from [1], which is moreover typical in a sense
(see below).

Let Q be an extremally disconnected compact space without isolated
points. In this case, we can �nd an order-dense ideal E ⊂ C∞(Q), a fam-
ily (eξ)ξ∈� in E, and a family (qξ)ξ∈� in Q so that the following conditions be
satis�ed: the set {qξ : ξ ∈ �} is dense in Q, eξ(qξ) = ∞ for all ξ ∈ �, and, for
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each e ∈ E, the number set
{
(e/eξ)(qξ) : ξ ∈ �

}
is bounded. Then the op-

erator T : E → ℓ∞(�) acting by the rule (Te)(ξ) = (e/eξ)(qξ) is disjointness
preserving and regular (even positive), but is not a weighted shift operator.

The above construction of an operator T possesses the following prop-
erty: if we denote by ρξ the operator of multiplication by the characteris-
tic function χ{ξ}, then we obtain a partition of unity (ρξ)ξ∈� in the algebra

Pr
(
ℓ∞(�)

)
such that all fragments of the form ρξ ◦ T are weighted shift op-

erators. It turns out that of all disjointness preserving regular operators are
structured in the same way.

Theorem. Let T : E → F be a disjointness preserving regular operator.
Then there exists a partition of unity (ρξ)ξ∈� in the algebra Pr(F ) such that,
for each ξ ∈ �, the composition ρξ ◦ T is a weighted shift operator. More-
over, the projections ρξ can be taken so that each composition ρξ ◦ T admit
a WSW-representation with inner weight 1E/eξ, where eξ is a positive element
of E. In this case, the operator T is decomposed into the strongly disjoint sum

T =
⊕
ξ∈�

W ◦ ρξS ◦ (1E/eξ),

where S is the shift of T and W : F → F is the orthomorphism of multiplica-
tion by o-

∑
ξ∈� ρξTeξ.

e

e/e1

e/e2

e/e3

S

S

S

ρ1

ρ2

ρ3

∑

ρ1 ρ2 ρ3

W

Te

▹ By applying the exhaustion principle to the relation supe∈E+⟨Te⟩ =
⟨imT ⟩, we obtain a disjoint family (ρξ)ξ∈� in the algebra Pr(F ) and a family
(eξ)ξ∈� of positive elements in E such that supξ∈� ρξ⟨Teξ⟩ = ⟨imT ⟩. After

adding the projection ⟨imT ⟩⊥ to the family (ρξ)ξ∈� and the zero element
to the family (eξ)ξ∈�, we make (ρξ)ξ∈� a partition of unity and preserve
the relation supξ∈� ρξ⟨Teξ⟩ = ⟨imT ⟩. By Theorem 4.2, for each ξ ∈ �,
the composition ρξ ◦ T is a weighted shift operator and admits a WSW-rep-
resentation with inner weight 1E/eξ. If S is the shift of T then the shift of
ρξ ◦ T is equal to ρξS (see 3.8); thus, using Proposition 4.1, we conclude that
ρξ ◦ T = ρξTeξ ◦ ρξS ◦ (1E/eξ). ◃
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4.6. Let U be a BKS over an order-dense ideal E ⊂ E and let V be
a BKS over an order-dense ideal F ⊂ F . We say that a linear

U T−−−→ V

w

y xW

U ′ S−−−→ V ′

operator T : U → V is a weighted shift operator if there exist
a BKS U ′ over an order-dense ideal E′ ⊂ E , a BKS V ′ over
an order-dense ideal F ′ ⊂ F , orthomorphisms w : U → U ′

and W : V ′ → V , and a shift operator S : U ′ → V ′ such
that T = W ◦ S ◦ w. As in the case of an operator in
K-spaces, the composition W ◦S ◦w is called a WSW-representation of T and
the operators W, S, and w are respectively called the outer weight, the shift,
and the inner weight of the representation W ◦ S ◦ w.

Of course, use of the terminology of 4.1 in the case of operators in LNSs
is not quite correct, since a K-space is a particular case of an LNS. Therefore,
in order to avoid confusion, we sometimes call a weighted shift operator scalar

or vector, referring to De�nition 4.1 or 4.6, respectively. By analogous reasons,
we speak about scalar or vector WSW-representations. A vector WSW-repre-
sentation W ◦ S ◦ w of an operator T : U → V will be called semivector if w
is a scalar orthomorphism (see 2.8), i.e., U and U ′ are order-dense ideals of
the same BKS over E and the orthomorphism w acts by the rule u 7→ eu for
some �xed orthomorphisms e ∈ Orth(E,E′).

Theorem. Let U be a BKS over an order-dense ideal E ⊂ E and let V
be a BKS over an order-dense ideal F ⊂ F . A linear operator T : U → V is
a vector weighted shift operator if and only if it is dominated and its exact
dominant

T: E → F is a scalar weighted shift operator. Moreover, the fol-

lowing assertions hold:

(1) If W ◦ S ◦ w is a vector WSW-representation of T then
Tadmits

a scalar WSW-representation W ◦
S◦

wsuch that 0 6 W 6
W.

(2) Let W ◦ S ◦ w be a scalar WSW-representation of
Twith posi-

tive weights W and w. Then T admits a semivector WSW-representation
W ◦ S ◦ w such that

W= W ,
S= S, and w is the orthomorphism of

multiplication by w.

▹ (1) The claim readily follows from 4.3 (1).

(2) Suppose that W ◦S ◦w is a scalar WSW-representation of
T, where

w : E → E′, S : E′ → F ′ andW : F ′ → F . LetmU be the universal completion
of U , let U ′ be the ideal {u ∈ mU :

u ∈ E′} of the BKS mU , and let

w : U → U ′ be the orthomorphism of multiplication by w. Denote by V ′

the o-completion of the norm transformation of U ′ by means of S (see 0.6)

and consider the corresponding operator of norm transformation S : U ′ → V ′.
Now, we are to construct an orthomorphism W : V ′ → V .
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Assign V ′
0 := (S ◦ w)[U ] and de�ne a linear operator W 0 : V ′

0 → V as

follows: W 0(Swu) := Tu. Such a de�nition is sound, since the equality

Swu1 = Swu2 impliesTu1 − Tu2
6Tu1 − u1

= WSw
u1 − u1


= WS

wu1 − wu2
= W

Swu1 − �Swu2
= 0.

Assign ρ := ⟨imT ⟩. Since ρ 6
⟨
(S◦w)[U ]

⟩
and w[U ] =

{
v′ ∈ V ′ :

v′∈ w[E]
}
,

the operator ρ ◦ S is wide on the ideal w[E] ⊂ E′. Consequently, by Propo-

sition 3.2
(
(2)⇒(3)

)
, the set V ′

0 = (ρ ◦ S)
[
w[U ]

]
approximates (ρ ◦ S)[U ′].

The latter set, by the de�nition of the norm transformation SU ′, approxi-
mates the set ρ[SU ′], which in turn approximates ρ[V ′]. Therefore, in view

of [14: 1.2], the set V ′
0 approximates ρ[V ′]. Obviously,

W 0v
′
0

6 W
v′0 for

all v′0 ∈ V ′
0. According to Corollary 1.8, the operator W 0 admits a (unique)

linear extension W 1 : ρ[V ′] → V such that
W 1v

′6 W
v′ for all v′ ∈ V ′.

Then the composition W 1 ◦ ρ : V ′ → V satis�es the inequality
W 1 ◦ ρ

6 W
and, consequently, it is an orthomorphism. Thus, we have already constructed
a WSW-representation (W 1 ◦ρ)◦S ◦w of the operator T . However, we cannot

assign W := W 1 ◦ ρ at this moment, since the equality
W= W will not be

guaranteed.
For all positive e ∈ E, we haveW 1 ◦ ρ

Swe = sup
{W 1ρv

′: v′ ∈ V ′,
v′= Swe

}
> sup

{
ρ
W 0v

′
0

: v′0 ∈ V ′
0,
v′0= Swe

}
= sup

{
ρ
W 0Swu

: u ∈ U ,
Swu= Swe

}
= sup

{Tu: Sw
u= Swe

}
> sup

{Tu:
u= e

}
=
Te

= WSwe,

whence
W 1 ◦ ρ

Swe = WSwe by the inequality
W 1 ◦ ρ

 6 W . Thus,

W ◦ S ◦ w and
W 1 ◦ ρ

◦ S ◦ w are two WSW-representations of the oper-

ator
T. Hence, according to Proposition 4.1 (2), the equality

W 1 ◦ ρ
= ρW

holds. To ensure the equality
W= W , it is su�cient to de�ne W as the sum

of the orthomorphismW 1◦ρ and some \inactive" supplement with norm ρ⊥W .
Proposition 2.4 implies existence of an orthomorphism W 2 ∈ Orth(U ,V) such
that

W 2

= W . We assign W := W 1 ◦ ρ+W 2 ◦ ρ⊥. ◃
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R ema r k . (1) The inequality W 6
Wpresented in assertion (1) of

the last theorem can be strict. In other words, the equality
T=

W◦S◦w
cannot be guaranteed for every WSW-representation T = W ◦S ◦w. (A simple
counterexample can be given in the case when U and V are Banach spaces.)
However, (2) implies that every weighted shift operator T : U → V admits

a WSW-representation W ◦ S ◦ w such that
T=

W◦
S◦

w.
(2) From the last theorem it follows that each vector weighted shift opera-

tor admits a semivector WSW-representation. Moreover, if an operator admits
a vector WSW-representation with inner weight w then it admits a semivector
WSW-representation with inner weight the operator of multiplication by

w.
(3) If we consider each of the K-spaces E and F as a BKS (over itself)

then the exact dominant of every regular operator T : E → F coincides with
its modulus |T |. This observation and the last theorem allow us to conclude
the following: a mapping T : E → F is a vector weighted shift operator if and
only if it is a scalar weighted shift operator. This fact justi�es correctness of
using the common term \weighted shift operator" for operators in BKSs as
well as for operators in K-spaces.

