FUNCTION REPRESENTATION OF THE BOOLEAN-VALUED UNIVERSE

A. E. Gutman^{*} and G. A. Losenkov^{**}

Abstract

For an abstract Boolean-valued system, a function analog is proposed that is a model whose elements are functions and the basic logical operations are calculated "pointwise."

The new notion of continuous polyverse is introduced and studied which is a continuous bundle of models of set theory. It is shown that the class of continuous sections of a continuous polyverse is a Boolean-valued system satisfying all basic principles of Boolean-valued analysis and, conversely, every Booleanvalued algebraic system can be represented as the class of sections of a suitable continuous polyverse.

Key words and phrases: Boolean-valued analysis, function representation, Stone space, continuous bundle, continuous section.

The methods of Boolean-valued analysis base on nonstandard models of set theory with multivalued truth. More exactly, the truth value of an assertion in such a model acts into some complete Boolean algebra.

At present, Boolean-valued analysis is a rather powerful theory rich of deep results and various applications, mainly, to set theory. As regards functional analysis, the methods of Boolean-valued analysis found successful applications in such domains as the theory of vector lattices and lattice-normed spaces, the theory of positive and dominated operators, the theory of von Neumann algebras, convex analysis, and the theory of vector measures.

Contemporary methods of Boolean-valued analysis, due to their nature, involve rather bulky logical technique. We can say that, from a pragmatic viewpoint, this technique might distract the user-analyst from a concrete aim: to apply the results of Boolean-valued analysis for solving analytical problems.

- * Sobolev Institute of Mathematics, Novosibirsk, RUSSIA. E-mail address: gutman@math.nsc.ru.
- ** Novosibirsk State University, Novosibirsk, RUSSIA.

[©]1998 by Allerton Press, Inc.

Received November, 1997.

Supported by the Russian Foundation for Basic Research (grant 97-01-00001).

Various function spaces are common in functional analysis, and so the intention is natural of replacing an abstract Boolean-valued system by some function analog, a model whose elements are functions and in which the basic logical operations are calculated "pointwise." An example of such a model is presented by the class \mathbb{V}^Q of all functions defined on a fixed nonempty set Qand acting into the class \mathbb{V} of all sets. Truth values in the model \mathbb{V}^Q are various subsets of Q and, in addition, the truth value $\|\varphi(u_1, \ldots, u_n)\|$ of an assertion $\varphi(t_1, \ldots, t_n)$ at functions $u_1, \ldots, u_n \in \mathbb{V}^Q$ is calculated as follows:

$$\|\varphi(u_1,\ldots,u_n)\| = \{q \in Q \mid \varphi(u_1(q),\ldots,u_n(q))\}.$$

In the present article, a solution is proposed to the above problem. To this end, we introduce and study the new notion of continuous polyverse, the latter being a continuous bundle of models of set theory. It is shown that the class of continuous sections of a continuous polyverse is a Boolean-valued system satisfying all basic principles of Boolean-valued analysis and, conversely, every Boolean-valued algebraic system can be represented as the class of sections of a suitable continuous polyverse.

1. Prerequisites

1.1. Let X and Y be topological spaces. A mapping $f: X \to Y$ is called *open* if it satisfies one (and hence all) of the following equivalent conditions:

- (1) for every open subset $A \subset X$, the image f(A) is open in Y;
- (2) for every point $x \in X$ and every neighborhood $A \subset X$ about x, the image f(A) is a neighborhood about f(x) in Y;
- (3) $f^{-1}(\operatorname{cl} B) \subset \operatorname{cl} f^{-1}(B)$ for every subset $B \subset Y$.

Observe that the equality $f^{-1}(\operatorname{cl} B) = \operatorname{cl} f^{-1}(B)$ holds for all subsets $B \subset Y$ if and only if the mapping f is continuous and open.

A mapping $f: X \to Y$ is called *closed* if it satisfies one (and hence all) of the following equivalent conditions:

- (1) for every closed subset $A \subset X$, the image f(A) is closed in Y;
- (2) $\operatorname{cl} f(A) \subset f(\operatorname{cl} A)$ for every subset $A \subset X$.

The equality $\operatorname{cl} f(A) = f(\operatorname{cl} A)$ holds for every subset $A \subset X$ if and only if the mapping $f: X \to Y$ is continuous and closed.

1.2. Given a class X, the symbol $\mathcal{P}(X)$ denotes the class of all subsets of X.

Let X be a class. A subclass $\tau \subset \mathcal{P}(X)$ is called a *topology* on X whenever

- (1) $\cup \tau = X;$
- (2) $U \cap V \in \tau$ for all $U, V \in \tau$;
- (3) $\cup \mathcal{U} \in \tau$ for every subset $\mathcal{U} \subset \tau$.

As usual, a class X endowed with a topology is called a *topological space*.

All basic topological concepts (such as neighborhood about a point, closed set, interior, closure, continuous function, Hausdorff space, etc.) can be introduced by analogy to the case of a topology on a set. However, observe that not all classical approaches to the definition of these concepts remain formally valid in the case of a class-topology. For instance, considering the two definitions of a closed set

- (a) as a subset of X whose complement belongs to τ ,
- (b) as a subset of X whose complement, together with each point of it, contains an element of τ ,

we should choose the second.

Defining the closure of a set A as the smallest closed subset of X that contains A, we take a risk: some sets may turn out to have no closure. However, the problem disappears if the topology τ is Hausdorff. (Indeed, in the case of a Hausdorff topology, every convergent filter has a unique limit and, hence, the totality of all limits of convergent filters over a given set makes a set rather than a proper class.)

The symbol $\operatorname{Clop}(X)$ denotes the class of all clopen subsets of X (i.e., subsets that are closed and open simultaneously). Henceforth the notation $U \sqsubset X$ means that $U \in \operatorname{Clop}(X)$. The class $\{A \sqsubset X \mid x \in A\}$ is denoted by $\operatorname{Clop}(x)$.

A topology is called *extremally disconnected* if the closure of every open set is again open.

Most of the necessary information about topological spaces can be found, for instance, in [1, 2].

1.3. Let *B* be a complete Boolean algebra. A triple $(\mathfrak{U}, \|\cdot = \cdot\|, \|\cdot \in \cdot\|)$ is called a *Boolean-valued algebraic system* over *B* (or a *B-valued algebraic system*) if the classes $\|\cdot = \cdot\|$ and $\|\cdot \in \cdot\|$ are class-functions from $\mathfrak{U} \times \mathfrak{U}$ into *B* that satisfy the following conditions:

(1) ||u = u|| = 1;(2) ||u = v|| = ||v = u||;(3) $||u = v|| \land ||v = w|| \le ||u = w||;$ (4) $||u = v|| \land ||v \in w|| \le ||u \in w||;$ (5) $||u = v|| \land ||w \in v|| \le ||w \in u||$

for all $u, v, w \in \mathfrak{U}$.

The class-functions $\|\cdot = \cdot\|$ and $\|\cdot \in \cdot\|$ are called the Boolean-valued (*B*-valued) truth values of equality and membership.

Instead of $(\mathfrak{U}, \|\cdot = \cdot\|, \|\cdot \in \cdot\|)$, we usually write simply \mathfrak{U} and, if necessary, furnish the symbols of truth values with the index: $\|\cdot = \cdot\|_{\mathfrak{U}}$ and $\|\cdot \in \cdot\|_{\mathfrak{U}}$.

A Boolean-valued system \mathfrak{U} is called *separated* whenever, for all $u, v \in \mathfrak{U}$, the equality ||u = v|| = 1 implies u = v.

1.4. Consider Boolean-valued algebraic systems \mathfrak{U} and \mathfrak{V} over complete Boolean algebras B and C and assume that there is a Boolean isomorphism $j: B \to C$. By an isomorphism between the Boolean-valued algebraic systems \mathfrak{U} and \mathfrak{V} (associated with the isomorphism j) we mean a bijective class-function $i: \mathfrak{U} \to \mathfrak{V}$ that satisfies the following relations:

$$j(||u_1 = u_2||_{\mathfrak{U}}) = ||i(u_1) = i(u_2)||_{\mathfrak{V}},$$

$$j(||u_1 \in u_2||_{\mathfrak{U}}) = ||i(u_1) \in i(u_2)||_{\mathfrak{V}}$$

for all $u_1, u_2 \in \mathfrak{U}$. Boolean-valued systems are said to be *isomorphic* if there is an isomorphism between them. In case \mathfrak{U} and \mathfrak{V} are Boolean-valued algebraic systems over the same algebra B, each isomorphism $i: \mathfrak{U} \to \mathfrak{V}$ is assumed by default to be associated with the identity isomorphism: $||u_1 = u_2||_{\mathfrak{U}} =$ $||i(u_1) = i(u_2)||_{\mathfrak{V}}, ||u_1 \in u_2||_{\mathfrak{U}} = ||i(u_1) \in i(u_2)||_{\mathfrak{V}}$. For emphasizing this convention, whenever necessary, we call such an isomorphism *B*-isomorphism and refer to the corresponding systems as *B*-isomorphic.

1.5. In what follows, using an expression like $\varphi(t_1, \ldots, t_n)$, we assume that φ is a formula of set-theoretic signature with all free variables included in the list (t_1, \ldots, t_n) .

