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FUNCTION REPRESENTATION

OF THE BOOLEAN-VALUED UNIVERSE

A.E.Gutman ∗ and G.A. Losenkov ∗∗

Abstract

For an abstract Boolean-valued system, a function analog is proposed that is
a model whose elements are functions and the basic logical operations are calcu-
lated \pointwise."

The new notion of continuous polyverse is introduced and studied which is
a continuous bundle of models of set theory. It is shown that the class of con-
tinuous sections of a continuous polyverse is a Boolean-valued system satisfying
all basic principles of Boolean-valued analysis and, conversely, every Boolean-
valued algebraic system can be represented as the class of sections of a suitable
continuous polyverse.
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The methods of Boolean-valued analysis base on nonstandard models of
set theory with multivalued truth. More exactly, the truth value of an assertion
in such a model acts into some complete Boolean algebra.

At present, Boolean-valued analysis is a rather powerful theory rich of
deep results and various applications, mainly, to set theory. As regards func-
tional analysis, the methods of Boolean-valued analysis found successful ap-
plications in such domains as the theory of vector lattices and lattice-normed
spaces, the theory of positive and dominated operators, the theory of von Neu-
mann algebras, convex analysis, and the theory of vector measures.

Contemporary methods of Boolean-valued analysis, due to their nature,
involve rather bulky logical technique. We can say that, from a pragmatic
viewpoint, this technique might distract the user-analyst from a concrete aim:
to apply the results of Boolean-valued analysis for solving analytical problems.
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Various function spaces are common in functional analysis, and so the in-
tention is natural of replacing an abstract Boolean-valued system by some
function analog, a model whose elements are functions and in which the basic
logical operations are calculated \pointwise." An example of such a model is
presented by the class VQ of all functions de�ned on a �xed nonempty set Q
and acting into the class V of all sets. Truth values in the model VQ are various
subsets of Q and, in addition, the truth value ∥φ(u1, . . . , un)∥ of an assertion

φ(t1, . . . , tn) at functions u1, . . . , un ∈ VQ is calculated as follows:

∥φ(u1, . . . , un)∥ =
{
q ∈ Q

∣∣ φ(u1(q), . . . , un(q))}.
In the present article, a solution is proposed to the above problem. To this

end, we introduce and study the new notion of continuous polyverse, the latter
being a continuous bundle of models of set theory. It is shown that the class
of continuous sections of a continuous polyverse is a Boolean-valued system
satisfying all basic principles of Boolean-valued analysis and, conversely, every
Boolean-valued algebraic system can be represented as the class of sections of
a suitable continuous polyverse.

1. Prerequisites

1.1. Let X and Y be topological spaces. A mapping f : X → Y is called
open if it satis�es one (and hence all) of the following equivalent conditions:

(1) for every open subset A ⊂ X, the image f(A) is open in Y ;
(2) for every point x ∈ X and every neighborhood A ⊂ X about x,

the image f(A) is a neighborhood about f(x) in Y ;

(3) f−1(clB) ⊂ cl f−1(B) for every subset B ⊂ Y .

Observe that the equality f−1(clB) = cl f−1(B) holds for all subsets B ⊂ Y
if and only if the mapping f is continuous and open.

A mapping f : X → Y is called closed if it satis�es one (and hence all) of
the following equivalent conditions:

(1) for every closed subset A ⊂ X, the image f(A) is closed in Y ;
(2) cl f(A) ⊂ f(clA) for every subset A ⊂ X.

The equality cl f(A) = f(clA) holds for every subset A ⊂ X if and only if
the mapping f : X → Y is continuous and closed.

1.2. Given a class X, the symbol P(X) denotes the class of all subsets
of X.

Let X be a class. A subclass τ ⊂ P(X) is called a topology on X whenever

(1) ∪τ = X;
(2) U ∩ V ∈ τ for all U, V ∈ τ ;
(3) ∪U ∈ τ for every subset U ⊂ τ .

As usual, a class X endowed with a topology is called a topological space.
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All basic topological concepts (such as neighborhood about a point, closed
set, interior, closure, continuous function, Hausdor� space, etc.) can be intro-
duced by analogy to the case of a topology on a set. However, observe that not
all classical approaches to the de�nition of these concepts remain formally valid
in the case of a class-topology. For instance, considering the two de�nitions of
a closed set

(a) as a subset of X whose complement belongs to τ ,
(b) as a subset of X whose complement, together with each point of it,

contains an element of τ ,

we should choose the second.
De�ning the closure of a set A as the smallest closed subset of X that

contains A, we take a risk: some sets may turn out to have no closure. However,
the problem disappears if the topology τ is Hausdor�. (Indeed, in the case
of a Hausdor� topology, every convergent �lter has a unique limit and, hence,
the totality of all limits of convergent �lters over a given set makes a set rather
than a proper class.)

The symbol Clop(X) denotes the class of all clopen subsets of X (i.e.,
subsets that are closed and open simultaneously). Henceforth the notation
U @ X means that U ∈ Clop(X). The class {A @ X | x ∈ A} is denoted by
Clop(x).

A topology is called extremally disconnected if the closure of every open
set is again open.

Most of the necessary information about topological spaces can be found,
for instance, in [1, 2].

1.3. Let B be a complete Boolean algebra. A triple (U, ∥ ·= · ∥, ∥ ·∈ · ∥)
is called a Boolean-valued algebraic system over B (or a B -valued algebraic

system) if the classes ∥ ·= · ∥ and ∥ ·∈ · ∥ are class-functions from U×U into B
that satisfy the following conditions:

(1) ∥u = u∥ = 1;
(2) ∥u = v∥ = ∥v = u∥;
(3) ∥u = v∥ ∧ ∥v = w∥ 6 ∥u = w∥;
(4) ∥u = v∥ ∧ ∥v ∈ w∥ 6 ∥u ∈ w∥;
(5) ∥u = v∥ ∧ ∥w ∈ v∥ 6 ∥w ∈ u∥

for all u, v, w ∈ U.
The class-functions ∥ ·= · ∥ and ∥ ·∈ · ∥ are called the Boolean-valued