4.7. Each of the assertions stated in the following theorem readily follows
from a similar \scalar" assertion (see 4.1{4.4) and Theorem 4.6.

Theorem. Let U be a BKS over an order-dense ideal E ⊂ E and let V
be a BKS over an order-dense ideal F ⊂ F .

(1) The property of a mapping T : U → V to be a weighted shift operator
does not depend on choosing unities 1E and 1F .

(2) A linear operator T : U → V is a weighted shift operator if and only if it

is bounded, preserves disjointness, and satis�es the relation T [U0]⊥⊥ = T [U ]⊥⊥

for some E -bounded subset U0 ⊂ U .
(3) Let w be an arbitrary positive element of E . A linear operator

T : U → V admits a WSW-representation with inner weight of norm w if and
only if it is disjointness preserving, bounded, and wide at the element 1E/w.

(4) Suppose that T : U → V is a disjointness preserving bounded operator.

If {Tu}⊥⊥ = (imT )⊥⊥ for some element u ∈ U then T is a weighted shift
operator and admits a WSW-representation with inner weight of norm 1E/

u.
(5) If there exists a strong order unity e in the K-space E then every dis-

jointness preserving bounded operator T : U → V is a weighted shift operator
and admits a WSW-representation with inner weight of norm 1E/e.

(6) Every disjointness preserving sequentially o-continuous bounded op-
erator T : U → V is a weighted shift operator. Moreover, for every order unity
w ∈ E , such an operator T admits a WSW-representation with inner weight
of norm w.
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4.8. Theorem. Suppose that U is a BKS over an order-dense ideal
E ⊂ E , V is a BKS over an order-dense ideal F ⊂ F , mU andmV are universal
completions of U and V , and T : U → V is a disjointness preserving bounded
operator. Then there exists a partition of unity (ρξ)ξ∈� in the algebra Pr(V)
such that, for each ξ ∈ �, the composition ρξ ◦ T is a weighted shift operator.

The projections ρξ can be chosen so that each composition ρξ ◦ T admit
WSW-representation with inner weight of norm 1E/eξ, where eξ is a positive
element of E.

For each ξ ∈ �, assign Eξ := {e/eξ : e ∈ E} and Uξ := {u ∈ mU :u ∈ Eξ}, where mU is the universal completion of U , and denote by
wξ : U → Uξ the scalar orthomorphism of multiplication by 1E/eξ. Then there

exist a BKS V ′ over F , strongly disjoint shift operators Sξ : Uξ → V ′ (ξ ∈ �),

and an orthomorphism W : V ′ → mV such that the operators T and
Tde-

compose into the following strongly disjoint sums:

T =
⊕
ξ∈�

W ◦ Sξ ◦ wξ,
T=

⊕
ξ∈�

W◦
Sξ

◦
wξ

.

u

w1

w2

w3

w1u

w2u

w3u

S1

S2

S3

v1

v2

v3

∑
v1

v2
v3 W

Tu

▹ Let T : U → V be an arbitrary disjointness preserving bounded op-
erator. By Theorem 4.5, there exists a partition of unity (ρξ)ξ∈� in the alge-
bra Pr(F ) such that, for each ξ ∈ �, the composition ρξ ◦

T is a weighted
shift operator and, moreover, admits a WSW-representation with inner weight
1E/eξ, where eξ is a positive element of E. De�ne BKSs Uξ and orthomor-
phisms wξ : U → Uξ in the same way as in the statement of the theorem being
proved. By Theorem 4.6, for each ξ ∈ �, there exist a BKS Vξ over an order-
dense ideal Fξ ⊂ ρξ[F ], a shift operator Sξ : Uξ → Vξ, and an orthomorphism
Wξ : Vξ → ρξ[V ] such that

ρξ ◦ T = Wξ ◦ Sξ ◦ wξ,

ρξ ◦
T=

Wξ

◦
Sξ

◦
wξ

.
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In order to complete the proof, it remains to construct the desired BKS V ′ and
\glue" the orthomorphisms Wξ together to obtain a single orthomorphism W .

Assign V ′
0 :=

⊕
ξ∈� Vξ (see 0.5) and denote by V ′ a universal completion of

the BKS V ′
0. Naturally identifying Vξ and ρξ[V ′

0], we regard Sξ as an operator

from Uξ into V ′. For each element

v′0 = (vξ)ξ∈� ∈ V ′
0,

assign

W0(v
′) := o-

∑
ξ∈�

Wξ(vξ) ∈ mV .

Due to Corollary 1.8, the orthomorphism W0 : V ′
0 → mV admits a unique

extension to an orthomorphism W : V ′ → mV . ◃

5. Representation of disjointness preserving operators

Constructing analytic representations of disjointness preserving operators
is an old tradition. This question was studied by everyone who was interested
in these operators from an abstract point of view. Representation of various
classes of operators as composition and multiplication mappings is presented,
for instance, in [1, 3{6, 19, 30, 31, 33, 34]. According to the Vulikh{Ogasawara
theorem [12: 0.3.4], an order-dense ideal of the K-space C∞(Q), with Q an ex-
tremally disconnected compact space, is a general form of a K-space. Fur-
thermore, according to the Corollary [12: 2.4.4], order-dense ideals of the LNS
C∞(Q,X ), where X is a continuous Banach bundle over Q, exhaust all BKSs.
These two facts provide a base for representation methods of studying oper-
ators in K-spaces and BKSs. Analytic representations of operators are con-
structed in this section with the help of such operations as continuous change
of variable, pointwise multiplication by a real-valued function, and pointwise
evaluation of an operator-valued function.

Throughout the section, X and Y are totally disconnected, and P and Q
extremally disconnected compact spaces. The symbol 1M denotes the function
on a set M which is identically equal to unity.

5.1. Assume that some \abstract" objects A and B (for instance, Boolean
algebras, K-spaces, or BKSs) are represented via isomor-

A -f
B

?
i

Â - B̂
interpre-

tation of f

?
j

phisms i : A → Â and j : B → B̂ in the form of some \con-

crete" objects Â and B̂ (for instance, algebras of sets or
spaces of functions). Then the interpretation of a mapping
f : A → B (with respect to the representations i and j)

is de�ned to be the composition j ◦ f ◦ i−1 : Â → B̂.
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5.2. Denote by C0(Y,X) the totality of all continuous functions s : Y0→X
de�ned on various clopen subsets Y0 ⊂ Y .

Proposition. A mapping h : Clop(X) → Clop(Y ) is a ring homomor-

phism if and only if there exists a function s∈C0(Y,X) such that h(U)= s−1[U ]
for all U ∈ Clop(X). For every ring homomorphism h, such a function s
is unique.

hU︷ ︸︸ ︷ h(U)︷ ︸︸ ︷
s(y) yX Y

s

▹ The claim follows directly from the well-known theorem of R. Sikorski
(see [26: Section 11; 25]). ◃

The relation h(U) = s−1[U ] is called the representation of the ring ho-
momorphism h by means of the function s. Observe that, due to the Stone
theorem, the above proposition describes the structure of ring homomorphisms
acting in arbitrary Boolean algebras.

5.3. The following proposition shows that every ring homomorphism
(to within an isomorphism) is the mapping of intersection with a �xed set.

Proposition. Let h : Clop(X) → Clop(Y ) be a ring homomorphism.
Then there exist a closed subset Z ⊂ X and an order isomorphism i of
the Boolean algebra Clop(Z) onto imh such that h

(
U) = i(U ∩ Z) for all

U ∈ Clop(X).

h
U︷ ︸︸ ︷ h(U)︷ ︸︸ ︷

X
YZ

▹ Let h(U) = s−1[U ] be the representation of h by means of a function
s ∈ C0(Y,X). Assign Z := im s and, for each element W ∈ Clop(Z), de�ne

the set i(W ) ∈ Clop(Y ) by the formula i(W ) := s−1[W ]. Veri�cation of
the assertions of the theorem causes no di�culties. ◃
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5.4. Proposition. Let E and F be order-dense ideals of C∞(Q). A map-

ping W : E → F is an orthomorphism if and only if there exists a function

w ∈ C∞(Q) such that

W (e) = we (e ∈ E).

For every orthomorphism W , such a function w is unique.

▹ The assertions stated are a reformulation of Theorem 2.3 with account

taken of Theorem [12: 0.3.4]. ◃

The relation W (e) = we is called the representation of the orthomor-

phismW by means of the function w. Observe that, due to Theorem [12: 0.3.4],

the last proposition describes the structure of orthomorphisms acting in arbi-

trary K-spaces.