An arbitrary tuple (u_1, \ldots, u_n) of elements in a system \mathfrak{U} is called a *valuation* of the list of variables (t_1, \ldots, t_n) . By recursion on the complexity of a formula, the (Boolean) *truth value* $\|\varphi(u_1, \ldots, u_n)\|$ of a formula $\varphi(t_1, \ldots, t_n)$ can be defined with respect to a given valuation (u_1, \ldots, u_n) of the variables (t_1, \ldots, t_n) . If a formula φ is atomic, i.e., has the form $t_1 = t_2$ or $t_1 \in t_2$; then its truth value with respect to a valuation (u_1, u_2) is defined to be $\|u_1 = u_2\|$ or $\|u_1 \in u_2\|$. Considering compound formulas, we define their truth values as follows:

$$\begin{split} \|\varphi(u_{1},\ldots,u_{n}) \& \psi(u_{1},\ldots,u_{n})\| &:= \|\varphi(u_{1},\ldots,u_{n})\| \wedge \|\psi(u_{1},\ldots,u_{n})\|,\\ \|\varphi(u_{1},\ldots,u_{n}) \vee \psi(u_{1},\ldots,u_{n})\| &:= \|\varphi(u_{1},\ldots,u_{n})\| \vee \|\psi(u_{1},\ldots,u_{n})\|,\\ \|\varphi(u_{1},\ldots,u_{n}) \to \psi(u_{1},\ldots,u_{n})\| &:= \|\varphi(u_{1},\ldots,u_{n})\| \Rightarrow \|\psi(u_{1},\ldots,u_{n})\|,\\ \|\neg\varphi(u_{1},\ldots,u_{n})\| &:= \|\varphi(u_{1},\ldots,u_{n})\|^{\perp},\\ \|(\forall t) \varphi(t,u_{1},\ldots,u_{n})\| &:= \bigwedge_{u\in\mathfrak{U}} \|\varphi(u,u_{1},\ldots,u_{n})\|,\\ \|(\exists t) \varphi(t,u_{1},\ldots,u_{n})\| &:= \bigvee_{u\in\mathfrak{U}} \|\varphi(u,u_{1},\ldots,u_{n})\|, \end{split}$$

where the symbol b^{\perp} denotes the complement of b in the Boolean algebra B. A formula $\varphi(t_1, \ldots, t_n)$ is said to be *true* in an algebraic system \mathfrak{U} with respect to a valuation (u_1, \ldots, u_n) if the equality $\|\varphi(u_1, \ldots, u_n)\| = \mathbf{1}$ holds. In this case, we write $\mathfrak{U} \models \varphi(u_1, \ldots, u_n)$. **1.6.** Proposition. If a formula $\varphi(t_1, \ldots, t_n)$ is provable in the first-order predicate calculus then $\|\varphi(u_1, \ldots, u_n)\| = 1$ for all $u_1, \ldots, u_n \in \mathfrak{U}$.

↓ It is easy to verify that all the axioms of the first-order predicate calculus are true in 𝔅 and the rules of inference preserve the truth value. The latter means that derivability (in the first-order predicate calculus) of a formula φ from formulas $φ_1, \ldots, φ_n$ ensures the inequality $\|φ_1 \wedge \cdots \wedge φ_n\| \leq \|φ\|$. ▷

In particular, the last proposition implies that, for an arbitrary formula $\varphi(t, t_1, \ldots, t_n)$ and arbitrary elements $u, v, w_1, \ldots, w_n \in \mathfrak{U}$, we have the inequality $||u = v|| \wedge ||\varphi(u, w_1, \ldots, w_n)|| \leq ||\varphi(v, w_1, \ldots, w_n)||$.

1.7. Let $u \in \mathfrak{U}$ be such that $\mathfrak{U} \models u \neq \emptyset$. The *descent* of the element u is the class $\{v \in \mathfrak{U} \mid \mathfrak{U} \models v \in u\}$ denoted by $u \downarrow$.

1.8. Let $(u_{\xi})_{\xi\in\Xi}$ be a family of elements in \mathfrak{U} and let $(b_{\xi})_{\xi\in\Xi}$ be a family of elements in the Boolean algebra B. An element $u \in \mathfrak{U}$ is called an *ascent of the family* $(u_{\xi})_{\xi\in\Xi}$ with weights $(b_{\xi})_{\xi\in\Xi}$, if $\|v \in u\| = \bigvee_{\xi\in\Xi} b_{\xi} \wedge \|v = u_{\xi}\|$ for all $v \in \mathfrak{U}$.

Let \mathcal{U} be a subset of \mathfrak{U} . An element $\overline{u} \in \mathfrak{U}$ is called an *ascent of the set* \mathcal{U} , if $||v \in \overline{u}|| = \bigvee_{u \in \mathcal{U}} ||v = u||$ for all $v \in \mathfrak{U}$, i.e., \overline{u} is an ascent of the family $(u)_{u \in \mathcal{U}}$ with unit weights.

Assume that $(b_{\xi})_{\xi\in\Xi}$ is an antichain in the algebra B. An element $u \in \mathfrak{U}$ is called a *mixing* of the family $(u_{\xi})_{\xi\in\Xi}$ with weights $(b_{\xi})_{\xi\in\Xi}$, if $||u = u_{\xi}|| \ge b_{\xi}$ for all $\xi \in \Xi$, and $||u = \varnothing|| \ge (\bigvee_{\xi\in\Xi} b_{\xi})^{\perp}$.

If the system \mathfrak{U} is separated and the extensionality axiom is true in \mathfrak{U} , then an ascent (mixing) of a family $(u_{\xi})_{\xi\in\Xi}$ with weights $(b_{\xi})_{\xi\in\Xi}$ is uniquely determined. In this case, whenever the ascent (mixing) exists, we denote it by $\operatorname{asc}_{\xi\in\Xi} b_{\xi}u_{\xi}$ (mix $_{\xi\in\Xi} b_{\xi}u_{\xi}$). For the ascent of a set $\mathcal{U} \subset \mathfrak{U}$, we use the notation $\mathcal{U}\uparrow$.

1.9. In Boolean-valued analysis, three basic principles play a particular role, namely, the maximum principle, the mixing principle, and the ascent principle. This is explained by the fact that, in algebraic systems satisfying the principles, there is a possibility of constructing new elements from available elements.

In the current section, we state the above-mentioned principles and study interrelations between them, leaving aside the verification of the principles for concrete algebraic systems.

Let B be a complete Boolean algebra and let $\mathfrak U$ be a B-valued algebraic system.

The maximum principle. For every formula $\varphi(t, t_1, \ldots, t_n)$ and arbitrary elements $u_1, \ldots, u_n \in \mathfrak{U}$, there exists an element $u \in \mathfrak{U}$ such that $\|(\exists t) \varphi(t, u_1, \ldots, u_n)\| = \|\varphi(u, u_1, \ldots, u_n)\|.$

The mixing principle. For every family $(u_{\xi})_{\xi \in \Xi}$ of elements in \mathfrak{U} and every antichain $(b_{\xi})_{\xi \in \Xi}$ in the algebra B, there exists a mixing $(u_{\xi})_{\xi \in \Xi}$ with weights $(b_{\xi})_{\xi \in \Xi}$.

The ascent principle. (1) For every family $(u_{\xi})_{\xi\in\Xi}$ of elements in \mathfrak{U} and every family $(b_{\xi})_{\xi\in\Xi}$ of elements in the algebra B, there exists an ascent $(u_{\xi})_{\xi\in\Xi}$ with weights $(b_{\xi})_{\xi\in\Xi}$.

(2) For every element $u \in \mathfrak{U}$, there exist a family $(u_{\xi})_{\xi \in \Xi}$ of elements in \mathfrak{U} and a family $(b_{\xi})_{\xi \in \Xi}$ of elements in the algebra B such that u is an ascent of $(u_{\xi})_{\xi \in \Xi}$ with weights $(b_{\xi})_{\xi \in \Xi}$.

1.10. Theorem. If a *B*-valued system \mathfrak{U} satisfies the mixing principle then \mathfrak{U} satisfies the maximum principle.

Consider a formula $\varphi(t, t_1, \ldots, t_n)$, denote by \vec{u} a tuple of arbitrary elements $u_1, \ldots, u_n \in \mathfrak{U}$, and put $b = \|(\exists t) \varphi(t, \vec{u})\|$. By the definition of truth value, $b = \bigvee_{v \in \mathfrak{U}} \|\varphi(v, \vec{u})\|$. According to the exhaustion principle, there exist an antichain $(b_{\xi})_{\xi \in \Xi}$ in the algebra B and a family $(v_{\xi})_{\xi \in \Xi}$ of elements in \mathfrak{U} such that $\bigvee_{\xi \in \Xi} b_{\xi} = b$ and $b_{\xi} \leq \|\varphi(v_{\xi}, \vec{u})\|$. By the hypothesis of the theorem, there exists a mixing $v \in \mathfrak{U}$ of the family $(v_{\xi})_{\xi \in \Xi}$ with weights $(b_{\xi})_{\xi \in \Xi}$. In particular, $\|v = v_{\xi}\| \ge b_{\xi}$. In view of Proposition 1.6, the following inequalities hold: $\|\varphi(v, \vec{u})\| \ge \|v = v_{\xi}\| \land \|\varphi(v_{\xi}, \vec{u})\| \ge b_{\xi}$. Consequently, $\|\varphi(v, \vec{u})\| \ge \bigvee_{\xi \in \Xi} b_{\xi} = b$. The inequality $\|\varphi(v, \vec{u})\| \le b$ is obvious. ▷

1.11. Theorem. Let a *B*-valued algebraic system \mathfrak{U} satisfy the ascent principle and let the extensionality axiom be true in \mathfrak{U} . Then the mixing principle is valid for \mathfrak{U} .