(B -valued) truth values of equality and membership.
Instead of (U, ∥ ·= · ∥, ∥ ·∈ · ∥), we usually write simply U and, if neces-

sary, furnish the symbols of truth values with the index: ∥ ·= · ∥U and ∥ ·∈ · ∥U.
A Boolean-valued system U is called separated whenever, for all u, v ∈ U,

the equality ∥u = v∥ = 1 implies u = v.
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1.4. Consider Boolean-valued algebraic systems U and V over complete
Boolean algebras B and C and assume that there is a Boolean isomorphism
j : B → C. By an isomorphism between the Boolean-valued algebraic systems U
and V (associated with the isomorphism j) we mean a bijective class-function
i : U → V that satis�es the following relations:

j(∥u1 = u2∥U) = ∥i(u1) = i(u2)∥V,
j(∥u1 ∈ u2∥U) = ∥i(u1) ∈ i(u2)∥V

for all u1, u2 ∈ U. Boolean-valued systems are said to be isomorphic if there is
an isomorphism between them. In case U and V are Boolean-valued algebraic
systems over the same algebra B, each isomorphism i : U → V is assumed
by default to be associated with the identity isomorphism: ∥u1 = u2∥U =
∥i(u1) = i(u2)∥V, ∥u1 ∈ u2∥U = ∥i(u1) ∈ i(u2)∥V. For emphasizing this
convention, whenever necessary, we call such an isomorphism B -isomorphism

and refer to the corresponding systems as B -isomorphic.

1.5. In what follows, using an expression like φ(t1, . . . , tn), we assume
that φ is a formula of set-theoretic signature with all free variables included
in the list (t1, . . . , tn).

An arbitrary tuple (u1, . . . , un) of elements in a system U is called a val-

uation of the list of variables (t1, . . . , tn). By recursion on the complexity of
a formula, the (Boolean) truth value ∥φ(u1, . . . , un)∥ of a formula φ(t1, . . . , tn)
can be de�ned with respect to a given valuation (u1, . . . , un) of the variables
(t1, . . . , tn). If a formula φ is atomic, i.e., has the form t1 = t2 or t1 ∈ t2; then
its truth value with respect to a valuation (u1, u2) is de�ned to be ∥u1 = u2∥
or ∥u1 ∈ u2∥. Considering compound formulas, we de�ne their truth values as
follows:

∥φ(u1, . . . , un) & ψ(u1, . . . , un)∥ := ∥φ(u1, . . . , un)∥ ∧ ∥ψ(u1, . . . , un)∥,
∥φ(u1, . . . , un) ∨ ψ(u1, . . . , un)∥ := ∥φ(u1, . . . , un)∥ ∨ ∥ψ(u1, . . . , un)∥,
∥φ(u1, . . . , un) → ψ(u1, . . . , un)∥ := ∥φ(u1, . . . , un)∥ ⇒ ∥ψ(u1, . . . , un)∥,

∥¬φ(u1, . . . , un)∥ := ∥φ(u1, . . . , un)∥⊥,

∥(∀t)φ(t, u1, . . . , un)∥ :=
∧
u∈U

∥φ(u, u1, . . . , un)∥,

∥(∃t)φ(t, u1, . . . , un)∥ :=
∨
u∈U

∥φ(u, u1, . . . , un)∥,

where the symbol b⊥ denotes the complement of b in the Boolean algebra B.
A formula φ(t1, . . . , tn) is said to be true in an algebraic system U with respect
to a valuation (u1, . . . , un) if the equality ∥φ(u1, . . . , un)∥ = 1 holds. In this
case, we write U |= φ(u1, . . . , un).
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1.6. Proposition. If a formula φ(t1, . . . , tn) is provable in the �rst-order
predicate calculus then ∥φ(u1, . . . , un)∥ = 1 for all u1, . . . , un ∈ U.

▹ It is easy to verify that all the axioms of the �rst-order predicate calcu-
lus are true in U and the rules of inference preserve the truth value. The latter
means that derivability (in the �rst-order predicate calculus) of a formula φ
from formulas φ1, . . . , φn ensures the inequality ∥φ1 ∧ · · · ∧ φn∥ 6 ∥φ∥. ◃

In particular, the last proposition implies that, for an arbitrary formula
φ(t, t1, . . . , tn) and arbitrary elements u, v, w1, . . . , wn ∈ U, we have the in-
equality ∥u = v∥ ∧ ∥φ(u,w1, . . . , wn)∥ 6 ∥φ(v, w1, . . . , wn)∥.

1.7. Let u ∈ U be such that U |= u ̸= ∅. The descent of the element u is

the class
{
v ∈ U

∣∣ U |= v ∈ u
}
denoted by u↓.

1.8. Let (uξ)ξ∈� be a family of elements in U and let (bξ)ξ∈� be a family
of elements in the Boolean algebra B. An element u ∈ U is called an ascent of

the family (uξ)ξ∈� with weights (bξ)ξ∈�, if ∥v ∈ u∥ =
∨

ξ∈� bξ ∧∥v = uξ∥ for

all v ∈ U.

Let U be a subset of U. An element u ∈ U is called an ascent of the set U ,
if ∥v ∈ u∥ =

∨
u∈U∥v = u∥ for all v ∈ U, i.e., u is an ascent of the family

(u)u∈U with unit weights.

Assume that (bξ)ξ∈� is an antichain in the algebra B. An element u ∈ U
is called a mixing of the family (uξ)ξ∈� with weights (bξ)ξ∈�, if ∥u = uξ∥ > bξ
for all ξ ∈ �, and ∥u = ∅∥ > (

∨
ξ∈� bξ)

⊥.

If the system U is separated and the extensionality axiom is true in U,
then an ascent (mixing) of a family (uξ)ξ∈� with weights (bξ)ξ∈� is uniquely
determined. In this case, whenever the ascent (mixing) exists, we denote it
by ascξ∈� bξuξ (mixξ∈� bξuξ). For the ascent of a set U ⊂ U, we use the nota-
tion U↑.

1.9. In Boolean-valued analysis, three basic principles play a particular
role, namely, the maximum principle, the mixing principle, and the ascent
principle. This is explained by the fact that, in algebraic systems satisfying
the principles, there is a possibility of constructing new elements from available
elements.