5.5. Given arbitrary functions s ∈ C0(Q,P ) and e ∈ C∞(P ), the function

e • s : Q → R is de�ned as follows:

(e • s)(q) :=
{

e
(
s(q)

)
if q ∈ dom s,

0 if q ∈ Q\ dom s.

Of course, to ensure correctness, while using the notation e•s, we must always
have in mind a �xed set Q containing dom s. Obviously, the function e • s is

continuous but, in general, does not belong to C∞(Q), since it can assume

in�nite values on a set with nonempty interior. The totality of all functions

e ∈ C∞(P ) for which e • s ∈ C∞(Q) is denoted by Cs(P ).

Proposition. Let h : Pr
(
C∞(P )

)
→ Pr

(
C∞(Q)

)
be a ring homomor-

phism and let hC(P ) be the order-dense ideal of C∞(P ) de�ned in 3.3. Then

hC(P ) = Cs(P ),

where h(U) = s−1[U ] is the representation of h by means of an s ∈ C0(Q,P )(
with respect to the natural representations of Pr

(
C∞(P )

)
and Pr

(
C∞(Q)

))
.

▹ The claim follows from Propositions 3.3 and 5.2. ◃

A continuous function s : Q → P is called σ-exact, if s−1[clG] = cl s−1[G]

for every open σ-closed subset G ⊂ P . Below (see. 6.1), this property of

a function is considered in more detail.
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Lemma. Denote the image of a function s ∈ C0(Q,P ) by R.
(1) For every function e ∈ Cs(P ), the intersection R∩dom e is dense in R,

i.e., Cs(P ) ⊂
{
e ∈ C∞(P ) : e|R ∈ C∞(R)

}
.

(2) If the restriction s|R is a σ-exact function then Cs(P ) =
{
e ∈ C∞(P ) :

e|R ∈ C∞(R)
}
and C∞(R) =

{
e
∣∣
R : e ∈ Cs(P )

}
.

▹ (1) Consider a function e ∈ Cs(P ). If there were a nonempty open
set W ⊂ R disjoint from dom e then the function e • s would assume in�nite
values on the nonempty open set s−1[W ], which would contradict the inclusion
e • s ∈ C∞(Q). Consequently, the intersection R ∩ dom e is dense in R.

(2) Let a function e ∈ Cs(P ) be such that the intersection R ∩ dom e

is dense in R. Then, using the fact that the function s|R is σ-exact and
the intersection R ∩ dom e is a σ-closed open subset of R, we obtain

cl(e ◦ s)−1[R] = cl s−1[dom e] = cl s−1[R ∩ dom e]

= s−1
[
cl(R ∩ dom e)

]
= s−1[R] = dom s,

and the �rst equality is established. The second equality follows from the �rst
one due to the Tietze{Urysohn theorem. ◃

Rema r k . The requirement in condition (2) of the lemma, that the func-

tion s|R be σ-exact, is essential since the set Cs(P ) is not in general determined
by the image of s. Indeed, suppose that p ∈ P is not a P-point, i.e., the in-
tersection of some sequence of neighborhoods of p is not a neighborhood of p.
Let P := P ∪ {∞} be the enrichment of P by a new isolated point ∞. Then

the identity function s : P → P and the function �s := s ∪
{
(∞, p)

}
: P → P

have the same image, while the sets Cs(P ) and C�s(P ) does not coincide.

5.6. If E ⊂ C∞(P ) and R ⊂ P then the set
{
e|R : e ∈ E

}
is denoted

by E|R.

Lemma. Denote the image of a function s ∈ C0(Q,P ) by R and assume

that the function s|R is σ-exact. Then

(1) C∞(R) is a vector sublattice of C∞(R);
(2) if E is an ideal of the K-space Cs(P ) then E|R is an ideal of the vector

lattice C∞(R).

▹ Assertion (1) readily follows from Lemma 5.5 (2). Let us prove (2).

Assume that a function g ∈ C∞(R) satis�es the inequalities 0 6 g 6 e|R for
some positive element e ∈ E. In view of Lemma 5.5 (2), there is a positive
function �e ∈ Cs(P ) such that g = �e|R. Then �e ∧ e ∈ E and g = (�e ∧ e)|R. ◃
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5.7. Proposition. Let E be an order-dense ideal of C∞(P ) and let F
be an order-dense ideal of C∞(Q). A mapping S : E → F is a shift operator
if and only if there exists a function s ∈ C0(Q,P ) such that Se = e • s for
all e ∈ E.

S
e Se

e(p) e(s(q))

p qP Q

s

▹ Su�ciency can be easily established with the help of Theorem 3.9.
Let us show necessity. Suppose that S : E → F is a shift operator and
h : Pr(E) → Pr(F ) is its shadow. Represent the algebras Pr(E) and Pr(F )

as Clop(P ) and Clop(Q) and consider the representation ĥ(U) = s−1[U ] of

the corresponding interpretation ĥ : Clop(P ) → Clop(Q) of the homomor-
phism h by means of an s ∈ C0(Q,P ). According to Proposition 5.5, the equal-
ity hC(P ) = Cs(P ) holds. Since the operators (e 7→ e • s) : Cs(P ) → C∞(Q)
and Sh : hC(P ) → C∞(Q) have the same shadow h and satisfy the equalities
1P •s = Sh(1P ) = h(1)1Q, they coincide in view of Proposition 3.7. Therefore,
Se = She = e • s for all e ∈ E. ◃

5.8. The function s connected with the shift operator S in the way
described in the last proposition is not unique in general. Indeed, assume
that the compact space P contains two distinct nonisolated points p1 and p2,
assign E := {e ∈ C∞(P ) : e(p1) = e(p2) = 0} and consider the func-
tions s1, s2 : Q → P identically equal to p1 and p2, respectively. Then
e • s1 = e • s2 = 0 for all e ∈ E.

The following proposition clari�es the question about unique representa-
tion of a shift operator.

Proposition. Let E be an order-dense ideal of C∞(P ), let F be an order-
dense ideal of C∞(Q), and let S : E → F be a shift operator. Assign
Q0 := supp imS = cl

∪
e∈E suppSe.

(1) If functions s1, s2 ∈ C0(Q,P ) satisfy the equalities Se = e• s1 = e• s2
for all e ∈ E then Q0 ⊂ dom s1 ∩ dom s2 and s1 = s2 on Q0.

(2) There exists a unique function s ∈ C(Q0, P ) such that Se = e • s

for all e ∈ E. Furthermore, if s is such a function then h(U) = s−1[U ] is
a representation of the shadow h of the operator S.
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▹ (1) Denote byD the totality of all points in P , at which some functions

in E are nonzero. Obviously, the set s−11 [D] is dense in Q0; therefore, it is

su�cient to establish the equality s1 = s2 on this set. Take an arbitrary point

q ∈ s−11 [D] and assume to the contrary that s1(q) ̸= s2(q). Since s1(q) ∈ D,

there exists a function e ∈ E that satis�es the relations e
(
s1(q)

)
̸= 0 and

e
(
s2(q)

)
= 0, which contradicts the equality e • s1 = e • s2.

(2) Existence of the function s follows from Proposition 5.7, and its

uniqueness from assertion (1). The fact that s represents the shadow of S

ensues from the proof of the Proposition 5.7. ◃

If a function s satis�es the conditions of assertion (2) then the relation

Se = e • s is called the representation of the shift operator S by means of

the function s. Observe that, due to Theorem [12: 0.3.4], Propositions 5.7

and 5.8 describe the structure of shift operators acting in arbitrary K-spaces.

5.9. The following proposition shows that every shift operator (to within

an isomorphism) is the operator of restriction onto a �xed set.

Proposition. Let E be an order-dense ideal of C∞(P ), let F be an order-

dense ideal of C∞(Q), and let S : E → F be a shift operator. Then there exist

a closed subset R ⊂ P and a mapping i : E|R → F such that

(1) E|R is a vector sublattice of the K-space C∞(R);

(2) i is a linear and order isomorphism of E|R onto imS;

(3) Se = i
(
e|R

)
for all e ∈ E.

e Se
e|R

P Q

R

▹ Let Se = e • s be the representation of S by means of a function

s ∈ C0(Q,P ). Assign R := im s and, for each element g ∈ E|R, de�ne
the function i(g) ∈ C(Q,R) by the formula i(g) := g • s. Veri�cation of

assertions (1){(3) causes no di�culties. ◃
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5.10. Theorem. Let E be an order-dense ideal of C∞(P ) and let F
be an order-dense ideal of C∞(Q). A mapping T : E → F is a weighted shift
operator if and only if there exist functions s ∈ C0(Q,P ), w ∈ C∞(P ), and
W ∈ C∞(Q) such that we • s ∈ C∞(Q) and Te = W (we • s) for all e ∈ E.

(·) • s

we we • sw W

e(p) (Te)(q)
e Te

p qP Q

s

▹ The claim readily follows from Propositions 5.4 and 5.7. ◃
5.11. Simple examples show that the components of a representation

Te = W (we • s) of a weighted shift operator T are not unique. However,
omitting certain details, we may say that the function s is unique and W is
uniquely determined by the choice of w. This observation can be precisely
stated as follows:

Proposition. Let E be an order-dense ideal of C∞(P ), let F be an order-
dense ideal of C∞(Q), and let T : E → F be a disjointness preserving regular
operator. Assign Q0 := supp imT .