 ↓ Let $(u_{\xi})_{\xi \in \Xi}$ be a family of elements in \mathfrak{U} and let $(b_{\xi})_{\xi \in \Xi}$ be an antichain in the algebra B. By the hypothesis of the theorem, for every $\xi \in \Xi$, there exist a family $(u_{\xi}^{\alpha})_{\alpha \in A(\xi)}$ of elements in \mathfrak{U} and a family $(b_{\xi}^{\alpha})_{\alpha \in A(\xi)}$ of elements in the algebra B such that

$$\|v \in u_{\xi}\| = \bigvee_{\alpha \in A(\xi)} b_{\xi}^{\alpha} \wedge \|v = u_{\xi}^{\alpha}\| \text{ for all } v \in \mathfrak{U}.$$

Consider the set $\Gamma = \{(\xi, \alpha) \mid \xi \in \Xi, \alpha \in A(\xi)\}$ and, for each pair $\gamma = (\xi, \alpha) \in \Gamma$, put $c_{\gamma} = b_{\xi} \wedge b_{\xi}^{\alpha}$ and $v_{\gamma} = u_{\xi}^{\alpha}$. Let $u \in \mathfrak{U}$ be an ascent

of the family $(v_{\gamma})_{\gamma \in \Gamma}$ with weights $(c_{\gamma})_{\gamma \in \Gamma}$. Using straightforward calculation and employing definitions, we obtain:

$$\|v \in u\| = \bigvee_{\gamma \in \Gamma} c_{\gamma} \wedge \|v = v_{\gamma}\|$$
$$= \bigvee_{\xi \in \Xi} \bigvee_{\alpha \in A(\xi)} b_{\xi} \wedge b_{\xi}^{\alpha} \wedge \|v = u_{\xi}^{\alpha}\|$$
$$= \bigvee_{\xi \in \Xi} b_{\xi} \wedge \|v \in u_{\xi}\|.$$

Show that u is a mixing of the family $(u_{\xi})_{\xi \in \Xi}$ with weights $(b_{\xi})_{\xi \in \Xi}$. We begin with establishing the inequality $||u = u_{\xi}|| \ge b_{\xi}$. Since the extensionality axiom is true, it is sufficient to show that $(||v \in u|| \Leftrightarrow ||v \in u_{\xi}||) \ge b_{\xi}$ or, which is equivalent, $b_{\xi} \wedge ||v \in u|| = b_{\xi} \wedge ||v \in u_{\xi}||$. Employing the fact that $b_{\xi} \wedge b_{\eta} = \mathbf{0}$ for $\xi \neq \eta$, we have:

$$b_{\xi} \wedge \|v \in u\| = \bigvee_{\eta \in \Xi} b_{\xi} \wedge b_{\eta} \wedge \|v \in u_{\eta}\| = b_{\xi} \wedge \|v \in u_{\xi}\|.$$

We now show that $||u \neq \emptyset|| \leq \bigvee_{\xi \in \Xi} b_{\xi}$. Indeed,

$$\|u \neq \varnothing\| = \|(\exists t) t \in u\| = \bigvee_{v \in \mathfrak{U}} \|v \in u\| = \bigvee_{v \in \mathfrak{U}} \bigvee_{\xi \in \Xi} b_{\xi} \wedge \|v \in u_{\xi}\| \leqslant \bigvee_{\xi \in \Xi} b_{\xi}.$$

1.12. Theorem. If a *B*-valued algebraic system \mathfrak{U} satisfies the maximum and ascent principles then \mathfrak{U} satisfies the mixing principle.

↓ Let $\emptyset^{\wedge} \in \mathfrak{U}$ be an ascent of the empty subset of \mathfrak{U} . It is easy to verify
that $\|\emptyset^{\wedge} = \emptyset\| = 1$. (Here and in the sequel, the notation $u = \emptyset$ means
 $(\forall t) t \notin u$.)

Consider a family $(u_{\xi})_{\xi\in\Xi}$ of elements in \mathfrak{U} and an antichain $(b_{\xi})_{\xi\in\Xi}$ in the algebra B. Put $b = (\bigvee_{\xi\in\Xi} b_{\xi})^{\perp}$. Define a family $(v_{\xi})_{\xi\in\Xi'}$ and a partition of unity $(c_{\xi})_{\xi\in\Xi'}$ as follows: $\Xi' = \Xi \cup \{\Xi\}$, $v_{\xi} = u_{\xi}$, $c_{\xi} = b_{\xi}$ for $\xi \in \Xi$, and $v_{\Xi} = \varnothing^{\wedge}$, $c_{\Xi} = b$. Let $u \in \mathfrak{U}$ be an ascent of the family $(v_{\xi})_{\xi\in\Xi'}$ with weights $(c_{\xi})_{\xi\in\Xi'}$. It is easily seen that $||u \neq \varnothing|| = \mathbf{1}$. Indeed, $||v_{\xi} \in u|| \ge c_{\xi}$ for $\xi \in \Xi'$, which implies

$$||u \neq \varnothing|| = \bigvee_{v \in \mathfrak{U}} ||v \in u|| \ge \bigvee_{\xi \in \Xi'} c_{\xi} = \mathbf{1}.$$

Thus, $\|(\exists t) t \in u\| = 1$. According to the maximum principle, there exists an element $v \in \mathfrak{U}$ such that $\|v \in u\| = 1$. Then, by the definition of ascent,

$$c_{\xi} = \mathbf{1} \wedge c_{\xi} = \bigvee_{\eta \in \Xi'} c_{\eta} \wedge \|v = v_{\eta}\| \wedge c_{\xi} = \|v = v_{\xi}\| \wedge c_{\xi}$$

and, hence, $||v = v_{\xi}|| \ge c_{\xi}$ for all $\xi \in \Xi'$. In particular, for $\xi \in \Xi$, we have $||v = u_{\xi}|| \ge b_{\xi}$. In addition, by Proposition 1.6, the following relations hold:

$$\left(\bigvee_{\xi\in\Xi}b_{\xi}\right)^{\perp}\leqslant\|v=\varnothing^{\wedge}\|=\|v=\varnothing^{\wedge}\|\wedge\|\varnothing^{\wedge}=\varnothing\|\leqslant\|v=\varnothing\|.$$

Consequently, v is a mixing of the family $(u_{\xi})_{\xi \in \Xi}$ with weights $(b_{\xi})_{\xi \in \Xi}$. \triangleright

1.13. Let B be a complete Boolean algebra and let \mathfrak{U} be a B-valued algebraic system. The system \mathfrak{U} is called a *Boolean-valued universe over* B (a *B-valued universe*) if it satisfies the following three conditions:

- (1) \mathfrak{U} is separated;
- (2) \mathfrak{U} satisfies the ascent principle;
- (3) the extensionality and regularity axioms are true in \mathfrak{U} .

Theorem ([3]). For every complete Boolean algebra B, there exists a B-valued universe which is unique up to isomorphism.

A detailed presentation of the theories of Boolean algebras and Boolean-valued algebraic systems can be found in [4-7].

2. The notion of continuous bundle

2.1. Let Q be an arbitrary nonempty set and let $V^Q \subset Q \times \mathbb{V}$ be a classcorrespondence. (Here and in the sequel, \mathbb{V} denotes the class of all sets.) For each point $q \in Q$, denote the class

$$\{q\} \times V^Q(q) = \{(q, x) \mid (q, x) \in V^Q\}$$

by V^q . Obviously, $V^p \cap V^q = \emptyset$ for $p \neq q$. The correspondence V^Q is called a *bundle* on Q and the class V^q is called the *stalk* of the bundle V^Q at a point q.

Let $D \subset Q$. A function $u: D \to V^Q$ is called a *section* of the bundle V^Q on D if $u(q) \in V^q$ for all $q \in D$. The class of all sections of V^Q on D is denoted by $S(D, V^Q)$. The sections defined on Q are called *global*. If X is a subset of V^Q then the symbol S(D, X) stands for the set of all sections of X on D.

A point $q \in Q$ is called the *projection of an element* $x \in V^Q$ and denoted by pr(x) if $x \in V^q$. The *projection of a set* $X \subset V^Q$ is defined to be $\{pr(x) \mid x \in X\}$ and denoted by pr(X).

2.2. Assume now Q to be a topological space and suppose that some topology is given on a class $V^Q \subset Q \times \mathbb{V}$. In this case, we call V^Q a *continuous bundle* on Q.

By a continuous section of the bundle V^Q we mean a section that is a continuous function. Given a subset $D \subset Q$, the symbol $C(D, V^Q)$ stands for the class of all continuous sections of V^Q on D. Analogously, if X is a subset of V^Q then C(D, X) stands for the totality of all continuous sections of X on D. Obviously, $C(D, X) = C(D, V^Q) \cap S(D, X)$.

Henceforth we suppose that Q is an extremally disconnected Hausdorff compact space and assume satisfied the following conditions:

- (1) $\forall q \in Q \quad \forall x \in V^q \quad \exists u \in C(Q, V^Q) \quad u(q) = x;$
- (2) $\forall u \in C(Q, V^Q) \quad \forall A \sqsubset Q \quad u(A) \sqsubset V^Q.$

2.3. Proposition. The continuous bundle V^Q possesses the following properties:

- (1) the topology of V^Q is Hausdorff;
- (2) for every $u \in C(Q, V^Q)$ and $q \in Q$, the family $\{u(A) \mid A \in \operatorname{Clop}(q)\}$ is a neighborhood base of the point u(q);
- (3) all elements of $C(Q, V^Q)$ are open and closed mappings (see 1.1).