In the current section, we state the above-mentioned principles and study
interrelations between them, leaving aside the veri�cation of the principles for
concrete algebraic systems.

Let B be a complete Boolean algebra and let U be a B -valued algebraic
system.
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The maximum principle. For every formula φ(t, t1, . . . , tn) and ar-

bitrary elements u1, . . . , un ∈ U, there exists an element u ∈ U such that

∥(∃t)φ(t, u1, . . . , un)∥ = ∥φ(u, u1, . . . , un)∥.

The mixing principle. For every family (uξ)ξ∈� of elements in U and

every antichain (bξ)ξ∈� in the algebra B, there exists a mixing (uξ)ξ∈� with

weights (bξ)ξ∈�.

The ascent principle. (1) For every family (uξ)ξ∈� of elements in U
and every family (bξ)ξ∈� of elements in the algebra B, there exists an ascent

(uξ)ξ∈� with weights (bξ)ξ∈�.

(2) For every element u ∈ U, there exist a family (uξ)ξ∈� of elements in U
and a family (bξ)ξ∈� of elements in the algebra B such that u is an ascent of

(uξ)ξ∈� with weights (bξ)ξ∈�.

1.10. Theorem. If a B -valued system U satis�es the mixing principle

then U satis�es the maximum principle.

▹ Consider a formula φ(t, t1, . . . , tn), denote by u⃗ a tuple of arbitrary
elements u1, . . . , un ∈ U, and put b = ∥(∃t)φ(t, u⃗)∥. By the de�nition of truth
value, b =

∨
v∈U ∥φ(v, u⃗)∥. According to the exhaustion principle, there exist

an antichain (bξ)ξ∈� in the algebra B and a family (vξ)ξ∈� of elements in U
such that

∨
ξ∈� bξ = b and bξ 6 ∥φ(vξ, u⃗)∥. By the hypothesis of the theo-

rem, there exists a mixing v ∈ U of the family (vξ)ξ∈� with weights (bξ)ξ∈�.
In particular, ∥v = vξ∥ > bξ. In view of Proposition 1.6, the following in-
equalities hold: ∥φ(v, u⃗)∥ > ∥v = vξ∥ ∧ ∥φ(vξ, u⃗)∥ > bξ. Consequently,
∥φ(v, u⃗)∥ >

∨
ξ∈� bξ = b. The inequality ∥φ(v, u⃗)∥ 6 b is obvious. ◃

1.11. Theorem. Let a B -valued algebraic system U satisfy the ascent

principle and let the extensionality axiom be true in U. Then the mixing

principle is valid for U.

▹ Let (uξ)ξ∈� be a family of elements in U and let (bξ)ξ∈� be an antichain
in the algebra B. By the hypothesis of the theorem, for every ξ ∈ �, there
exist a family (uαξ )α∈A(ξ) of elements in U and a family (bαξ )α∈A(ξ) of elements

in the algebra B such that

∥v ∈ uξ∥ =
∨

α∈A(ξ)

bαξ ∧ ∥v = uαξ ∥ for all v ∈ U .

Consider the set � = {(ξ, α) | ξ ∈ �, α ∈ A(ξ)} and, for each pair
γ = (ξ, α) ∈ �, put cγ = bξ ∧ bαξ and vγ = uαξ . Let u ∈ U be an ascent
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of the family (vγ)γ∈� with weights (cγ)γ∈�. Using straightforward calculation
and employing de�nitions, we obtain:

∥v ∈ u∥ =
∨
γ∈�

cγ ∧ ∥v = vγ∥

=
∨
ξ∈�

∨
α∈A(ξ)

bξ ∧ bαξ ∧ ∥v = uαξ ∥

=
∨
ξ∈�

bξ ∧ ∥v ∈ uξ∥.

Show that u is a mixing of the family (uξ)ξ∈� with weights (bξ)ξ∈�. We be-
gin with establishing the inequality ∥u = uξ∥ > bξ. Since the extensionality

axiom is true, it is su�cient to show that
(
∥v ∈ u∥ ⇔ ∥v ∈ uξ∥

)
> bξ or,

which is equivalent, bξ ∧ ∥v ∈ u∥ = bξ ∧ ∥v ∈ uξ∥. Employing the fact that
bξ ∧ bη = 0 for ξ ̸= η, we have:

bξ ∧ ∥v ∈ u∥ =
∨
η∈�

bξ ∧ bη ∧ ∥v ∈ uη∥ = bξ ∧ ∥v ∈ uξ∥.

We now show that ∥u ̸= ∅∥ 6
∨

ξ∈� bξ. Indeed,

∥u ̸= ∅∥ = ∥(∃t) t ∈ u∥ =
∨
v∈U

∥v ∈ u∥ =
∨
v∈U

∨
ξ∈�

bξ ∧ ∥v ∈ uξ∥ 6
∨
ξ∈�

bξ. ◃

1.12. Theorem. If a B -valued algebraic system U satis�es the maximum

and ascent principles then U satis�es the mixing principle.

▹ Let ∅∧ ∈ U be an ascent of the empty subset of U. It is easy to verify
that ∥∅∧ = ∅∥ = 1. (Here and in the sequel, the notation u = ∅ means
(∀t) t /∈ u.)

Consider a family (uξ)ξ∈� of elements in U and an antichain (bξ)ξ∈� in

the algebra B. Put b = (
∨

ξ∈� bξ)
⊥. De�ne a family (vξ)ξ∈�′ and a partition

of unity (cξ)ξ∈�′ as follows: �′ = � ∪ {�}, vξ = uξ, cξ = bξ for ξ ∈ �, and

v� = ∅∧, c� = b. Let u ∈ U be an ascent of the family (vξ)ξ∈�′ with weights

(cξ)ξ∈�′ . It is easily seen that ∥u ̸= ∅∥ = 1. Indeed, ∥vξ ∈ u∥ > cξ for ξ ∈ �′,
which implies

∥u ̸= ∅∥ =
∨
v∈U

∥v ∈ u∥ >
∨
ξ∈�′

cξ = 1.