(1) Let functions s1,s2 ∈ C0(Q,P ), w1,w2 ∈ C∞(P ), andW1,W2 ∈ C∞(Q)
be such that Te = W1(w1e • s1) = W2(w2e • s2) for all e ∈ E. Then
Q0 ⊂ dom s1 ∩ dom s2 and s1 = s2 on Q0. If, in addition, w1 = w2 then
W1 = W2 on Q0.

(2) Let a positive function w ∈ C∞(P ) be such that T is wide at 1/w
(see 3.6). Then there exist unique functions s ∈ C(Q0, P ) and W ∈ C∞(Q)
such that W = 0 outside Q0 and Te = W (we • s) for all e ∈ E. Furthermore,

suppW = s−1[suppw] = Q0, Se = e • s is a representation of the shift S of

the operator T , and h(U) = s−1[U ] is a representation of its shadow h.

▹ Assertion (1) follows immediately from Proposition 4.1 (due to 5.4
and 5.8). Let us show (2). Existence of functions s and W ensues from
Theorems 4.2 and 5.10, and their uniqueness from assertion (1). Connection
of the function s with the shift and shadow of the operator T follows from
Propositions 4.1 (1) and 5.8 (2). ◃
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If s, w, and W satisfy the conditions stated in assertion (2), then the re-
lation Te = W (we • s) is called the representation of the weighted shift oper-
ator T by means of the functions s, w, and W . Observe that, due to the The-
orem [12: 0.3.4], assertions 5.10 and 5.11 describe the structure of weighted
shift operators acting in arbitrary K-spaces.

R ema r k . If Te = W (we•s) is a representation of a weighted shift oper-
ator T then the operators T+, T−, and |T | admit the following representations:
T+e = W+(we • s), T−e = W−(we • s), |T |e = |W |(we • s).

5.12. Given arbitrary functions f, g ∈ C(Q,R), the product fg ∈ C(Q,R)
is de�ned by the rule

(fg)(q) :=


f(q)g(q) if the product f(q)g(q) makes sense,

i.e., does not have the form 0 · ±∞ or ±∞ · 0,
0 if f ≡ 0 or g ≡ 0 in a neighborhood of q

on a dense subset of Q and then extends onto the entire space Q by continuity.

Theorem. Let E be an order-dense ideal of C∞(P ), let F be an order-
dense ideal of C∞(Q), and let T : E → F be a disjointness preserving regular

operator. Consider the representation h(U) = s−1[U ] of the shadow h of
the operator T by means of a function s ∈ C0(Q,P ). Then there exist a family
(wξ)ξ∈� of positive functions in C∞(P ) and a family (Wξ)ξ∈� of pairwise
disjoint functions in C∞(Q) such that 1/wξ ∈ E for all ξ ∈ � and

Te = o-
∑
ξ∈�

Wξ(wξe • s) (e ∈ E). (∗)

e

P P Q

P

P

Q

Q

w1

w2

w3 e3

e2

e1 e1 • s

e2 • s

e3 • s

s

s

s

W1

W2

W3

f1

f2

f3

∑ f1

f2
f3

Te

Q

Q

Q

Q

▹ The assertion stated is a reformulation of Theorem 4.5 with account
taken of Proposition 5.11 (2). ◃
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Observe that the functions wξe•s in the representation (∗), being contin-
uous functions from Q into R, need not belong to C∞(Q) while the products
Wξ(wξe • s) do belong to C∞(Q).

We call the relation

Te = o-
∑
ξ∈�

Wξ(wξe • s)

the representation of the operator T by means of the functions s, wξ, and Wξ.
Observe that, due to Theorem [12: 0.3.4], the last theorem describes the struc-
ture of disjointness preserving regular operators acting in arbitrary K-spaces.

R ema r k . If Te = o-
∑

ξ∈�Wξ(wξe • s) is a representation of the opera-

tor T then the operators T+, T−, and |T | admit the following representations:

T+e = o-
∑
ξ∈�

W+
ξ (wξe • s),

T−e = o-
∑
ξ∈�

W−
ξ (wξe • s),

|T |e = o-
∑
ξ∈�

∣∣Wξ

∣∣(wξe • s).

The remainder of the current section is devoted to representation of op-
erators in Banach{Kantorovich spaces.

5.13. If X and Y are ample CBBs over Q (see [12: Chapter 2], wherein

ample CBBs are called \complete"), u ∈ C∞(Q,X ) and w ∈ C∞
(
Q,B(X ,Y)

)
,

then the section ext(w ⊗ u) ∈ C∞(Q,Y) is denoted by w ⊗ u.

Proposition. Let X and Y be ample CBBs

u

Q

X (q)

Y(q)

u(q)

q

v(q)
v=Wu

W

w(q)over Q and let E and F be order-dense ideals of
C∞(Q). A mapping W : E(X ) → F (Y) is an or-
thomorphism if and only if there exists a section
w ∈ C∞

(
Q,B(X ,Y)

)
such that Wu = w ⊗ u for

all u ∈ E(X ). For every orthomorphism W , such
a section w is unique. Furthermore,

W(e) =we for all e ∈ E.

▹ Let W : E(X ) → F (Y) be an orthomor-
phism. Consider the representation

W(e) = ge
of the orthomorphism

W: E → F by means of
a function g ∈ C∞(Q) (see 2.4 and 5.4). Denote by D the (open, dense)
set of all points of Q at which the function g is �nite and some functions
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in E are nonzero. In addition, assign E1 := E ∩ C(Q). De�ne the mapping

w0 : q ∈ D 7→ w(q) ∈ B
(
X (q),Y(q)

)
as follows: for every q ∈ D and x ∈ X (q),

take a section u ∈ E1(X ) satisfying u(q) = x (such a section exists in view

of [12: 1.3.11]) and assign w0(q)x := (Wu)(q). Correctness of this de�nition

and boundedness of the operator w0(q) are ensured by the relations

∥(Wu)(q)∥ =
Wu

(q) 6 (Wu)(q) = (
g
u)(q) = g(q)∥u(q)∥

that are valid for all q ∈ D and u ∈ E1(X ). By Theorem [12: 2.2.13],

we have w0 ∈ C
(
D,B(X ,Y)

)
. Assign w := ext(w0) ∈ C∞

(
Q,B(X ,Y)

)
.

The construction of the section w directly implies that Wu = w ⊗ u for all

u ∈ E1(X ). The set E1(X ) is an order-dense ideal of the BKS E(X ) and thus

approximates the latter. Therefore, in view of 2.6, the orthomorphisms W and

u 7→ w ⊗ u coincide on the entire space E(X ).

Show uniqueness of w. Suppose that sections w1, w2 ∈ C∞
(
Q,B(X ,Y)

)
satisfy the equality w1 ⊗ u = w2 ⊗ u for all u ∈ E(X ). Denote by D0 the set

of all points of Q, at which some functions in E are nonzero, and assign

D := D0 ∩ domw1 ∩ domw2. Consider a q ∈ D and an x ∈ X (q). In view

of [12: 1.3.11], there is a section u ∈ E(X ) such that u(q) = x. Therefore,

w1(q)x = (w1 ⊗ u)(q) = (w2 ⊗ u)(q) = w2(q)x.

For proving the equality w1 = w2, it remains to observe that the set D is dense

in Q.

Let us establish the equality
W(e) =we. From [12: 1.3.11] it follows

that w= sup{
w ⊗ u

: u ∈ C(Q,X ),
u6 1}.

Therefore, for all positive e ∈ E, we have

We = sup
|u|6e

Wu
= sup

|u|61

W (eu)


= sup
|u|61

w ⊗ (eu)
= sup

|u|61

w ⊗ u
e =we. ◃

The relation Wu = w ⊗ u is called the representation of the ortho-

morphism W by means of the section w. Observe that, due to the Corol-

lary [12: 2.4.4], the last proposition describes the structure of orthomorphisms

acting in arbitrary BKSs.
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5.14. Proposition. Let X and Y be arbitrary CBBs over Q and let Y be
ample. Suppose that E is an order-dense ideal of C∞(Q), U and V are lattice-
normed subspaces of E(X ) and E(Y), and U approximates E(X ). A mapping
I : U → V is an isometric embedding if and only if there exists an isometric
embedding i of X into Y such that I(u) = i⊗ u for all u ∈ U .

▹ Only necessity requires veri�cation. Let I : U → V be an isomet-
ric embedding. In view of Corollary 1.8, there exists an isometric embed-
ding �I : C∞(Q,X ) → C∞(Q,Y) that extends I. Denote by X the am-

ple hull of X , represent C∞(Q,X ) as C∞(Q,X ) (see [12: 2.4.8]) and con-

sider the representation Î(u) = �i ⊗ u of the corresponding interpretation

Î : C∞(Q,X ) → C∞(Q,Y) of the orthomorphism �I by means of a section
�i ∈ C∞

(
Q,B(X ,Y)

)
. It is not di�cult to become convinced that �i is

an isometric embedding of X into Y . For each point q ∈ Q, assign i(q) :=
�i(q)

∣∣X (q). By the de�nition of a homomorphism (see [12: 1.4.2]), we have

Q⊗ �i ∈ C(Q⊗X , Q⊗Y). Therefore, Q⊗ i = (Q⊗ �i )
∣∣
Q⊗X ∈ C(Q⊗X , Q⊗Y),

i.e., i ∈ HomQ(X ,Y); consequently, i is an isometric embedding of X into Y .
It remains to observe that I(u) = �I(u) = �i ⊗ u = i⊗ u for all u ∈ U . ◃

The following result supplements the interpretation [12: 2.4.1] of isometric
LNSs.