 \triangleleft Let x and y be different elements of V^Q . Put p = pr(x) and q = pr(y). In view of 2.2(1), there are sections $u, v \in C(Q, V^Q)$ such that u(p) = x and v(q) = y.

Suppose first that p = q. The set

$$A = \{q \in Q \mid u(q) \neq v(q)\} = Q \setminus u^{-1}(v(Q))$$

is clopen in view of 2.2(2). Then u(A) and v(A) are disjoint neighborhoods about the points x and y.

Suppose now that $p \neq q$. In this case, there exist $A, B \sqsubset Q$ such that $A \cap B = \emptyset$, $p \in A$, and $q \in B$. Then u(A) and v(B) are disjoint neighborhoods about the points x and y.

Assertion (2) follows readily from 2.2(2).

Assertion (3) is equivalent to 2.2(2) due to the fact that Clop(Q) is a base both for the open and close topologies of Q. \triangleright

2.4. Lemma. A subset $X \subset V^Q$ is clopen if and only if $u^{-1}(X) \sqsubset Q$ for all $u \in C(Q, V^Q)$.

 \triangleleft Only sufficiency requires some comments. Consider an arbitrary element $x \in V^Q$. Let a section $u \in C(Q, V^Q)$ and a point $q \in Q$ be such that u(q) = x.

Suppose first that $x \in X$. The set $A = u^{-1}(X)$ is clopen in Q and, therefore, u(A) is a neighborhood about x contained in X. Since x is arbitrary, we conclude that X is open.

If $x \notin X$ then the set $A = Q \setminus u^{-1}(X)$ is clopen in Q and, hence, u(A) is a neighborhood about x disjoint from X. Since x is arbitrary, we conclude that X is closed. \triangleright

2.5. Proposition. The topology of V^Q is extremally disconnected.

↓ Let X be an open subset of V^Q. Since the topology of V^Q is Hausdorff, the closure cl X is a set (see 1.2). Furthermore, for every section $u \in C(Q, V^Q)$, the set $u^{-1}(\operatorname{cl} X) = \operatorname{cl} u^{-1}(X)$ is clopen. In view of Lemma 2.4, the set cl X is open. ▷

2.6. Lemma. For every subset $X \subset V^Q$ the following equalities hold:

$$X = \bigcup_{u \in C(Q, V^Q)} u(u^{-1}(X)),$$

int $X = \bigcup_{u \in C(Q, V^Q)} u(\operatorname{int} u^{-1}(X)),$
 $\operatorname{cl} X = \bigcup_{u \in C(Q, V^Q)} u(\operatorname{cl} u^{-1}(X)).$

2.7. Lemma. Let X and Y be subclasses of V^Q . The equality X = Y holds if and only if $u^{-1}(X) = u^{-1}(Y)$ for all $u \in C(Q, V^Q)$.

▷ Take arbitrary $q \in Q$ and $x \in V^q$ and consider a section $u \in C(Q, V^Q)$ such that u(q) = x. If $x \in X$ then $q \in u^{-1}(X) = u^{-1}(Y)$ and, consequently, $x = u(q) \in Y$. The reverse inclusion can be established similarly. ▷

2.8. Proposition. A section $u \in S(D, V^Q)$ defined on an open subset $D \subset Q$ is continuous if and only if $\operatorname{im} u$ is an open subset of V^Q .

◀ Suppose that a section u is continuous. For every $q \in D$, choose a section $u_q \in C(Q, V^Q)$ such that $u_q(q) = u(q)$. The set $D_q = \{p \in D \mid u(p) = u_q(p)\} = u^{-1}(\operatorname{im} u_q)$ is open in D and, hence, it is also open in Q. Therefore, the image $u(D_q) = u_q(D_q)$ is open in view of the fact that global continuous sections are open. Obviously, $D = \bigcup_{q \in D} D_q$, since $q \in D_q$. Thus, im $u = u(D) = u(\bigcup_{q \in D} D_q) = \bigcup_{q \in D} u(D_q)$ is an open set.

Suppose now that im u is an open set. Consider an arbitrary point $q \in D$ and choose a section $u_q \in C(Q, V^Q)$ such that $u(q) = u_q(q)$. The open set Function Representation of $\mathbb{V}^{(B)}$

 $\{p \in D \mid u(p) = u(p)\} = u^{-1}(\operatorname{im} u)$ is a neighborhood about q, whence it follows that u is continuous at q. \triangleright

2.9. Lemma. For every subset $X \subset V^Q$, the following relations hold:

(1) $\operatorname{pr}(\operatorname{cl} X) \subset \operatorname{cl} \operatorname{pr}(X);$

(2) $\operatorname{pr}(\operatorname{int} X) \subset \operatorname{int} \operatorname{pr}(X).$

Consider an arbitrary section $u \in C(Q, V^Q)$. In view of the properties
of the closure, we have $u^{-1}(\operatorname{cl} X) = \operatorname{cl} u^{-1}(X) \subset \operatorname{cl} \operatorname{pr}(X)$, whence, due to
the equality $\operatorname{pr}(X) = \bigcup_{u \in C(Q, V^Q)} u^{-1}(X)$, it follows that $\operatorname{pr}(\operatorname{cl} X) \subset \operatorname{cl} \operatorname{pr}(X)$.

Relation (2) can be established similarly. \triangleright

3. A continuous polyverse

3.1. Consider a nonempty set Q and a bundle $V^Q \subset Q \times \mathbb{V}$. Suppose that, for each point $q \in Q$, the class V^q is an algebraic system of signature $\{\in\}$.

Given an arbitrary formula $\varphi(t_1, \ldots, t_n)$ and sections u_1, \ldots, u_n of the bundle V^Q , we denote by $\{\varphi(u_1, \ldots, u_n)\}$ the set

 $\{q \in \operatorname{dom} u_1 \cap \cdots \cap \operatorname{dom} u_n \mid V^q \models \varphi(u_1(q), \ldots, u_n(q))\}.$

For every element $x \in V^q$, put $x \downarrow = \{y \in V^q \mid V^q \models y \in x\}$. Obviously, if the extensionality axiom is true in the system V^q , then $x \downarrow = y \downarrow \iff x = y$ for all $x, y \in V^q$. If X is a subset of V^Q then the symbol $\sqcup X$ denotes the union $\bigcup_{x \in X} x \downarrow$.

Henceforth we assume that Q is an extremally disconnected Hausdorff compact space and V^Q is a continuous bundle on Q.

For an arbitrary section $u \in C(Q, V^Q)$, the class $\bigcup_{q \in Q} u(q) \downarrow$ is called the *unpack* of the section u and denoted by $\lfloor u \rfloor$.

3.2. A continuous bundle V^Q is called a *continuous polyverse* on Q, if the extensionality and regularity axioms are true in each stalk V^q $(q \in Q)$ and, in addition, the following conditions hold:

(1) $\forall q \in Q \quad \forall x \in V^q \quad \exists u \in C(Q, V^Q) \quad u(q) = x;$

- (2) $\forall u \in C(Q, V^Q) \quad \forall A \in \operatorname{Clop}(Q) \quad u(A) \in \operatorname{Clop}(V^Q);$
- (3) $\forall u \in C(Q, V^Q) \quad \llcorner u \lrcorner \in \operatorname{Clop}(V^Q);$
- (4) $\forall X \in \operatorname{Clop}(V^Q) \quad \exists u \in C(Q, V^Q) \quad \llcorner u \lrcorner = X.$

3.3. For arbitrary sections $u, v \in C(Q, V^Q)$, the equalities $\{u = v\} = u^{-1}(\operatorname{im} v)$ and $\{u \in v\} = u^{-1}(\lfloor v \rfloor)$ imply that the sets $\{u = v\}$ and $\{u \in v\}$ are clopen, which allows us to introduce two class-functions

$$\|\cdot = \cdot \|, \|\cdot \in \cdot \|: C(Q, V^Q) \times C(Q, V^Q) \to \operatorname{Clop}(Q)$$

by letting $||u = v|| = \{u = v\}$ and $||u \in v|| = \{u \in v\}$.

It is easy to verify that the triple $(C(Q, V^Q), \|\cdot = \cdot\|, \|\cdot \in \cdot\|)$ is a separated $\operatorname{Clop}(Q)$ -valued algebraic system (see 1.3).

The definition 3.2(4) of continuous polyverse implies that there exists a continuous section \varnothing^{\wedge} satisfying the condition $\llcorner \varnothing^{\wedge} \lrcorner = \varnothing$. Obviously, this section is unique. It is easy that $V^q \models \varnothing^{\wedge}(q) = \varnothing$, $\| \varnothing^{\wedge} = \varnothing \| = Q$, and, in addition, $\| u = \varnothing^{\wedge} \| = \| u = \varnothing \|$ for all $u \in C(Q, V^Q)$.

3.4. Lemma. For every subset $X \subset V^Q$, the following relations hold:

(1) if $X \sqsubset V^Q$ then $\operatorname{pr}(X) \sqsubset Q$;

(2) if X is open then $\operatorname{pr}(\operatorname{cl} X) = \operatorname{cl} \operatorname{pr}(X)$.