Thus, ∥(∃t) t ∈ u∥ = 1. According to the maximum principle, there exists
an element v ∈ U such that ∥v ∈ u∥ = 1. Then, by the de�nition of ascent,

cξ = 1 ∧ cξ =
∨
η∈�′

cη ∧ ∥v = vη∥ ∧ cξ = ∥v = vξ∥ ∧ cξ
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and, hence, ∥v = vξ∥ > cξ for all ξ ∈ �′. In particular, for ξ ∈ �, we have
∥v = uξ∥ > bξ. In addition, by Proposition 1.6, the following relations hold:( ∨

ξ∈�
bξ

)⊥
6 ∥v = ∅∧∥ = ∥v = ∅∧∥ ∧ ∥∅∧ = ∅∥ 6 ∥v = ∅∥.

Consequently, v is a mixing of the family (uξ)ξ∈� with weights (bξ)ξ∈�. ◃

1.13. Let B be a complete Boolean algebra and let U be a B -valued
algebraic system. The system U is called a Boolean-valued universe over B
(a B -valued universe) if it satis�es the following three conditions:

(1) U is separated;
(2) U satis�es the ascent principle;
(3) the extensionality and regularity axioms are true in U.

Theorem ([3]). For every complete Boolean algebra B, there exists

a B -valued universe which is unique up to isomorphism.

A detailed presentation of the theories of Boolean algebras and Boolean-
valued algebraic systems can be found in [4{7].

2. The notion of continuous bundle

2.1. Let Q be an arbitrary nonempty set and let V Q ⊂ Q×V be a class-
correspondence. (Here and in the sequel, V denotes the class of all sets.) For
each point q ∈ Q, denote the class

{q} × V Q(q) =
{
(q, x)

∣∣ (q, x) ∈ V Q
}

by V q. Obviously, V p ∩ V q = ∅ for p ̸= q. The correspondence V Q is called
a bundle on Q and the class V q is called the stalk of the bundle V Q at a point q.

Let D ⊂ Q. A function u : D → V Q is called a section of the bundle V Q

on D if u(q) ∈ V q for all q ∈ D. The class of all sections of V Q on D is denoted

by S(D, V Q). The sections de�ned on Q are called global. If X is a subset

of V Q then the symbol S(D,X) stands for the set of all sections of X on D.

A point q ∈ Q is called the projection of an element x ∈ V Q and denoted
by pr(x) if x ∈ V q. The projection of a set X ⊂ V Q is de�ned to be
{pr(x) | x ∈ X} and denoted by pr(X).

2.2. Assume now Q to be a topological space and suppose that some
topology is given on a class V Q ⊂ Q×V. In this case, we call V Q a continuous
bundle on Q.
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By a continuous section of the bundle V Q we mean a section that is
a continuous function. Given a subset D ⊂ Q, the symbol C(D, V Q) stands

for the class of all continuous sections of V Q on D. Analogously, if X is
a subset of V Q then C(D,X) stands for the totality of all continuous sections

of X on D. Obviously, C(D,X) = C(D, V Q) ∩ S(D,X).

Henceforth we suppose that Q is an extremally disconnected Hausdor�
compact space and assume satis�ed the following conditions:

(1) ∀ q ∈ Q ∀ x ∈ V q ∃u ∈ C(Q, V Q) u(q) = x;

(2) ∀u ∈ C(Q, V Q) ∀A @ Q u(A) @ V Q.

2.3. Proposition. The continuous bundle V Q possesses the following

properties:

(1) the topology of V Q is Hausdor�;

(2) for every u ∈ C(Q, V Q) and q ∈ Q, the family {u(A) | A ∈ Clop(q)}
is a neighborhood base of the point u(q);

(3) all elements of C(Q, V Q) are open and closed mappings (see 1.1).

▹ Let x and y be di�erent elements of V Q. Put p = pr(x) and q = pr(y).

In view of 2.2 (1), there are sections u, v ∈ C(Q, V Q) such that u(p) = x and
v(q) = y.

Suppose �rst that p = q. The set

A = {q ∈ Q | u(q) ̸= v(q)} = Q\u−1
(
v(Q)

)
is clopen in view of 2.2 (2). Then u(A) and v(A) are disjoint neighborhoods
about the points x and y.

Suppose now that p ̸= q. In this case, there exist A,B @ Q such that
A∩B = ∅, p ∈ A, and q ∈ B. Then u(A) and v(B) are disjoint neighborhoods
about the points x and y.

Assertion (2) follows readily from 2.2 (2).
Assertion (3) is equivalent to 2.2 (2) due to the fact that Clop(Q) is a base

both for the open and close topologies of Q. ◃

2.4. Lemma. A subset X ⊂ V Q is clopen if and only if u−1(X) @ Q

for all u ∈ C(Q, V Q).

▹ Only su�ciency requires some comments. Consider an arbitrary ele-
ment x ∈ V Q. Let a section u ∈ C(Q, V Q) and a point q ∈ Q be such that
u(q) = x.

Suppose �rst that x ∈ X. The set A = u−1(X) is clopen in Q and,
therefore, u(A) is a neighborhood about x contained in X. Since x is arbitrary,
we conclude that X is open.
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If x /∈ X then the set A = Q\u−1(X) is clopen in Q and, hence, u(A)
is a neighborhood about x disjoint from X. Since x is arbitrary, we conclude
that X is closed. ◃

2.5. Proposition. The topology of V Q is extremally disconnected.

▹ LetX be an open subset of V Q. Since the topology of V Q is Hausdor�,
the closure clX is a set (see 1.2). Furthermore, for every section u ∈ C(Q, V Q),

the set u−1(clX) = cl u−1(X) is clopen. In view of Lemma 2.4, the set clX is
open. ◃

2.6. Lemma. For every subset X ⊂ V Q the following equalities hold:

X =
∪

u∈C(Q,V Q)

u
(
u−1(X)

)
,

intX =
∪

u∈C(Q,V Q)

u
(
intu−1(X)

)
,

clX =
∪

u∈C(Q,V Q)

u
(
clu−1(X)

)
.