Corollary. Let X and Y be ample CBBs over Q and let E be an order-
dense ideal of C∞(Q). A mapping I : E(X ) → E(Y) is an isometric embedding
(an isometry) if and only if there exists an isometric embedding (an isometry) i
of X into (onto) Y such that I(u) = i⊗ u for all u ∈ E(X ).

Due to the Corollary [12: 2.4.4], the last assertion describes the structure
of isometric embeddings of arbitrary BKSs.

5.15. Lemma. Suppose that X is an ample CBB over P , s ∈ C0(Q,P ),
and u ∈ C∞(P,X ). If

u∈ Cs(P ) then u • s ∈ C∞(Q,X • s).

▹ First, the domain of de�nition of the section u • s coincides with
dom(

u•s) and, therefore, it is dense inQ due to the containment
u∈ Cs(P ).

Second, if the section u•s has a limit at the point q ∈ Q then q ∈ dom
u • s

=
dom(

u• s) = dom(u • s). ◃

Observe that ampleness of X does not ensure that of X • s. Indeed, if
the stalk X (p) is in�nite-dimensional, the space Q is in�nite, and the function
s : Q → P is constant and equal to p, then, by Theorem [12: 2.5.3], the bundle
X • s is not ample.
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5.16. Lemma. Suppose that X is an ample CBB over P , E is an order-
dense ideal of C∞(P ), F is an order-dense ideal of C∞(Q), and S : E → F is
a shift operator. Denote the BKS E(X ) by U and consider the operator of norm
transformation SU : U → SU (see 0.6). Let Se = e • s be the representation
of the operator S by means of a function s ∈ C0(Q,P ). Then there exists
an F -isometric embedding i : SU → F (X • s) such that iSUu = u • s for all
u ∈ E(X ).

▹ De�ne an operator i0 : SU [U ] → F (X • s) by letting i0(SUu) := u • s
for all u ∈ U . Correctness of this de�nition is justi�ed by the equalitiesu • s

=
u• s = S

u=
SUu

 (u ∈ U), which, in particular, imply thati0(v)=
v for all v ∈ SU [U ]. By Corollary 1.8, the operator i0 extends to

the desired isometric embedding i : SU → F (X • s). ◃

5.17. Proposition. Let X and Y be ample CBBs over P and Q and
let E and F be order-dense ideals of C∞(P ) and C∞(Q), respectively. A map-
ping S : E(X ) → F (Y) is a shift operator if and only if there exist a func-
tion s ∈ C0(Q,P ) and an isometric embedding i of X • s into Y such that
Su = i⊗ (u • s) for all u ∈ E(X ). In this case,

Se = e • s for all e ∈ E.

u 7→ u • s
u(p) u(s(q))

X (p) X
(
s(q)

)
↪→
i(q)

Y(q)

p qP Q

s

▹ Su�ciency is easily veri�ed with the help of Theorem 3.15, and
necessity can be established by consequent application of Proposition 3.14,
Lemma 5.16, and Proposition 5.14. ◃

If we additionally require in the statement of the last proposition that
the function s be de�ned on supp imS (see 0.10), then the choice of s and i
that provide the representation Su = i⊗ (u • s) becomes unique (this can be
easily deduced from Proposition 5.8). In this case, the relation Su = i⊗ (u•s)
is called the representation of the shift operator S by means of the function s
and the embedding i. Observe that, due to the Corollary [12: 2.4.4], the last
proposition describes the structure of shift operators acting in arbitrary BKSs.
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5.18. Theorem. Let X and Y be ample CBBs over P and Q and let E
and F be order-dense ideals of C∞(P ) and C∞(Q), respectively. A map-
ping T : E(X ) → F (Y) is a weighted shift operator if and only if there ex-
ist a positive function w ∈ C∞(P ), a mapping s ∈ C0(Q,P ), and a section

W ∈ C∞
(
Q,B(X • s,Y)

)
(where X • s is the ample hull of X • s) such that

Tu = W ⊗ (wu • s) for all u ∈ E(X ),Te =W(we • s) for all e ∈ E.

Furthermore, we may assume that dom s = supp imT and W = 0 outside
supp imT .

u(p)

X (p)

w(p)

u

w(p)u(p)
wu

p P

wu • s
(wu)(s(q))

X
(
s(q)

)

Q q W(q)
s

Tu (Tu)(q)

Y(q)

▹ Su�ciency is easily veri�ed with the help of Propositions 5.13 and 5.17.
Let us show necessity. If T : E(X ) → F (Y) is a weighted shift operator
then, according to Theorem 4.6, there

E(X )

?
w

(wE)(X )

@
@
@R

(·) • s

F ′(X • s)
�
�
��

@
@
@R

F ′
(
X • s

)

6

F ′(Z)

6

F (Y)-

-

T

S

i⊗ (·)

i⊗ (·)

ext

W

W ⊗ (·)

exist a BKS V ′ over an order-dense
ideal F ′ ⊂ C∞(Q), a scalar ortho-
morphism w : E(X ) → C∞(P,X ) gen-
erated by a positive orthomorphism
w : E → C∞(P ), a shift operator

S : (wE)(X ) → V ′, and an orthomor-

phism W : V ′ → F (Y) such that

T = W ◦S◦w,
T=

W◦S◦w.
Due to the Corollary [12: 2.4.4], we
may assume that V ′ = F ′(Z), where



88 A.E.Gutman

Z is an ample CBB over Q. According to Proposition 5.17, there is a func-
tion s ∈ C0(Q,P ) and an isometric embedding i of X • s into Z such that

Su = i ⊗ (u • s) for all u ∈ (wE)(X ). In view of the Corollary [12: 2.1.10],

the homomorphism i extends to an isometric embedding �i of X • s into Z. Due
to Proposition 5.13, the orthomorphism

(
v 7→ W (�i ⊗ v)

)
: F ′(X • s) → F (Y)

can be represented as v 7→ W ⊗ v, where W ∈ C∞
(
Q,B(X • s,Y)

)
. It is clear

that the constructed functions w, s, and W are those desired. ◃
If functions w, s, andW satisfy the conditions stated in Theorem 5.18 then

the relation Tu = W ⊗ (wu • s) is called the representation of the operator T
by means of s, w, and W . Due to the Corollary [12: 2.4.4], the last theorem
describes the structure of weighted shift operators acting in arbitrary BKSs.

5.19. Let Y be a CBB over Q and let (Qξ)ξ∈� be a family of pairwise
disjoint elements of Clop(Q). Suppose that, for each ξ ∈ �, we are given a sec-
tion vξ ∈ C(Dξ,Y) over a dense subset Dξ ⊂ Qξ. Assign D := Q\ cl

∪
ξ∈�Qξ.

It is clear that the union
∪

ξ∈�Dξ ∪ D is a dense subset of Q and the func-

tion
∪

ξ∈� vξ ∪ 0|D de�ned on it is a continuous section of Y . In the sequel,

the maximal extension of this continuous section is denoted by
⊕

ξ∈� vξ.

Theorem. Suppose that X and Y are ample CBBs over P and Q,
E and F are order-dense ideals of C∞(P ) and C∞(Q), T : E(X ) → F (Y)
is a disjointness preserving bounded operator, and h(U) = s−1[U ] is the rep-
resentation of the shadow h of T by means of a function s ∈ C0(Q,P ). Then
there exist a family (wξ)ξ∈� of positive functions in C∞(P ), a disjoint family

(Qξ)ξ∈� of elements in Clop(Q), and a section W ∈ C∞
(
Q,B(X • s,Y)

)
such

that suppW = cl
∪

ξ∈�Qξ = dom s = supp imT , 1/wξ ∈ E for all ξ ∈ �, and

Tu =
⊕
ξ∈�

W ⊗ (wξu • s)|Qξ

(
u ∈ E(X )

)
. (∗∗)

u

P

w1

w2

w3

u1

u2

u3

P

P

P

s

s

s

u1 • s

u2 • s

u3 • s

Q

Q

Q

(·)|Q1

(·)|Q2

(·)|Q3

Q1

Q2

Q3

v1

v2

v3

⊕
v1

v2
v3

Q1Q2Q3

W

Q

Tu

▹ According to 5.18, this assertion reformulates Theorem 4.8. ◃
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Observe that the functions wξu • s in the representation (∗∗) being con-

tinuous sections of the bundle X • s, need not belong to C∞
(
Q,X • s

)
, while

the restrictions (wξu • s)|Qξ
do belong to C∞

(
Qξ,X • s

)
.