 \triangleleft (1) If $X \sqsubset V^Q$ then there is a section $u \in C(Q, V^Q)$ such that $\sqcup \operatorname{im} u = \llcorner u \lrcorner = X$. Obviously, $\operatorname{pr}(\sqcup \operatorname{im} u) = ||u \neq \emptyset||$, whence $\operatorname{pr}(X)$ is clopen.

(2) Let X be an open subset of V^Q . Then the closure $\operatorname{cl} X$ is clopen, the same is true of its projection $\operatorname{pr}(\operatorname{cl} X)$. The obvious inclusion $\operatorname{pr}(X) \subset \operatorname{pr}(\operatorname{cl} X)$ implies $\operatorname{cl} \operatorname{pr}(X) \subset \operatorname{pr}(\operatorname{cl} X)$. The reverse inclusion is established in 2.9. \triangleright

3.5. The support supp u of a section $u \in S(D, V^Q)$ on $D \subset Q$ is defined to be the set $\{q \in D \mid V^q \models u(q) \neq \emptyset\}$. Obviously, supp $u = \{u \neq \emptyset\} = \{u \neq \emptyset^{\wedge}\}$. So, if $u \in C(Q, V^Q)$ then supp u is a clopen set.

Let u be a continuous section of V^Q and let D be a subset of supp u. The symbol C(D, u) denotes the class

$$\left\{ v \in C(D, V^Q) \mid (\forall q \in D) \ V^q \models v(q) \in u(q) \right\}.$$

Obviously, $C(D, u) = C(D, \lfloor u \rfloor)$.

By the *descent* of a section u we mean the class $C(\operatorname{supp} u, u)$ and denote it by $u \downarrow$. It is easily seen that $u \downarrow = C(\operatorname{supp} u, \lfloor u \rfloor)$. Obviously, in case $\|u \neq \emptyset\| = Q$, the descent of u is the descent of the section u regarded as an element of a Boolean-valued algebraic system (see 1.7).

3.6. Proposition. For arbitrary $X \sqsubset V^Q$ and $u \in C(Q, V^Q)$, the following assertions are equivalent:

- (1) $\llcorner u \lrcorner = X;$
- (2) $u(q) \downarrow = X \cap V^q$ for all $q \in Q$;
- (3) supp $u = \operatorname{pr}(X)$ and $u \downarrow = C(\operatorname{pr}(X), X);$
- (4) $||v \in u|| = v^{-1}(X)$ for all $v \in C(Q, V^Q)$.

⊲ (1)→(3): It suffices to observe that supp $u = ||u \neq \emptyset|| = \operatorname{pr}(\lfloor u \rfloor)$ and employ the equality $u \downarrow = C(\operatorname{supp} u, \lfloor u \rfloor)$.

(3) \rightarrow (2): Put $A = \operatorname{supp} u$. It is clear that $X \cap V^q = \emptyset = u(q) \downarrow$ for all $q \in Q \backslash A$.

Given an arbitrary point $q \in A$, there are $x \in u(q) \downarrow$ and $v_q \in C(Q, V^Q)$ such that $v_q(q) = x$. Put $B_q = ||v_q \in u||$. The family $(B_q)_{q \in A}$ is an open covering of the compact set A; therefore, we can refine a subcovering $(B_q)_{q \in F}$, where $F \subset A$ is finite. By the exhaustion principle, there is an antichain $(C_q)_{q \in F}$ such that $C_q \subset B_q$ for $q \in F$ and $\bigcup_{q \in F} C_q = \bigvee_{q \in F} C_q = \bigvee_{q \in F} B_q = A$. Construct a section $v \in S(A, V^Q)$ by putting $v(p) = v_q(p)$ for each point $p \in A$, where q is a (unique) element of F such that $p \in C_q$. The section v is continuous, since $v = v_q$ on C_q $(q \in F)$. It is easily seen that $v \in u \downarrow = C(A, X)$.

Let q be an arbitrary element of A.

Consider an $x \in u(q)\downarrow$, choose a section $w \in C(Q, V^Q)$ such that w(q) = x, and construct a section $\overline{w} \in S(A, V^Q)$ as follows:

$$\overline{w}(p) = \begin{cases} w(p) & \text{if } p \in ||w \in u||, \\ v(p) & \text{if } p \in A \setminus ||w \in u||. \end{cases}$$

Obviously, the section \overline{w} is continuous and $\overline{w} \in u \downarrow = C(A, X)$, whence $x = \overline{w}(q) \in X$ in view of the containment $q \in ||w \in u||$.

Now let $x \in X \cap V^q$. As before, choose a section $w \in C(Q, V^Q)$ such that w(q) = x. Consider the section $\overline{w} \in S(A, V^Q)$ defined as follows:

$$\overline{w}(p) = \begin{cases} w(p) & \text{if } p \in w^{-1}(X), \\ v(p) & \text{if } p \in A \backslash w^{-1}(X). \end{cases}$$

The obvious relations $\overline{w} \in C(A, X) = u \downarrow$ and $q \in w^{-1}(X)$ imply that $x = w(q) = \overline{w}(q) \in u(q) \downarrow$.

 $(2) \rightarrow (4)$: Consider an arbitrary section $v \in C(Q, V^Q)$. If $q \in ||v \in u|| = v^{-1}(\lfloor u \rfloor)$ then $v(q) \in \lfloor u \rfloor$; consequently, $v(q) \in u(q) \downarrow = X \cap V^q$, i.e., $q \in v^{-1}(X)$.

If $q \in v^{-1}(X)$ then $v(q) \in X \cap V^q = u(q) \downarrow$ and, hence, $V^q \models v(q) \in u(q)$ and $q \in ||v \in u||$.

 $(4) \rightarrow (1)$: Observe that $v^{-1}(\lfloor u \rfloor) = ||v \in u|| = v^{-1}(X)$ for all $v \in C(Q, V^Q)$. Therefore, in view of Lemma 2.7, the equality $X = \lfloor u \rfloor$ holds. \triangleright

Obviously, for every $X \sqsubset V^Q$, a section u satisfying conditions (1)–(4) is unique. We call this section the *pack* of the set X and denote it by $\lceil X \rceil$.

It is easy to verify validity of the following assertion:

Proposition. Let X be an open subset of V^Q . A section $\overline{u} \in C(Q, V^Q)$ coincides with $\lceil \operatorname{cl} X \rceil$ if and only if \overline{u} is pointwise the least section among $u \in C(Q, V^Q)$ satisfying the inclusion $X \cap V^q \subset u(q) \downarrow$ for all $q \in Q$.

3.7. Lemma. If $u \in C(Q, V^Q)$ and $A \in Clop(Q)$ then $\sqcup u(A) \in Clop(V^Q)$.

▷ For every section $v \in C(Q, V^Q)$, the set $v^{-1}(\sqcup u(A)) = A \cap ||v \in u||$ is clopen; whence, in view of 2.4, the set $\sqcup u(A)$ is clopen too. ▷

3.8. Proposition. Every continuous section of V^Q defined on an open or closed subset of Q can be extended to a global continuous section.

 \triangleleft Consider $A \subset Q$ and $u \in C(A, V^Q)$. For every point $q \in A$, there exist a section $u_q \in C(Q, V^Q)$ and a set $B_q \sqsubset Q$ such that $q \in B_q$ and $u_q = u$ on $B_q \cap A$.

Suppose that the set A is open. Without loss of generality, we may assume that $B_q \subset A$. Consider the open set $X = \bigcup_{q \in Q} u(q) \downarrow = \bigcup_{q \in A} \sqcup u_q(B_q)$ and show that $(\operatorname{cl} X) \cap V^q = u(q) \downarrow$ for all $q \in A$. We only establish the inclusion $(\operatorname{cl} X) \cap V^q \subset u(q) \downarrow$ (the reverse inclusion follows from the obvious properties of closure). Take an $x \in \operatorname{cl} X \cap V^q$. There is a section $v \in C(Q, V^Q)$ such that v(q) = x. Evidently, for each neighborhood $B \sqsubset Q$ about q, the intersection $v(B) \cap X$ is nonempty and, thus, there exists a point $p \in B \cap B_q$ such that $v(p) \in u(p) \downarrow$. On the other hand, $u(p) = u_q(p)$; consequently, $v(B) \cap \sqcup u_q(B_q) \neq \emptyset$. The set $\sqcup u_q(B_q)$ is closed and, therefore, $x \in \sqcup u_q(B_q)$, whence $x \in u_q(q) \downarrow = u(q) \downarrow$. Put $\overline{u} = \lceil \operatorname{cl} X \urcorner$. From what was established above it follows that $\overline{u}(q) \downarrow = u(q) \downarrow$ for all $q \in A$. Thus, \overline{u} is a sought global extension of the section u.

Suppose now that the set A is closed. The family $(B_q)_{q \in A}$ forms an open covering of the compact set A and, therefore, we can refine a subcovering $(B_q)_{q \in F}$, where F is a finite subset of A. Without loss of generality, we may assume that $\bigcup_{q \in F} B_q = Q$. By the exhaustion principle, there is an antichain $(C_q)_{q \in F}$ such that $C_q \subset B_q$ for all $q \in F$ and $\bigcup_{q \in F} C_q = Q$. Construct a section $\overline{u} \in S(Q, V^Q)$ by putting $\overline{u}(p) = u_q(p)$ for each point $p \in Q$, where qis a (unique) element of F such that $p \in C_q$. The section \overline{u} is continuous, since $\overline{u} = u_q$ on C_q $(q \in F)$. Obviously, $\overline{u} = u$ on A.