▹ The claim is an obvious consequence of 2.2 (1) and the fact that all
continuous sections are open. ◃

2.7. Lemma. Let X and Y be subclasses of V Q. The equality X = Y
holds if and only if u−1(X) = u−1(Y ) for all u ∈ C(Q, V Q).

▹ Take arbitrary q ∈ Q and x ∈ V q and consider a section u ∈ C(Q, V Q)

such that u(q) = x. If x ∈ X then q ∈ u−1(X) = u−1(Y ) and, consequently,
x = u(q) ∈ Y . The reverse inclusion can be established similarly. ◃

2.8. Proposition. A section u ∈ S(D, V Q) de�ned on an open subset

D ⊂ Q is continuous if and only if imu is an open subset of V Q.

▹ Suppose that a section u is continuous. For every q ∈ D, choose
a section uq ∈ C(Q, V Q) such that uq(q) = u(q). The set Dq = {p ∈ D |
u(p) = uq(p)} = u−1(imuq) is open in D and, hence, it is also open in Q.
Therefore, the image u(Dq) = uq(Dq) is open in view of the fact that global
continuous sections are open. Obviously, D =

∪
q∈DDq, since q ∈ Dq. Thus,

imu = u(D) = u
(∪

q∈DDq

)
=
∪

q∈D u(Dq) is an open set.

Suppose now that imu is an open set. Consider an arbitrary point q ∈ D
and choose a section uq ∈ C(Q, V Q) such that u(q) = uq(q). The open set



Function Representation of V(B) 109

{p ∈ D | u(p) = u(p)} = u−1(imu) is a neighborhood about q, whence it
follows that u is continuous at q. ◃

2.9. Lemma. For every subset X ⊂ V Q, the following relations hold:

(1) pr(clX) ⊂ cl pr(X);
(2) pr(intX) ⊂ int pr(X).

▹ Consider an arbitrary section u ∈ C(Q, V Q). In view of the properties

of the closure, we have u−1(clX) = clu−1(X) ⊂ cl pr(X), whence, due to

the equality pr(X) =
∪

u∈C(Q,V Q) u
−1(X), it follows that pr(clX) ⊂ cl pr(X).

Relation (2) can be established similarly. ◃

3. A continuous polyverse

3.1. Consider a nonempty set Q and a bundle V Q ⊂ Q × V. Suppose
that, for each point q ∈ Q, the class V q is an algebraic system of signature {∈}.

Given an arbitrary formula φ(t1, . . . , tn) and sections u1, . . . , un of the bun-

dle V Q, we denote by {φ(u1, . . . , un)} the set{
q ∈ domu1 ∩ · · · ∩ domun

∣∣ V q |= φ
(
u1(q), . . . , un(q)

)}
.

For every element x ∈ V q, put x↓ = {y ∈ V q | V q |= y ∈ x}. Obviously, if
the extensionality axiom is true in the system V q, then x↓ = y↓ ↔ x = y for
all x, y ∈ V q. If X is a subset of V Q then the symbol ⊔X denotes the union∪

x∈X x↓.
Henceforth we assume that Q is an extremally disconnected Hausdor�

compact space and V Q is a continuous bundle on Q.
For an arbitrary section u ∈ C(Q, V Q), the class

∪
q∈Q u(q)↓ is called

the unpack of the section u and denoted by xuy.

3.2. A continuous bundle V Q is called a continuous polyverse on Q, if
the extensionality and regularity axioms are true in each stalk V q (q ∈ Q) and,
in addition, the following conditions hold:

(1) ∀ q ∈ Q ∀ x ∈ V q ∃u ∈ C(Q, V Q) u(q) = x;

(2) ∀u ∈ C(Q, V Q) ∀A ∈ Clop(Q) u(A) ∈ Clop(V Q);

(3) ∀u ∈ C(Q, V Q) xuy ∈ Clop(V Q);

(4) ∀X ∈ Clop(V Q) ∃u ∈ C(Q, V Q) xuy = X.

3.3. For arbitrary sections u, v ∈ C(Q, V Q), the equalities {u = v} =

u−1(im v) and {u ∈ v} = u−1(xvy) imply that the sets {u = v} and {u ∈ v}
are clopen, which allows us to introduce two class-functions

∥ ·= · ∥, ∥ ·∈ · ∥ : C(Q, V Q)× C(Q, V Q) → Clop(Q)
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by letting ∥u = v∥ = {u = v} and ∥u ∈ v∥ = {u ∈ v}.
It is easy to verify that the triple

(
C(Q, V Q), ∥ ·= · ∥, ∥ ·∈ · ∥

)
is a sep-

arated Clop(Q)-valued algebraic system (see 1.3).
The de�nition 3.2 (4) of continuous polyverse implies that there exists

a continuous section ∅∧ satisfying the condition x∅∧y = ∅. Obviously, this
section is unique. It is easy that V q |= ∅∧(q) = ∅, ∥∅∧ = ∅∥ = Q, and, in

addition, ∥u = ∅∧∥ = ∥u = ∅∥ for all u ∈ C(Q, V Q).

3.4. Lemma. For every subset X ⊂ V Q, the following relations hold:

(1) if X @ V Q then pr(X) @ Q;
(2) if X is open then pr(clX) = cl pr(X).

▹ (1) If X @ V Q then there is a section u ∈ C(Q, V Q) such that

⊔ imu = xuy = X. Obviously, pr
(
⊔ imu

)
= ∥u ̸= ∅∥, whence pr(X) is

clopen.

(2) Let X be an open subset of V Q. Then the closure clX is clopen,
the same is true of its projection pr(clX). The obvious inclusion pr(X) ⊂
pr(clX) implies cl pr(X) ⊂ pr(clX). The reverse inclusion is established
in 2.9. ◃

3.5. The support suppu of a section u ∈ S(D, V Q) on D ⊂ Q is de�ned
to be the set {q ∈ D | V q |= u(q) ̸= ∅}. Obviously, suppu = {u ̸= ∅} =

{u ̸= ∅∧}. So, if u ∈ C(Q, V Q) then suppu is a clopen set.