The relation Tu =
⊕

ξ∈�W ⊗ (wξu • s)|Qξ
is called the representation

of the operator T (by means of s, wξ, Qξ, and W ). Observe that, due to
the Corollary [12: 2.4.4], the last theorem describes the structure of disjointness
preserving bounded operators acting in arbitrary BKSs.

6. Interpretation for the properties of operators

The representation theorems of Section 5 allow us to interpret various
properties of orthomorphisms, shift operators, weighted shift operators, and
arbitrary disjointness preserving operators in terms of the properties of certain
components of their representation. As an illustration, we consider order
continuous operators, injective operators, and operators with ideal image.

Throughout the section, P and Q are extremally disconnected compact
spaces.

6.1. Lemma. Let X and Y be totally disconnected compact spaces and
let s : X → Y be a continuous function.

(a) The following assertions are equivalent:

(1) s−1[intF ] = int s−1[F ] for every closed subset F ⊂ Y ;

(2) s−1[clG] = cl s−1[G] for every open subset G ⊂ Y ;

(3) if F is a closed subset of Y and intF = ∅ then int s−1[F ] = ∅;
(4) if G is an open subset of Y and clG = Y then cl s−1[G] = X;

(5) the inverse image s−1[D] of every meager subset D ⊂ Y is
a meager subset of X;

(6) the inverse image s−1[D] of every comeager subset D ⊂ Y is
a comeager subset of X.

(b) The following assertions are equivalent:

(1) s−1[intF ] = int s−1[F ] for every closed σ-open subset F ⊂ Y ;

(2) s−1[clG] = cl s−1[G] for every open σ-closed subset G ⊂ Y ;
(3) if F is a closed σ-open subset of Y and intF =∅

then int s−1[F ] = ∅;
(4) if G is an open σ-closed subset of Y and clG = Y

then cl s−1[G] = X.

A function s satisfying any of the conditions in (a)
(
in (b)

)
is called exact

(σ-exact).
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Rema r k . In the case when Y is an extremally disconnected compact
space, the list (a) can be supplemented by the following equivalent assertions:

(7) if U is a clopen subset of X then s[U ] is a clopen subset of Y ;
(8) if U is an open subset of X then s[U ] is an open subset of Y .

As is known, a function s satisfying condition (8) is called open. Thus,
if Y is extremally disconnected then the classes of exact and open functions
s ∈ C(X,Y ) coincide. The author does not know analogs of assertions (7)
and (8) equivalent to the fact that the function s is σ-exact.

6.2. Proposition. Let X and Y be totally disconnected compact spaces
and let h : Clop(X) → Clop(Y ) be a ring homomorphism. Consider the repre-

sentation h(U) = s−1[U ] of h by means of a function s ∈ C0(Y,X). The homo-
morphism h is o-continuous (sequentially o-continuous) if and only if the func-
tion s is exact (σ-exact).

▹ There is a proof in [26: Section 22]. ◃

6.3. Let U and V be LNSs over order-dense ideals of the K-spaces C∞(P )
and C∞(Q), respectively. If T : U → V is a disjointness preserving operator

and h(U) = s−1[U ] is the representation of the shadow h of the operator T by
means of a function s ∈ C0(Q,P ), then we say that s is the shift function of
the operator T .

Theorem. Suppose that E and F are order-dense ideals of C∞(P ) and
C∞(Q) (respectively), U is a BKS over E, V is an LNS over F , T : U → V
is a disjointness preserving bounded operator, and s ∈ C0(Q,P ) is its shift
function. The operator T is o-continuous (sequentially o-continuous) if and
only if the function s is exact (σ-exact).

▹ Since the function s represents the shadow of T , the claim follows
from 6.2 and 1.6. ◃

6.4. Proposition. Let X and Y be totally disconnected compact spaces
and let h : Clop(X) → Clop(Y ) be a ring homomorphism. Consider the rep-

resentation h(U) = s−1[U ] of h by means of a function s ∈ C0(Y,X). The ho-
momorphism h is injective if and only if the function s is surjective.

6.5. Theorem. Suppose that E and F are order-dense ideals of C∞(P )
and C∞(Q) (respectively), T : E → F is a disjointness preserving regular
operator, and s ∈ C0(Q,P ) is its shift function. The operator T is injective if
and only if the function s is surjective.
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▹ Necessity : In view of Proposition 6.4, it is su�cient to assume injectiv-
ity of the operator T and establish injectivity of its shadow h : Pr(E) → Pr(F ).
Consider an arbitrary projection π ∈ Pr(E) and suppose that h(π) = 0. Then
Tπe = 0 for all e ∈ E. Due to injectivity of T , the latter means that πe = 0
for all e ∈ E, i.e., π = 0.

Su�ciency : Let

Te =
⊕
ξ∈�

W (wξe • s)|Qξ

be the representation of the operator T by means of s ∈ C0(Q,P ), wξ ∈ C∞(P ),
Qξ ∈ Clop(Q), and W ∈ C∞(Q). Assume that the function s is surjective.
For each ξ ∈ �, assign Pξ := suppwξ. Consider an arbitrary functions e ∈ E
and suppose that Te = 0. Then W (wξe • s)|Qξ

= 0 for all ξ ∈ �. The latter

means that, for each ξ ∈ �, the equality wξe•s = 0 holds on Qξ, which implies
the equality wξe = 0 on s[Qξ] and, hence, the equality e = 0 on s[Qξ] ∩ Pξ.
Thus, the function e is equal to zero on the union

D :=
∪
ξ∈�

s[Qξ] ∩ Pξ.

It remains to show that the set D is dense in P .

Let a clopen set U be contained in the di�erence P\D. Then, for all

e ∈ E and ξ ∈ �, the equality wξ⟨U⟩e = 0 holds on U⊥ ∪ P⊥
ξ . From

the inclusion s[Qξ]∩ Pξ ⊂ U⊥ it follows that wξ⟨U⟩e = 0 on s[Qξ]. Therefore,

(wξ⟨U⟩e) • s = 0 on Qξ and, hence, W
(
(wξ⟨U⟩e) • s

)
|Qξ

= 0. Arbitrariness

of ξ ∈ � allows us to conclude that T ⟨U⟩e = 0, and arbitrariness of e ∈ E yields
the equality h⟨U⟩ = 0. According to injectivity of h (see Proposition 6.4),
the latter means that U = ∅. ◃

6.6. Rema r k . The author did not succeed in obtaining an adequate
criterion for injectivity of an operator in BKSs. Simple examples show that
direct generalization of the last theorem to the case of an operator in BKSs
fails. Interpretation for injectivity of such operator must involve the outer
weight of the representation.

6.7. Proposition. Let X and Y be totally disconnected compact spaces
and let h : Clop(X) → Clop(Y ) be a ring homomorphism. Consider the rep-

resentation h(U) = s−1[U ] of the homomorphism h by means of a function
s ∈ C0(Y,X). The equality imh = [0, h(1)] holds if and only if the function s
is injective.
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6.8. Lemma. A continuous function s : Q → P is injective if and only
if the operator (e 7→ e ◦ s) : C(P ) → C(Q) is surjective.

▹ If the function s is injective then it is a homeomorphism ofQ onto im s.
In this case, every function f ∈ C(Q) can be represented as g ◦ s, where
g ∈ C(im s). By the Tietze{Urysohn theorem, the function g extends to
an e ∈ C(P ).

If points q1, q2 ∈ Q are di�erent then there is a clopen set V ⊂ Q that
contains only one of them. If the operator e 7→ e◦s is surjective then the char-
acteristic function of V can be represented as e ◦ s, whence s(q1) ̸= s(q2). ◃

6.9. In the sequel, we discuss interpretation of the fact that an operator
has ideal image. In order to clarify this property, we present a result of
[16: Lemma 2.7].

Lemma. Let E and F be vector lattices and let T : E → F be a dis-
jointness preserving regular operator. The following assertions are equivalent:

(1) imT is an ideal of F ;
(2) im |T | is an ideal of F ;
(3) |T |[0, e] = [0, |T |e] for all positive e ∈ E.

The list of equivalent properties (1){(3) of the operator T can be supple-
mented by the following one: the operator T takes ideals of E into ideals of F ,
i.e., for every ideal E0 ⊂ E, the set T [E0] is an ideal of F .

6.10. Proposition. Suppose that E and F are order-dense ideals of
C∞(P ) and C∞(Q) (respectively), T : E → F is a disjointness preserving regu-
lar operator, and s ∈ C0(Q,P ) is its shift function. Assume that ⟨T�e⟩ = ⟨imT ⟩
for some element �e ∈ E. The image of T is an ideal of F if and only if the func-
tion s is injective.

▹ Due to Theorem 1.1, we may assume that the operator T is positive
and �e > 0. Moreover, for the sake of convenience, we assume that ⟨imT ⟩ = 1,
i.e., dom s = Q.