Corollary. If A is an open or closed subset of Q then $C(A, V^Q) = \{u|_A : u \in C(Q, V^Q)\}.$

The extension principle. For every section $u \in C(A, V^Q)$ defined on an open subset $A \subset Q$, there exists a unique section $\overline{u} \in C(\operatorname{cl} A, V^Q)$ that extends u. A ccording to Proposition 3.8, there exists a section $u_1 \in C(Q, V^Q)$ such that $u_1 = u$ on A. Put $\overline{u} = u_1|_{clA}$.

Uniqueness of this extension is obvious. \triangleright

The section \overline{u} of the statement of the extension principle is called the *closure* of u and denoted by ext(u).

3.9. It is easy to verify validity of the following assertion:

Theorem. Consider a family $(u_{\xi})_{\xi \in \Xi}$ of global continuous sections of V^Q and an antichain $(B_{\xi})_{\xi \in \Xi}$ in the algebra $\operatorname{Clop}(Q)$ and put $B = (\bigvee_{\xi \in \Xi} B_{\xi})^{\perp}$. The continuous section

$$u = \operatorname{ext}\left(\bigcup_{\xi \in \Xi} u_{\xi}|_{B_{\xi}} \cup \emptyset^{\wedge}|_{B}\right)$$

is the mixing of the family $(u_{\xi})_{\xi \in \Xi}$ with weights $(B_{\xi})_{\xi \in \Xi}$. In particular, the mixing principle is valid for the Boolean-valued algebraic system $C(Q, V^Q)$.

Corollary. The Boolean-valued algebraic system $C(Q, V^Q)$ satisfies the maximum principle.

3.10. The pointwise truth-value theorem. For an arbitrary formula $\varphi(t_1, \ldots, t_n)$ and sections $u_1, \ldots, u_n \in C(Q, V^Q)$, the following equality holds:

$$\|\varphi(u_1,\ldots,u_n)\| = \{q \in Q \mid V^q \models \varphi(u_1(q),\ldots,u_n(q))\}.$$
 (*)

◀ The proof is carried out by induction on the complexity of the formula φ .

If φ is atomic, i.e., has the form $t_1 \in t_2$ or $t_1 = t_2$; then (*) follows from the definitions of $\|\cdot = \cdot\|$ and $\|\cdot \in \cdot\|$.

Assume that the claim is proven for formulas of smaller complexity. We restrict ourselves to the case in which the formula φ has the form $(\exists t_0) \varphi(t_0, \vec{t})$.

If $V^q \models (\exists t_0) \varphi(t_0, \vec{u}(q))$ then there exists an element $x \in V^q$ such that $V^q \models \varphi(x, \vec{u}(q))$. Choose a section $u_0 \in C(Q, V^Q)$ satisfying the equality $u_0(q) = x$. By the induction hypothesis, $q \in ||\varphi(u_0, \vec{u})|| \subset ||(\exists t_0) \varphi(t_0, \vec{u})||$, which proves the inclusion " \supset " in (*).

Show the reverse inclusion. Suppose that $q \in \|(\exists t_0) \varphi(t_0, \vec{u})\|$. By the maximum principle, there is a continuous section u_0 such that $\|\varphi(u_0, \vec{u})\| = \|(\exists t_0) \varphi(t_0, \vec{u})\|$. Therefore, by the induction hypothesis, $V^q \models \varphi(u_0(q), \vec{u}(q))$ and, hence, $V^q \models (\exists t_0) \varphi(t_0, \vec{u}(q))$. \triangleright

3.11. Lemma. For every subset $X \subset V^Q$, the following relations hold:

- (1) $\sqcup \operatorname{cl} X \subset \operatorname{cl} \sqcup X;$
- (2) $\sqcup \operatorname{int} X \subset \operatorname{int} \sqcup X;$
- (3) if $X \in \operatorname{Clop}(V^Q)$ then $\sqcup X \in \operatorname{Clop}(V^Q)$;
- (4) if X is open then $\sqcup X$ is an open subset of V^Q ;
- (5) if X is open then $\sqcup \operatorname{cl} X = \operatorname{cl} \sqcup X$.

(2): Suppose that $x \in \sqcup \operatorname{int} X$ and consider $y \in \operatorname{int} X$ and $u, v \in C(Q, V^Q)$ such that $x \in y \downarrow$, u(q) = x, and v(q) = y, where $q = \operatorname{pr}(x)$. It is clear that the set $B = v^{-1}(X) \cap ||u \in v||$ is a neighborhood about q and, hence, u(B) is a neighborhood about x. Furthermore, $u(p) \in v(p) \downarrow \subset \sqcup X$ for all $p \in B$, i.e., $u(B) \subset \sqcup X$. Thus, $x \in \operatorname{int} \sqcup X$.

(3): According to Lemma 2.4, it suffices to consider an arbitrary section $v \in C(Q, V^Q)$ and show that the set $v^{-1}(\sqcup X)$ is clopen. Put $u = \lceil X \rceil$. Obviously, $v(q) \in \sqcup X$ if and only if

$$V^{q} \models \left(\exists t \in u(q)\right) v(q) \in t.$$

By the pointwise truth-value theorem,

$$v^{-1}(X) = \{ q \in Q \mid V^q \models (\exists t \in u(q)) \ v(q) \in t \} = \| (\exists t \in u) \ v \in t \|$$

and, consequently, $v^{-1}(X) \sqsubset Q$.

(4): The claim follows readily from (2).

(5): Let the set X be open. Then its closure $\operatorname{cl} X$ is clopen and, according to (3), the set $\sqcup \operatorname{cl} X$ is clopen too. The obvious relation $\sqcup X \subset \sqcup \operatorname{cl} X$ implies $\operatorname{cl} \sqcup X \subset \sqcup \operatorname{cl} X$. The reverse inclusion holds by virtue of (1). \triangleright

3.12. Theorem. The Boolean-valued algebraic system $C(Q, V^Q)$ satisfies the ascent principle.

⊲ Let $(u_{\xi})_{\xi \in \Xi}$ be a family of global continuous sections of V^Q and let $(B_{\xi})_{\xi \in \Xi}$ be a family of clopen subsets of Q. Consider the clopen set $X = cl \bigcup_{\xi \in \Xi} u_{\xi}(B_{\xi})$ and put $u = \lceil X \rceil$. Show that the section $u \in C(Q, V^Q)$ thus constructed is an ascent of $(u_{\xi})_{\xi \in \Xi}$ with weights $(B_{\xi})_{\xi \in \Xi}$. Indeed, for every

Function Representation of $\mathbb{V}^{(B)}$

section $v \in C(Q, V^Q)$, the following relations hold:

$$\|v \in u\| = v^{-1}(\lfloor u \rfloor) = v^{-1}\left(\operatorname{cl}\bigcup_{\xi \in \Xi} u_{\xi}(B_{\xi})\right) = \operatorname{cl}v^{-1}\left(\bigcup_{\xi \in \Xi} u_{\xi}(B_{\xi})\right)$$
$$= \operatorname{cl}\bigcup_{\xi \in \Xi} v^{-1}\left(u_{\xi}(B_{\xi})\right) = \operatorname{cl}\bigcup_{\xi \in \Xi} B_{\xi} \cap \|v = u_{\xi}\| = \bigvee_{\xi \in \Xi} B_{\xi} \wedge \|v = u_{\xi}\|.$$

Consider now an arbitrary section $u \in C(Q, V^Q)$ and show that it is an ascent of some family of elements in $C(Q, V^Q)$ with suitable weights. Put $X = \lfloor u \rfloor$. For each $x \in X$, choose a section $u_x \in C(Q, V^Q)$ such that $x \in \operatorname{im} u_x$. Assign $B_x = ||u_x \in u|| = u_x^{-1}(X)$. Obviously, $x \in u_x(B_x) \subset X$ for all $x \in X$, whence $X = \bigcup_{x \in X} u_x(B_x) = \operatorname{cl} \bigcup_{x \in X} u_x(B_x)$. As in the first part of the proof, we can establish the equality $||v \in u|| = \bigvee_{x \in X} B_x \wedge ||v = u_x||$ for all $v \in C(Q, V^Q)$. Thus, u is an ascent of $(u_x)_{x \in X}$ with weights $(B_x)_{x \in X}$.

3.13. Consider a $D \sqsubset Q$ and suppose that \mathcal{U} is a subset of $C(D, V^Q)$. Given a point $q \in D$, denote by $\mathcal{U}(q)$ the totality $\{u(q) \mid u \in \mathcal{U}\}$.

Proposition. Consider a $D \sqsubset Q$ and suppose that \mathcal{U} is a nonempty subset of $C(D, V^Q)$. The following properties of a section $\overline{u} \in C(Q, V^Q)$ are equivalent:

- (1) $\overline{u} = \lceil \operatorname{cl} \bigcup_{u \in \mathcal{U}} \operatorname{im} u \rceil;$ (2) $\|v \in \overline{u}\| = \operatorname{cl}\{q \in D \mid v(q) \in \mathcal{U}(q)\}$ for all $v \in C(Q, V^Q);$ (3) $\|v \in \overline{u}\| = \operatorname{cl} \bigcup_{u \in \mathcal{U}} \{v = u\}$ for all $v \in C(Q, V^Q);$
 - (4) $\overline{u} \downarrow = \left\{ \exp\left(\bigcup_{u \in \mathcal{U}} u|_{D_u}\right) \mid (D_u)_{u \in \mathcal{U}} \text{ is a partition of unity} \\ \text{ in the algebra } \operatorname{Clop}(D) \right\};$
 - (5) $\overline{u} \downarrow = C(D, \operatorname{cl} \bigcup_{u \in \mathcal{U}} \operatorname{im} u).$
 - (6) \overline{u} is pointwise the least section among $\tilde{u} \in C(Q, V^Q)$ satisfying the inclusion $\mathcal{U}(q) \subset \tilde{u}(q) \downarrow$ for all $q \in D$.