Let u be a continuous section of V Q and let D be a subset of suppu.
The symbol C(D, u) denotes the class{

v ∈ C(D, V Q)
∣∣ (∀q ∈ D) V q |= v(q) ∈ u(q)

}
.

Obviously, C(D, u) = C(D, xuy).
By the descent of a section u we mean the class C(suppu, u) and denote

it by u↓. It is easily seen that u↓ = C(suppu, xuy). Obviously, in case
∥u ̸= ∅∥ = Q, the descent of u is the descent of the section u regarded as
an element of a Boolean-valued algebraic system (see 1.7).

3.6. Proposition. For arbitrary X @ V Q and u ∈ C(Q, V Q), the fol-
lowing assertions are equivalent:

(1) xuy = X;
(2) u(q)↓ = X ∩ V q for all q ∈ Q;

(3) suppu = pr(X) and u↓ = C
(
pr(X), X

)
;

(4) ∥v ∈ u∥ = v−1(X) for all v ∈ C(Q, V Q).
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▹ (1)→(3): It su�ces to observe that suppu = ∥u ̸= ∅∥ = pr(xuy) and
employ the equality u↓ = C(suppu, xuy).

(3)→(2): Put A = suppu. It is clear that X ∩ V q = ∅ = u(q)↓ for all
q ∈ Q\A.

Given an arbitrary point q ∈ A, there are x ∈ u(q)↓ and vq ∈ C(Q, V Q)
such that vq(q) = x. Put Bq = ∥vq ∈ u∥. The family (Bq)q∈A is an open cover-
ing of the compact set A; therefore, we can re�ne a subcovering (Bq)q∈F , where
F ⊂ A is �nite. By the exhaustion principle, there is an antichain (Cq)q∈F such
that Cq ⊂ Bq for q ∈ F and

∪
q∈F Cq =

∨
q∈F Cq =

∨
q∈F Bq = A. Construct

a section v ∈ S(A, V Q) by putting v(p) = vq(p) for each point p ∈ A, where
q is a (unique) element of F such that p ∈ Cq. The section v is continuous,
since v = vq on Cq (q ∈ F ). It is easily seen that v ∈ u↓ = C(A,X).

Let q be an arbitrary element of A.
Consider an x ∈ u(q)↓, choose a section w ∈ C(Q, V Q) such that

w(q) = x, and construct a section w ∈ S(A, V Q) as follows:

w(p) =

{
w(p) if p ∈ ∥w ∈ u∥,
v(p) if p ∈ A\∥w ∈ u∥.

Obviously, the section w is continuous and w ∈ u↓ = C(A,X), whence x =
w(q) ∈ X in view of the containment q ∈ ∥w ∈ u∥.

Now let x ∈ X ∩V q. As before, choose a section w ∈ C(Q, V Q) such that

w(q) = x. Consider the section w ∈ S(A, V Q) de�ned as follows:

w(p) =

{
w(p) if p ∈ w−1(X),

v(p) if p ∈ A\w−1(X).

The obvious relations w ∈ C(A,X) = u↓ and q ∈ w−1(X) imply that x =
w(q) = w(q) ∈ u(q)↓.

(2)→(4): Consider an arbitrary section v ∈ C(Q, V Q). If q ∈ ∥v ∈ u∥ =

v−1(xuy) then v(q) ∈ xuy; consequently, v(q) ∈ u(q)↓ = X ∩ V q, i.e.,

q ∈ v−1(X).

If q ∈ v−1(X) then v(q) ∈ X ∩ V q = u(q)↓ and, hence, V q |= v(q) ∈ u(q)
and q ∈ ∥v ∈ u∥.

(4)→(1): Observe that v−1(xuy) = ∥v ∈ u∥ = v−1(X) for all v ∈
C(Q, V Q). Therefore, in view of Lemma 2.7, the equality X = xuy holds. ◃

Obviously, for every X @ V Q, a section u satisfying conditions (1){(4) is
unique. We call this section the pack of the set X and denote it by pXq.

It is easy to verify validity of the following assertion:

Proposition. Let X be an open subset of V Q. A section u ∈ C(Q, V Q)
coincides with pclXq if and only if u is pointwise the least section among

u ∈ C(Q, V Q) satisfying the inclusion X ∩ V q ⊂ u(q)↓ for all q ∈ Q.
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3.7. Lemma. If u ∈ C(Q, V Q) and A ∈ Clop(Q) then ⊔u(A) ∈
Clop(V Q).

▹ For every section v ∈ C(Q, V Q), the set v−1
(
⊔u(A)

)
= A ∩ ∥v ∈ u∥

is clopen; whence, in view of 2.4, the set ⊔u(A) is clopen too. ◃

3.8. Proposition. Every continuous section of V Q de�ned on an open

or closed subset of Q can be extended to a global continuous section.

▹ Consider A ⊂ Q and u ∈ C(A, V Q). For every point q ∈ A, there

exist a section uq ∈ C(Q, V Q) and a set Bq @ Q such that q ∈ Bq and uq = u
on Bq ∩ A.

Suppose that the set A is open. Without loss of generality, we may assume
that Bq ⊂ A. Consider the open set X =

∪
q∈Q u(q)↓ =

∪
q∈A ⊔uq(Bq) and

show that (clX) ∩ V q = u(q)↓ for all q ∈ A. We only establish the inclusion
(clX) ∩ V q ⊂ u(q)↓ (the reverse inclusion follows from the obvious properties

of closure). Take an x ∈ clX ∩ V q. There is a section v ∈ C(Q, V Q)
such that v(q) = x. Evidently, for each neighborhood B @ Q about q,
the intersection v(B)∩X is nonempty and, thus, there exists a point p ∈ B∩Bq

such that v(p) ∈ u(p)↓. On the other hand, u(p) = uq(p); consequently,
v(B) ∩ ⊔uq(Bq) ̸= ∅. The set ⊔uq(Bq) is closed and, therefore, x ∈ ⊔uq(Bq),
whence x ∈ uq(q)↓ = u(q)↓. Put u = pclXq. From what was established
above it follows that u(q)↓ = u(q)↓ for all q ∈ A. Thus, u is a sought global
extension of the section u.