Let the image of T be an ideal. In view of Lemma 6.8, to prove injectivity
of s, it is su�cient to �x an arbitrary function β ∈ C(Q), 0 6 β 6 1, and
represent it as α◦s, where α ∈ C(P ). According to Lemma 6.9, the inequalities
0 6 βT�e 6 T�e imply existence of an element e ∈ E such that 0 6 e 6 �e and
Te = βT�e. Let a function α ∈ C(P ) be such that e = α�e. Then, according
to 3.13, we have

(α ◦ s)T�e = T (α�e) = Te = βT�e,

whence α ◦ s = β due to the equality ⟨T�e⟩ = 1.
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Suppose now that the function s in injective. Fix arbitrary elements
e ∈ E and f ∈ F satisfying the inequalities 0 6 f 6 Te and show that
f ∈ imT . Let a function β ∈ C(Q) be such that f = βTe. By injectivity
of the operator (e 7→ e ◦ s) : C(P ) → C(Q) (see 6.8), there exists a function
α ∈ C(P ) such that α ◦ s = β. Then αe ∈ E and, in view of 3.13, we have
T (αe) = (α ◦ s)Te = βTe = f . ◃

6.11. Existence of an element �e ∈ E satisfying the equality ⟨T�e⟩ = ⟨imT ⟩
is an essential condition in the statement of Proposition 6.10. Without this
requirement, the function s need not be injective even when T is a surjective
shift operator. We will give a corresponding example in this subsection.

Lemma. Consider functions s ∈ C0(Q,P ) and f ∈ C∞(Q). Suppose

that there is an open set D ⊂ P such that s is injective on s−1[D] and f is

identically zero outside s−1[D]. Then f = e • s for some function e ∈ C∞(P ).
For a positive and/or bounded function f , the corresponding function e can
be chosen with the same property.

▹ Denote the image of s by R and de�ne a function g : R → R as follows:

g(p) :=

{
f
(
s−1(p)

)
if p ∈ R ∩D,

0 if p ∈ R\D.

Fix an arbitrary point p ∈ R and show that the function g is continuous at p.
(1) Suppose that p ∈ R∩D. Since the setD is open, we thus have a clopen

set U ⊂ P such that p ∈ U ⊂ D. From injectivity of s on s−1[D] it follows

that the restriction s|U is a homeomorphism of s−1[U ] onto R∩U . Therefore,

the function g|U = f ◦
(
s|U

)−1
is continuous.

(2) Suppose now that p ∈ R\D. Fix an arbitrary number ε > 0 and show

that |g| < ε in a neighborhood of p. Assign Qε :=
{
q ∈ Q : |f(q)| > ε

}
.

Taking account of the fact that f = 0 outside s−1[D], we have the inclusion

Qε ⊂ s−1[D]; hence, s[Qε] ⊂ D. Since |f | < ε outside Qε, we conclude that
|g| < ε outside s[Qε]. It remains to observe that R\s[Qε] is a neighborhood
of p in the space R.

Thus, the function g is continuous. Obviously, g • s = f . This im-
plies that g ∈ C∞(R)

(
if |g| = ∞ on a nonempty open set W ⊂ R then

|f | = |g • s| = ∞ on the nonempty open set s−1[W ], which contradicts the con-

tainment f ∈ C∞(Q)
)
. According to the Tietze{Urysohn theorem, there exists

a function e ∈ C∞(P ) such that e = g on R. Obviously, e is the desired func-
tion. Observe that positiveness and/or boundedness of the function f imply
the same property of g, which in turn allows us to choose a function e with
the appropriate property. ◃
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Ex amp l e . As is known, the remainder βN\N contains a discrete set D
of cardinality continuum (see [7: Chapter IV, Problem 52]). Let s : βD → βN
be the continuous extension of the identity mapping of D. Introduce the no-
tation

D := clβND,

E := {e ∈ C(βN) : e = 0 on D\D},
F := {f ∈ C(βD) : f = 0 on βD\D},

and assign Se := e ◦ s for all e ∈ E. Then S : E → F is a surjective shift
operator, while its shift function s is not injective.

▹ First of all, show that s is actually the shift function of the operator S.
To this end, we should establish the equality supp imS = βD (see 5.8). Since
the subset D ⊂ βN is discrete, each point q ∈ D has a neighborhood U ⊂ βN
such that U ∩D = {q}. Then χU ∈ E and

(SχU )(q) = χU

(
s(q)

)
= χU (q) = 1.

Thus, D ⊂ supp imS, whence supp imS = βD.
Now, show that the operator S is surjective. Fix an arbitrary element

f ∈ F and assign D := βN\(D\D). Then D is an open subset of βN,
s−1[D] = s−1[D] =D, s is injective on D, and f is the identical zero outside D.
Therefore, in view of the last lemma, there exists a function e ∈ C(βN) such
that f = e ◦ s. It is clear that e ∈ E and, therefore, f ∈ imS.

It remains to observe that the function s : βD → βN is not injective, since
(see [7: Chapter VI, Problem 180])

|βD| = 22
|D|

> 22
|N|

= |βN|,

where |X| stands for the cardinality of a set X. ◃

6.12. Theorem. Suppose that E and F are order-dense ideals of C∞(P )
and C∞(Q) (respectively), T : E → F is a disjointness preserving regular
operator and s ∈ C0(Q,P ) is its shift function. The image of T is an ideal
of F if and only if, for every element e ∈ E, the function s is injective on the set
suppTe. The last property of the function s is equivalent to its injectivity on
the union ∪{suppTe : e ∈ E} (which is an open dense subset of dom s).

▹ Necessity : Suppose that the image of T is an ideal and consider
an arbitrary element e ∈ E. It is clear that the image of the composition
⟨Te⟩ ◦ T is an ideal too and, in view of Proposition 6.10, its shift function is
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injective. It remains to observe that the shift function of the operator ⟨Te⟩ ◦T
coincides with the restriction of s onto suppTe.

Su�ciency : Theorem 1.1 allows us to assume that the operator T is posi-
tive. Fix arbitrary positive elements e ∈ E and f ∈ F satisfying the inequality
f 6 Te and show that f ∈ imT . Since the function s is injective on the set
suppTe, in view of Proposition 6.10, the image of the composition ⟨Te⟩ ◦ T

is an ideal of F . According to Lemma 6.9, the inequalities 0 6 f 6 ⟨Te⟩Te
imply existence of an element e0 ∈ E such that 0 6 e0 6 e and ⟨Te⟩Te0 = f ;
whence Te0 = f .

Injectivity of the function s on each set of the form suppTe (e ∈ E) implies
injectivity of s on the union ∪{suppTe : e ∈ E}, since the containments

q1 ∈ suppTe1 and q2 ∈ suppTe2 yield q1, q2 ∈ suppT
(
|e1| ∨ |e2|

)
. ◃

Rema r k . Under the hypotheses of the last theorem, injectivity of
the function s on the union ∪{SuppTe : e ∈ E} is not su�cient for the image

of T to be an ideal
(
here Supp f = {q ∈ Q : f(q) ̸= 0}

)
. Indeed, assign

P = Q = βN, �x a point p ∈ P\N, and, naturally identifying C(Q) and ℓ∞,
consider the operator T : C(P ) → C(Q) acting by the rule

(Te)(n) =

{
e(p) if n = 1,

e(n)/n if n > 1
(n ∈ N)

for all e ∈ C(P ). The image of T is not an ideal, since, for instance,

(1, 12 , . . . ,
1
n , . . . ) belongs to imT , but (1, 0, 0, . . . ) does not. However, the shift

function s of the operator T is injective on the set ∪{SuppTe : e ∈ E} = N,
since s(1) = p and s(n) = n whenever n ∈ N\{1}.

6.13. As is known (see 2.8), every BKS over an order-dense ideal of
C∞(P ) is a module over C(P ). A subset U0 of such BKS is called a C(P )-sub-
module of it, if αu ∈ U0 for all u ∈ U0 and α ∈ C(P ).

Lemma. Suppose that E and F are order-dense ideals of C∞(P ) and
C∞(Q) (respectively), U is a BKS over E, and V is a BKS over F . The fol-
lowing properties of an operator T : U → V are equivalent:

(1) T takes C(P )-submodules of U into C(Q)-submodules of V ;
(2) for every u ∈ U and every β ∈ C(Q), there exists a function α ∈ C(P )

such that T (αu) = βTu.

▹ It is su�cient to observe that the set
{
αu : α ∈ C(P )

}
is a C(P )-sub-

module of U . ◃
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6.14. Proposition. Suppose that E and F are order-dense ideals of

C∞(P ) and C∞(Q) (respectively), U is a BKS over E, V is a BKS over F ,

T : U → V is a disjointness preserving bounded operator, and s ∈ C0(Q,P )

is its shift function. Assume that ⟨T �u⟩ = ⟨imT ⟩ for some element �u ∈ U .
The operator T takes C(P )-submodules of U into C(Q)-submodules of V if

and only if the function s is injective.

▹ For convenience, we assume that ⟨imT ⟩ = 1, i.e., dom s = Q. Suppose

that T takes C(P )-submodules of U into C(Q)-submodules of V . In view of 6.8,

to prove injectivity of s, it is su�cient to �x an arbitrary function β ∈ C(Q)

and represent it as α ◦ s, where α ∈ C(P ). According to Lemma 6.13, there

exists a function α ∈ C(P ) such that T (α�u) = βT �u. Then, due to 3.13, we

have

|α ◦ s− β|
T �u=

(α ◦ s)T �u− βT �u
=

T (α�u)− βT �u
= 0;

whence α ◦ s = β in view of the equality ⟨T �u⟩ = 1.