If $\mathcal{U} \subset C(Q, V^Q)$ then $||v \in \overline{u}|| = \bigvee_{u \in \mathcal{U}} ||v = u||$ for all $v \in C(Q, V^Q)$.

(2) \rightarrow (3): It suffices to show that $\{q \in D \mid v(q) \in \mathcal{U}(q)\} = \bigcup_{u \in \mathcal{U}} \{v = u\}$ for all $v \in C(Q, V^Q)$. Take an arbitrary point $q \in D$.

If $v(q) \in \mathcal{U}(q)$ then, for some element $u \in \mathcal{U}$, we have v(q) = u(q) and, consequently, $q \in \{v = u\}$.

If $q \in \bigcup_{u \in \mathcal{U}} \{v = u\}$ then, for a suitable $u \in \mathcal{U}$, we have $q \in \{v = u\}$ and, hence, $v(q) = u(q) \in \mathcal{U}(q)$.

(3) \rightarrow (4): Consider an arbitrary element $v \in C(D, V^Q)$ and define a section $\overline{v} \in C(Q, V^Q)$ as follows:

$$\overline{v}(q) = \begin{cases} v(q) & \text{if } q \in D, \\ \varnothing^{\wedge}(q) & \text{if } q \notin D. \end{cases}$$

Suppose that $v \in \overline{u} \downarrow$. Then $D = \{v \in \overline{u}\} \subset \|\overline{v} \in \overline{u}\| = \operatorname{cl} \bigcup_{u \in \mathcal{U}} \{\overline{v} = u\} \subset D$. For all $u \in \mathcal{U}$, the set $\{\overline{v} = u\} = u^{-1}(\operatorname{im} \overline{v})$ is clopen. According to the exhaustion principle, there is an antichain $(D_u)_{u \in \mathcal{U}}$ in the algebra $\operatorname{Clop}(Q)$ such that $D_u \subset \{\overline{v} = u\}$ and $\bigvee_{u \in \mathcal{U}} D_u = \operatorname{cl} \bigcup_{u \in \mathcal{U}} \{\overline{v} = u\} = D$. Obviously, the section $w = \bigcup_{u \in \mathcal{U}} u|_{D_u}$ is continuous, the set dom w is open, $D = \operatorname{cl} \operatorname{dom} w$, and $\{w = v\} = \{w = \overline{v}\} = \operatorname{dom} w$. It is clear that $\operatorname{ext}(w) \in C(D, V^Q)$ and $\{\operatorname{ext}(w) = v\} = D$. Therefore, $\operatorname{ext}(w) = v$ and, thus, the inclusion " \subset " holds.

We now establish the reverse inclusion. Let $(D_u)_{u \in \mathcal{U}}$ be a partition of unity in the algebra $\operatorname{Clop}(D)$ and let $v = \operatorname{ext}(\bigcup_{u \in \mathcal{U}} u|_{D_u})$. Show that $v \in \overline{u} \downarrow$. Since dom v = D, it suffices to establish the inclusion im $v \subset \lfloor \overline{u} \rfloor$. Obviously, $u(D_u) \subset \lfloor \overline{u} \rfloor$ for all $u \in \mathcal{U}$ and, consequently, $\bigcup_{u \in \mathcal{U}} u(D_u) \subset \lfloor \overline{u} \rfloor$. Observe that im $v = \operatorname{cl} \bigcup_{u \in \mathcal{U}} u(D_u)$ and, hence, im $v \subset \lfloor \overline{u} \rfloor$.

 $(4) \to (5)$: Put $X = \operatorname{cl} \bigcup_{u \in \mathcal{U}} \operatorname{im} u$. Let $(D_u)_{u \in \mathcal{U}}$ be a partition of unity in the algebra $\operatorname{Clop}(D)$ and let $v = \operatorname{ext}(\bigcup_{u \in \mathcal{U}} u|_{D_u})$. Obviously, dom v = D. Show that $\operatorname{im} v \subset X$. The inclusion $u(D_u) \subset X$ implies $\bigcup_{u \in \mathcal{U}} u(D_u) \subset X$; whence, in view of the equality $\operatorname{im} v = \operatorname{cl} \bigcup_{u \in \mathcal{U}} u(D_u)$, the desired relation $\operatorname{im} v \subset X$ follows. Thus, $\overline{u} \downarrow \subset C(D, X)$.

For proving the reverse inclusion, consider an arbitrary section $v \in C(D, X)$ and establish the equality $v = \exp(\bigcup_{u \in \mathcal{U}} u|_{D_u})$ for some partition of unity $(D_u)_{u \in \mathcal{U}}$ in the algebra $\operatorname{Clop}(D)$. Obviously, $v^{-1}(X) = D$. Since the section v is open, we have $D = \operatorname{cl} v^{-1}(\bigcup_{u \in \mathcal{U}} \operatorname{im} u)$. In addition, the set $A = v^{-1}(\bigcup_{u \in \mathcal{U}} \operatorname{im} u)$ is open and dense in D.

With each element $u \in \mathcal{U}$ we associate a clopen set $C_u = \{v = u\} = v^{-1}(\operatorname{im} u)$. The obvious equality $A = \bigcup_{u \in \mathcal{U}} C_u$ implies that $\bigvee_{u \in \mathcal{U}} C_u = D$. In view of the exhaustion principle, there is a partition of unity $(D_u)_{u \in \mathcal{U}}$ in the algebra $\operatorname{Clop}(D)$ such that $D_u \subset C_u$ for all $u \in \mathcal{U}$. Put $w = \bigcup_{u \in \mathcal{U}} u|_{D_u}$. It is clear that, for each $u \in \mathcal{U}$, the equalities $w|_{D_u} = u|_{D_u} = v|_{D_u}$ hold, since $D_u \subset \{v = u\}$. Consequently, by the extension principle, $\operatorname{ext}(w) = v$, which proves the desired inclusion.

 $(5) \rightarrow (1)$: It is sufficient to observe that $D = \operatorname{pr}(\operatorname{cl} \bigcup_{u \in \mathcal{U}} \operatorname{im} u)$ and use Proposition 3.6 (3).

Equivalence of (1) and (6) is evident. \triangleright

Obviously, the section \overline{u} of the statement of the proposition is unique. We call that section the *ascent* of the set \mathcal{U} and denote it by $\mathcal{U}\uparrow$. In case \mathcal{U} is a nonempty subset of $C(Q, V^Q)$, the notion of the ascent of \mathcal{U} coincides with the eponymized notion of 1.8.

4. Function representation of a Boolean-valued universe

Throughout the section, we assume that Q is an extremally disconnected Hausdorff compact space and \mathfrak{U} is a Boolean-valued universe over $\operatorname{Clop}(Q)$.

4.1. For the further considerations we need the notion of the quotient class X/\sim where X is a class (that need not be a set) and \sim is an equivalence relation on X. The traditional definition of quotient class, for the case in which X is a set, cannot be always applied to the case of a class, since the elements of X equivalent to a given $x \in X$ form a class that need not be a set. We can overcome this difficulty with the help of the following fact:

Theorem (Frege-Russell-Scott). For every equivalence relation \sim on a class X, there exists a function $F: X \to \mathbb{V}$ such that

$$F(x) = F(y) \leftrightarrow x \sim y \quad \text{for all } x, y \in X. \tag{(**)}$$

As F we can take the function defined as follows:

$$F(x) = \{ y \in X \mid y \sim x \& (\forall z \in X) (z \sim x \to \operatorname{rank}(y) \leqslant \operatorname{rank}(z)) \}.$$

This function F is conventionally called the *canonical projection* of the equivalence relation \sim . The relation (**) allows us to regard F(x) as an analog of the coset containing an element $x \in X$. In this connection, we denote F(x) by $\sim(x)$.

4.2. For each point $q \in Q$, introduce the equivalence relation \sim_q on the class \mathfrak{U} as follows:

$$u \sim_q v \leftrightarrow q \in ||u = v||.$$

Consider the bundle $V^Q = \{(q, \sim_q(u)) \mid q \in Q, u \in \mathfrak{U}\}$ and make the convention to denote a pair $(q, \sim_q(u))$ by $\widehat{u}(q)$. Obviously, for every element $u \in \mathfrak{U}$, the mapping $\widehat{u}: q \mapsto \widehat{u}(q)$ is a section of the bundle V^Q . Note that, for each $x \in V^Q$, there exist $u \in \mathfrak{U}$ and $q \in Q$ such that $\widehat{u}(q) = x$. In addition, the equality $\widehat{u}(q) = \widehat{v}(q)$ holds if and only if $q \in ||u = v||$.

Make each stalk V^q of the bundle V^Q into an algebraic system of signature $\{\in\}$ by letting

$$V^q \models x \in y \iff q \in ||u \in v||,$$

where the elements $u, v \in \mathfrak{U}$ and such that $\widehat{u}(q) = x$ and $\widehat{v}(q) = y$. It is easy to verify that the above definition is sound. Indeed, if $\widehat{u}_1(q) = x$ and $\widehat{v}_1(q) = y$ for another pair u_1, v_1 , then the containments $q \in ||u \in v||$ and $q \in ||u_1 \in v_1||$ are equivalent.