Suppose now that the set A is closed. The family (Bq)q∈A forms an open
covering of the compact set A and, therefore, we can re�ne a subcovering
(Bq)q∈F , where F is a �nite subset of A. Without loss of generality, we may
assume that

∪
q∈F Bq = Q. By the exhaustion principle, there is an antichain

(Cq)q∈F such that Cq ⊂ Bq for all q ∈ F and
∪

q∈F Cq = Q. Construct

a section u ∈ S(Q, V Q) by putting u(p) = uq(p) for each point p ∈ Q, where q
is a (unique) element of F such that p ∈ Cq. The section u is continuous, since
u = uq on Cq (q ∈ F ). Obviously, u = u on A. ◃

Corollary. If A is an open or closed subset of Q then C(A, V Q) = {u|A :

u ∈ C(Q, V Q)}.

The extension principle. For every section u ∈ C(A, V Q) de�ned on

an open subset A ⊂ Q, there exists a unique section u ∈ C(clA, V Q) that
extends u.
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▹ According to Proposition 3.8, there exists a section u1 ∈ C(Q, V Q)
such that u1 = u on A. Put u = u1|clA.

Uniqueness of this extension is obvious. ◃

The section u of the statement of the extension principle is called the clo-
sure of u and denoted by ext(u).

3.9. It is easy to verify validity of the following assertion:

Theorem. Consider a family (uξ)ξ∈� of global continuous sections of V Q

and an antichain (Bξ)ξ∈� in the algebra Clop(Q) and put B = (
∨

ξ∈�Bξ)
⊥.

The continuous section

u = ext

( ∪
ξ∈�

uξ|Bξ
∪∅∧|B

)

is the mixing of the family (uξ)ξ∈� with weights (Bξ)ξ∈�. In particular,

the mixing principle is valid for the Boolean-valued algebraic system C(Q, V Q).

Corollary. The Boolean-valued algebraic system C(Q, V Q) satis�es the
maximum principle.

3.10. The pointwise truth-value theorem. For an arbitrary formula

φ(t1, . . . , tn) and sections u1, . . . , un ∈ C(Q, V Q), the following equality holds:

∥φ(u1, . . . , un)∥ =
{
q ∈ Q

∣∣ V q |= φ
(
u1(q), . . . , un(q)

)}
. (∗)

▹ The proof is carried out by induction on the complexity of the for-
mula φ.

If φ is atomic, i.e., has the form t1 ∈ t2 or t1 = t2; then (∗) follows from
the de�nitions of ∥ ·= · ∥ and ∥ ·∈ · ∥.

Assume that the claim is proven for formulas of smaller complexity. We re-

strict ourselves to the case in which the formula φ has the form (∃t0) φ(t0, t⃗ ).
If V q |= (∃t0) φ

(
t0, u⃗(q)

)
then there exists an element x ∈ V q such that

V q |= φ
(
x, u⃗(q)

)
. Choose a section u0 ∈ C(Q, V Q) satisfying the equality

u0(q) = x. By the induction hypothesis, q ∈ ∥φ(u0, u⃗)∥ ⊂ ∥(∃t0) φ(t0, u⃗)∥,
which proves the inclusion \⊃" in (∗).

Show the reverse inclusion. Suppose that q ∈ ∥(∃t0) φ(t0, u⃗)∥. By the max-
imum principle, there is a continuous section u0 such that ∥φ(u0, u⃗)∥ =

∥(∃t0) φ(t0, u⃗)∥. Therefore, by the induction hypothesis, V q |= φ
(
u0(q), u⃗(q)

)
and, hence, V q |= (∃t0) φ

(
t0, u⃗(q)

)
. ◃
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3.11. Lemma. For every subset X ⊂ V Q, the following relations hold:

(1) ⊔ clX ⊂ cl⊔X;
(2) ⊔ intX ⊂ int⊔X;

(3) if X ∈ Clop(V Q) then ⊔X ∈ Clop(V Q);

(4) if X is open then ⊔X is an open subset of V Q;
(5) if X is open then ⊔ clX = cl⊔X.

▹ (1): Suppose that x ∈ ⊔ clX. Then x ∈ y↓ for some y ∈ clX.

Consider sections u, v ∈ C(Q, V Q) such that u(q) = x and v(q) = y, where
q = pr(x). For every A ∈ Clop(q), we have v(A) ∩ X ̸= ∅. Put B =
A ∩ ∥u ∈ v∥ @ Q. Since q ∈ B, there is a point p ∈ B such that v(p) ∈ X.
Obviously, u(p) ∈ v(p)↓ ⊂ ⊔X and, hence, u(A) ∩ (⊔X) ̸= ∅. Consequently,
x ∈ cl⊔X.

(2): Suppose that x ∈ ⊔ intX and consider y ∈ intX and u, v ∈ C(Q, V Q)
such that x ∈ y↓, u(q) = x, and v(q) = y, where q = pr(x). It is clear that

the set B = v−1(X) ∩ ∥u ∈ v∥ is a neighborhood about q and, hence, u(B) is
a neighborhood about x. Furthermore, u(p) ∈ v(p)↓ ⊂ ⊔X for all p ∈ B, i.e.,
u(B) ⊂ ⊔X. Thus, x ∈ int⊔X.

(3): According to Lemma 2.4, it su�ces to consider an arbitrary section

v ∈ C(Q, V Q) and show that the set v−1(⊔X) is clopen. Put u = pXq.
Obviously, v(q) ∈ ⊔X if and only if

V q |=
(
∃ t ∈ u(q)

)
v(q) ∈ t.