Now, suppose that s is injective. Fix arbitrary elements u ∈ U and

β ∈ C(Q). According to surjectivity of the operator (e 7→ e◦s) : C(P ) → C(Q)

(see 6.8), there exists a function α ∈ C(P ) such that α ◦ s = β. Then, due

to 3.13, we have

T (αu) = (α ◦ s)Tu = βTu.

It remains to employ Lemma 6.13. ◃

6.15. Lemma. Let U be a BKS over an order-dense ideal of C∞(Q).

For any u, v ∈ U , there is a function f ∈ C(Q) such that

⟨u+ fv⟩ = ⟨u⟩ ∨ ⟨v⟩.

▹ As f we can take any function that is di�erent from
u/vevery-

where. For instance, we may let

f :=
⟨u/v6 2

⟩
3 +

⟨u/v> 2
⟩
1.

Then the equality ⟨u+ fv⟩ = ⟨u⟩ ∨ ⟨v⟩ ensues from the following relations:

⟨u⟩ ∨ ⟨v⟩ 6
⟨u̸= f

v⟩ 6 ⟨u+ fv⟩ 6 ⟨u⟩ ∨ ⟨v⟩. ◃
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Theorem. Suppose that E and F are order-dense ideals of C∞(P ) and

C∞(Q) (respectively), U is a BKS over E, V is a BKS over F , T : U → V
is a disjointness preserving bounded operator, and s ∈ C0(Q,P ) is its shift

function. The operator T takes C(P )-submodules of U into C(Q)-submodules

of V if and only if, for every element u ∈ U , the function s is injective on the set

supp
Tu. This property of the function s is equivalent to its injectivity on

∪{supp
Tu: u ∈ U} (which is an open dense subset of dom s).

▹ Necessity : Suppose that the operator T takes C(P )-submodules of U
into C(Q)-submodules of V and consider an arbitrary element u ∈ U . It is

clear that the composition ⟨Tu⟩ ◦ T preserves submodules too and, in view

of Proposition 6.14, its shift function is injective. It remains to observe that

the shift function of the operator ⟨Tu⟩ ◦ T coincides with the restriction of s

onto supp
Tu.

Su�ciency : Fix arbitrary elements u ∈ U and β ∈ C(Q). Since the func-

tion s is injective on the set supp
Tu, in view of Proposition 6.14, the com-

position ⟨Tu⟩ ◦ T takes C(P )-submodules of U into C(Q)-submodules of V .
According to Lemma 6.13, there exists a function α ∈ C(P ) such that

⟨Tu⟩T (αu) = βTu; whence, due to the relations

⟨T (αu)⟩ = ⟨(α • s)Tu⟩ 6 ⟨Tu⟩,

we have T (αu) = βTu.

Show that injectivity of the function s on each set of the form supp
Tu

(u ∈ U) implies injectivity of s on the union ∪{supp
Tu: u ∈ U}. To this

end, it is su�cient to �x arbitrary elements u1, u2 ∈ U and �nd a u ∈ U such

that

supp
Tu= supp

Tu1∪ supp
Tu2.

According to the last lemma, there is a function β ∈ C(Q) that satis�es

the relation

supp
Tu1 + βTu2

= supp
Tu1∪ supp

Tu2.
Injectivity of s on the set supp

Tu2, in view of Lemma 6.8, implies existence

of a function α ∈ C(P ) such that α ◦ s = β on supp
Tu2. It remains to

observe that

T (u1 + αu2) = Tu1 + (α • s)Tu2 = Tu1 + βTu2. ◃
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7. Comments

It is worth noting that as a rule we con�ne ourselves to considering

K-spaces and Banach{Kantorovich spaces. Generalizations of the obtained

results to the case of arbitrary vector lattices and lattice-normed spaces will

appear elsewhere.

7.0. Section 0 only contains the information that was not exposed in

the previous parts of the paper. For the basic de�nitions and facts about

the objects under consideration, we refer the reader to [12{15].

The schema of a formal mixing employed in the proof of Proposition 0.4

stems from [20, 27, 28]. The notion of the disjoint sum of a family of LNSs

(see 0.5) is introduced to be employed in the main result 4.8 on decomposition

of a disjointness preserving operator into weighted shift operators. The new

notion of the norm transformation of an LNS (see 0.6) is used for describing

vector shift operators in Section 3.

7.1. The shadow of an operator as a Boolean homomorphism (without

introducing the corresponding term) was �rst considered in [19] for lattice ho-

momorphisms and disjointness preserving operators in lattice-normed spaces.

In Section 1, we develop this notion and show that many properties of

disjointness preserving operators can be expressed in terms of their shadows.

In particular, this is true of certain questions of continuity. Most results stated

in Section 1 are published for the �rst time.

The problem of �nding su�cient conditions for an operator to be bounded

or dominated is traditionally studied for disjointness preserving operators

(see [19: 6.5]). Y.A.Abramovich's condition (R) [1: Theorem A] was the �rst

equivalent for boundedness of disjointness preserving operators weaker than se-

quential r-o-continuity. Later, this condition was also weakened. P.T.N.Mac-

Polin and A.W.Wickstead showed [22: Theorem 2.1] that, for a disjointness

preserving operator in vector lattices to be bounded, it is su�cient that the op-

erator under test be semibounded (the latter term is introduced in [14: 2.3]

and the result is presented in 1.10).

Attempts at generalizing the Abramovich{MacPolin{Wickstead criterion

to the case of operators in lattice-normed spaces cannot lead to a success,

since all the four types of boundedness considered in [14: 2.3] are pairwise dif-

ferent for that class of operators (the corresponding examples are presented

in [14: 2.4{2.6]). Thus the main problem about su�cient conditions for bound-

edness remains open for disjointness preserving operators in LNSs. A small

step in this direction is made in 1.13.
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7.2. An orthomorphism is a band preserving operator that is order-
bounded. The problem of �nding su�cient conditions for boundedness of
disjointness preserving operators is actually solved for operators in vector
lattices (see [1: Theorem A; 22: Theorem 2.1] and Theorem 1.10). However,
the problem remains actual for operators in lattice-normed spaces (see 7.1).
Our Theorem 2.2 asserts that, for band preserving operators in LNSs, all
the types of boundedness coincide.

Subsections 2.3{2.10 are devoted to a study of the module structure in
a Banach{Kantorovich space and its relation to the notion of orthomorphism.
The results presented here are essentially known (see, for instance, [18]).

7.3. The study of multiplicative operators in vector lattices was initi-
ated by B. Z.Vulikh [29, 31] who proved that o-continuous shift operators in
K-spaces with unity are multiplicative. Theorem 3.10 generalizes this result to
the case of arbitrary shift operators in arbitrary K-spaces. The idea of con-
sidering the shift of a disjointness preserving operator is not new. Analogs of
this notion occur, for instance, in [16] and in many papers about isometries of
Lp -spaces.

7.4. The main criterion for WSW-representability stated in 4.2 is close
to [4: 3.12]. Some of the criteria presented in 4.4 and 4.7 are also known
(see [2{4]). Note that one of the su�cient conditions for WSW-representability
(the second proposition in 4.4) is not necessary. The corresponding counterex-
ample is given in 4.4. Existence of a similar example due to A.V.Koldunov is
mentioned in [4: 3.14].

It is worth observing that our notion of weighted shift operator di�ers
slightly from the analogous construction in the literature. The classical con-
struction does not contain an inner weight (see [5: Theorem 6; 6: Theorem 4.1;
19: Theorems 2.8 and 2.9; 2: Theorem 6; 4: 3.8{3.18]). We regard this circum-
stance as a small demerit of the theory which, in particular, restricts the class
of representations of vector lattices providing the WSW-representability and
makes the problem of a global WSW-representation more di�cult.

None of the known results ensured representation of an arbitrary bounded
disjointness preserving operator on the entire domain of de�nition. Each rep-
resentation theorem either restricted the class of operators under consideration
(for instance by requiring order continuity), or restricted the class of spaces (for
instance, by considering only Banach lattices), or did not guarantee a represen-
tation on the entire domain of de�nition (but only, for instance, on its principal
ideals). In our opinion, the failure in searching for a global representation of
disjointness preserving operators is mainly determined by the absence of an in-
ner weight in the de�nition of a weighted shift operator. Involving an inner
weight allows us to decompose an arbitrary bounded disjointness preserving



100 A.E.Gutman

operator in lattice-normed spaces into the strongly disjoint sum of weighted
shift operators (Theorem 4.8). This result is new even for the case of operators
in K-spaces (Theorem 4.5).

7.5. Many facts presented in Section 5 are essentially known. Some of
them just repeat Y.A.Abramovich's results and treat the corresponding rep-
resentations in more detail. Items 5.12{5.19 contain new material. The main
Theorems 5.12 and 5.19 interpret the decompositions 4.5 and 4.8 of disjoint-
ness preserving operators into sums of weighted shift operators in terms of
their functional representations.

7.6. The global representations 5.12 and 5.19 for a disjointness preserving
operator, as well as the notions of the shift of an operator and the correspond-
ing shift function, allow us to interpret the abstract properties of the operator
in terms of its concrete function representation or in terms of the properties of
its shift function. Some examples of similar interpretations can be found, for
instance, in [2{4].
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