It is easily seen that the class $\{\widehat{u}(A) \mid u \in \mathfrak{U}, A \sqsubset Q\}$ is a base of some open topology on V^Q , which allows us to regard V^Q as a continuous bundle.

4.3. Theorem. (1) The bundle V^Q is a continuous polyverse.

(2) The mapping $u \mapsto \hat{u}$ is an isomorphism between the Boolean-valued universes \mathfrak{U} and $C(Q, V^Q)$.

We divide the proof of the last theorem into several steps.

4.4. Lemma. If $u \in \mathfrak{U}$ and $A \sqsubset Q$ then $\widehat{u}(A) \sqsubset V^Q$.

A For every element $x \in V^Q \setminus \widehat{u}(A)$, there exist $v \in \mathfrak{U}$ and $q \in Q$ such that $x = \widehat{v}(q)$.

If $q \in A$ then $\widehat{u}(q) \neq x = \widehat{v}(q), q \in ||u \neq v||$, and, thus, the set $\widehat{v}(||u \neq v||)$ is a neighborhood about x disjoint from $\widehat{u}(A)$. If, otherwise, $q \notin A$, then the neighborhood $\widehat{v}(Q \setminus A)$ about x is disjoint from $\widehat{u}(A)$. \triangleright

4.5. Lemma. The classes $\{\hat{u} \mid u \in \mathfrak{U}\}$ and $C(Q, V^Q)$ coincide.

 \triangleleft Consider an arbitrary element $u \in \mathfrak{U}$ and show that the section \widehat{u} is continuous. If $v \in \mathfrak{U}$ and $A \sqsubset Q$ then the set $\widehat{u}^{-1}(\widehat{v}(A)) = A \cap ||u| = v||$ is open. Arbitrariness of v and A allows us to conclude that $\widehat{u} \in C(Q, V^Q)$.

We now establish the reverse inclusion. Take an $f \in C(Q, V^Q)$. For each point $q \in Q$, choose an element $u_q \in \mathfrak{U}$ such that $\hat{u}_q(q) = f(q)$ and assign $A_q := \{p \in Q \mid \hat{u}_q(p) = f(p)\} = f^{-1}(\hat{u}(Q)) \sqsubset Q$. Thus, $(A_q)_{q \in Q}$ is an open covering of the compact space Q from which we can refine a subcovering $(A_q)_{q \in F}$, where F is a finite subset of Q. By the exhaustion principle, there is an antichain $(B_q)_{q \in F}$ such that $B_q \subset A_q$ for all $q \in B$ and $\bigcup_{q \in F} B_q = Q$. Since the Boolean-valued algebraic system \mathfrak{U} satisfies the mixing principle, we may consider $u = \min_{q \in F} B_q u_q \in \mathfrak{U}$. It is easy to become convinced that $\hat{u} = f$. \triangleright

4.6. Lemma. The topology of V^Q is extremally disconnected.

⊲ The claim follows from Lemmas 4.4 and 4.5 and Proposition 2.5. \triangleright

4.7. Lemma. The mapping $(u \mapsto \hat{u}) \colon \mathfrak{U} \to C(Q, V^Q)$ is bijective and, for all $u, v \in \mathfrak{U}$, the following equalities hold:

$$\begin{split} \|u = v\|_{\mathfrak{U}} &= \|\widehat{u} = \widehat{v}\|_{C(Q, V^Q)},\\ \|u \in v\|_{\mathfrak{U}} &= \|\widehat{u} \in \widehat{v}\|_{C(Q, V^Q)}. \end{split}$$

 \triangleleft It is easily seen that, for all $u, v \in \mathfrak{U}$ and $q \in Q$, we have:

$$\begin{split} V^q &\models \widehat{u}(q) \in \widehat{v}(q) \; \leftrightarrow \; q \in \|u \in v\|, \\ V^q &\models \widehat{u}(q) = \widehat{v}(q) \; \leftrightarrow \; q \in \|u = v\|. \end{split}$$

The desired equalities are thus established. In Lemma 4.6, it is shown that the mapping $u \mapsto \hat{u}$ is surjective. We are left with proving its injectivity. Let elements $u, v \in \mathfrak{U}$ be such that $\hat{u} = \hat{v}$. Then $||u = v|| = ||\hat{u} = \hat{v}|| = Q$, which implies the equality u = v due to the fact that the system \mathfrak{U} is separated. \triangleright

Thus, the triple $(C(Q, V^Q), \|\cdot = \cdot\|, \|\cdot \in \cdot\|)$ is a Boolean-valued algebraic system over $\operatorname{Clop}(Q)$ isomorphic to \mathfrak{U} and, hence, $C(Q, V^Q)$ is a Boolean-valued universe over $\operatorname{Clop}(Q)$.

4.8. Lemma. If $u \in C(Q, V^Q)$ then $\lfloor u \rfloor$ is a clopen subset of V^Q .

d Take a $u \in C(Q, V^Q)$. Since $C(Q, V^Q)$ satisfies the ascent principle, $u = \operatorname{asc}_{\xi \in \Xi} B_{\xi} u_{\xi}$ for some family $(u_{\xi})_{\xi \in \Xi}$ of continuous sections of V^Q and a family $(B_{\xi})_{\xi \in \Xi}$ of clopen subsets of Q. For each $v \in C(Q, V^Q)$, the following relations hold:

$$v^{-1}\left(\operatorname{cl}\bigcup_{\xi\in\Xi}u_{\xi}(B_{\xi})\right) = \operatorname{cl}\bigcup_{\xi\in\Xi}v^{-1}\left(u_{\xi}(B_{\xi})\right) = \operatorname{cl}\bigcup_{\xi\in\Xi}B_{\xi}\cap \|v=u_{\xi}\|$$
$$=\bigvee_{\xi\in\Xi}B_{\xi}\wedge\|v=u_{\xi}\| = \|v\in u\| = v^{-1}(\llcorner u\lrcorner).$$

Thus, in view of Lemma 2.7, the equality $\lfloor u \rfloor = \operatorname{cl} \bigcup_{\xi \in \Xi} u_{\xi}(B_{\xi})$ is established. The set $\bigcup_{\xi \in \Xi} u_{\xi}(B_{\xi})$ is open; therefore, by Lemma 4.6, the class $\lfloor u \rfloor$ is a clopen set. \triangleright

4.9. Lemma. For every subset $X \sqsubset V^Q$, there is a section $u \in C(Q, V^Q)$ such that $\lfloor u \rfloor = X$.

▷ With each element $x \in X$ we associate a section $u_x \in C(Q, V^Q)$ such that $x \in \operatorname{im} u_x$. Obviously, the set $B_x = u_x^{-1}(X)$ is clopen. Consider the ascent $u = \operatorname{asc}_{x \in X} B_x u_x$ and establish the equality $\lfloor u \rfloor = X$. Since $x \in u_x(B_x) \subset X$ for all $x \in X$, we have $X = \bigcup_{x \in X} u_x(B_x) = \operatorname{cl} \bigcup_{x \in X} u_x(B_x)$. For an arbitrary section $v \in C(Q, V^Q)$, the following relations hold:

$$v^{-1}(X) = \bigcup_{x \in X} v^{-1}(u_x(B_x)) = \operatorname{cl} \bigvee_{x \in X} B_x \land ||v| = u_x || = ||v| \in u || = v^{-1}(\lfloor u \rfloor).$$

In view of Lemma 2.7, the desired equality is established. \triangleright

4.10. Lemma. For every formula $\varphi(t_1, \ldots, t_n)$ and arbitrary sections $u_1, \ldots, u_n \in C(Q, V^Q)$, the following equality holds:

 $\|\varphi(u_1,\ldots,u_n)\| = \{q \in Q \mid V^q \models \varphi(u_1(q),\ldots,u_n(q))\}.$

The last lemma implies in particular that the extensionality and regularity axioms are true in each stalk. Thus, Theorem 4.3 is completely proven.

In conclusion, we state a theorem that combines the basic results of Sections 3 and 4.

Theorem. Let Q be the Stone space of a complete Boolean algebra B. (1) The class $C(Q, V^Q)$ of continuous sections of a polyverse V^Q on Q is a Boolean-valued universe.

(2) For an arbitrary Boolean-valued universe \mathfrak{U} over B, there exists a continuous polyverse V^Q on Q such that $C(Q, V^Q)$ is isomorphic to \mathfrak{U} .

References

- 1. Bourbaki N. (1968) General Topology. Fundamental Structures, Nauka, Moscow (Russian).
- 2. Arkhangel'skiĭ A. V. and Ponomarev V. I. (1974) Fundamentals of General Topology in Problems and Exercises, Nauka, Moscow (Russian).
- 3. Solovay R. and Tennenbaum S. (1972) Iterated Cohen extensions and Souslin's problem, Ann. Math., v. 94, N2, 201–245.
- 4. Vladimirov D. A. (1969) Boolean Algebras, Nauka, Moscow (Russian).
- 5. Sikorski R. (1964) Boolean Algebras, Springer-Verlag, Berlin, etc.
- Kusraev A. G. and Kutateladze S. S. (1990) Nonstandard Methods in Analysis, Nauka, Novosibirsk (Russian) (English translation: (1994), Kluwer, Dordrecht).
- 7. Gordon E. I. and Morozov S. F. (1982) Boolean-Valued Models of Set Theory, Gor'kiĭ, Gor'kiĭ State University (Russian).