By the pointwise truth-value theorem,

v−1(X) =
{
q ∈ Q

∣∣ V q |=
(
∃ t ∈ u(q)

)
v(q) ∈ t

}
= ∥(∃ t ∈ u) v ∈ t∥

and, consequently, v−1(X) @ Q.
(4): The claim follows readily from (2).
(5): Let the set X be open. Then its closure clX is clopen and, according

to (3), the set ⊔ clX is clopen too. The obvious relation ⊔X ⊂ ⊔ clX implies
cl⊔X ⊂ ⊔ clX. The reverse inclusion holds by virtue of (1). ◃

3.12. Theorem. The Boolean-valued algebraic system C(Q, V Q) satis-
�es the ascent principle.

▹ Let (uξ)ξ∈� be a family of global continuous sections of V Q and let
(Bξ)ξ∈� be a family of clopen subsets of Q. Consider the clopen set X =

cl
∪

ξ∈� uξ(Bξ) and put u = pXq. Show that the section u ∈ C(Q, V Q) thus

constructed is an ascent of (uξ)ξ∈� with weights (Bξ)ξ∈�. Indeed, for every
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section v ∈ C(Q, V Q), the following relations hold:

∥v ∈ u∥ = v−1(xuy) = v−1

(
cl
∪
ξ∈�

uξ(Bξ)

)
= cl v−1

( ∪
ξ∈�

uξ(Bξ)

)
= cl

∪
ξ∈�

v−1
(
uξ(Bξ)

)
= cl

∪
ξ∈�

Bξ ∩ ∥v = uξ∥ =
∨
ξ∈�

Bξ ∧ ∥v = uξ∥.

Consider now an arbitrary section u ∈ C(Q, V Q) and show that it is

an ascent of some family of elements in C(Q, V Q) with suitable weights.

Put X = xuy. For each x ∈ X, choose a section ux ∈ C(Q, V Q) such that

x ∈ imux. Assign Bx = ∥ux ∈ u∥ = u−1
x (X). Obviously, x ∈ ux(Bx) ⊂ X for

all x ∈ X, whence X =
∪

x∈X ux(Bx) = cl
∪

x∈X ux(Bx). As in the �rst part
of the proof, we can establish the equality ∥v ∈ u∥ =

∨
x∈X Bx ∧ ∥v = ux∥ for

all v ∈ C(Q, V Q). Thus, u is an ascent of (ux)x∈X with weights (Bx)x∈X . ◃

3.13. Consider a D @ Q and suppose that U is a subset of C(D, V Q).
Given a point q ∈ D, denote by U(q) the totality {u(q) | u ∈ U}.

Proposition. Consider a D @ Q and suppose that U is a nonempty

subset of C(D, V Q). The following properties of a section u ∈ C(Q, V Q) are
equivalent:

(1) u = pcl
∪

u∈U imuq;
(2) ∥v ∈ u∥ = cl{q ∈ D | v(q) ∈ U(q)} for all v ∈ C(Q, V Q);

(3) ∥v ∈ u∥ = cl
∪

u∈U{v = u} for all v ∈ C(Q, V Q);

(4) u↓ =
{
ext
(∪

u∈U u|Du

) ∣∣∣ (Du)u∈U is a partition of unity
in the algebra Clop(D)

}
;

(5) u↓ = C(D, cl
∪

u∈U imu).

(6) u is pointwise the least section among ~u ∈ C(Q, V Q) satisfying the in-
clusion U(q) ⊂ ~u(q)↓ for all q ∈ D.

If U ⊂ C(Q, V Q) then ∥v ∈ u∥ =
∨

u∈U∥v = u∥ for all v ∈ C(Q, V Q).

▹ (1)→(2): Put X =
∪

u∈U imu. Then xuy = clX and, therefore,

∥v ∈ u∥ = v−1(xuy) = v−1(clX) = cl v−1(X) for all v ∈ C(Q, V Q). It is easy
to verify the relation X =

∪
q∈D U(q) and establish equivalence of the contain-

ments v(q) ∈ U(q) and q ∈ v−1
(∪

q∈D U(q)
)
.

(2)→(3): It su�ces to show that {q ∈ D | v(q) ∈ U(q)} =
∪

u∈U{v = u}
for all v ∈ C(Q, V Q). Take an arbitrary point q ∈ D.

If v(q) ∈ U(q) then, for some element u ∈ U , we have v(q) = u(q) and,
consequently, q ∈ {v = u}.
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If q ∈
∪

u∈U{v = u} then, for a suitable u ∈ U , we have q ∈ {v = u} and,
hence, v(q) = u(q) ∈ U(q).

(3)→(4): Consider an arbitrary element v ∈ C(D,V Q) and de�ne a sec-

tion v ∈ C(Q, V Q) as follows:

v(q) =

{
v(q) if q ∈ D,

∅∧(q) if q /∈ D.

Suppose that v ∈ u↓. Then D = {v ∈ u} ⊂ ∥v ∈ u∥ = cl
∪

u∈U{v = u} ⊂ D.

For all u ∈ U , the set {v = u} = u−1(im v) is clopen. According to the ex-
haustion principle, there is an antichain (Du)u∈U in the algebra Clop(Q) such
that Du ⊂ {v = u} and

∨
u∈U Du = cl

∪
u∈U{v = u} = D. Obviously, the sec-

tion w =
∪

u∈U u|Du is continuous, the set domw is open, D = cl domw, and

{w = v} = {w = v} = domw. It is clear that ext(w) ∈ C(D,V Q) and
{ext(w) = v} = D. Therefore, ext(w) = v and, thus, the inclusion \⊂" holds.

We now establish the reverse inclusion. Let (Du)u∈U be a partition of

unity in the algebra Clop(D) and let v = ext
(∪

u∈U u|Du

)
. Show that v ∈ u↓.

Since dom v = D, it su�ces to establish the inclusion im v ⊂ xuy. Obviously,
u(Du) ⊂ xuy for all u ∈ U and, consequently,

∪
u∈U u(Du) ⊂ xuy. Observe

that im v = cl
∪

u∈U u(Du) and, hence, im v ⊂ xuy.
(4)→(5): Put X = cl

∪
u∈U imu. Let (Du)u∈U be a partition of unity

in the algebra Clop(D) and let v = ext(
∪

u∈U u|Du). Obviously, dom v = D.
Show that im v ⊂ X. The inclusion u(Du) ⊂ X implies

∪
u∈U u(Du) ⊂ X;

whence, in view of the equality im v = cl
∪

u∈U u(Du), the desired relation
im v ⊂ X follows. Thus, u↓ ⊂ C(D,X).

For proving the reverse inclusion, consider an arbitrary section v ∈
C(D,X) and establish the equality v = ext

(∪
u∈U u|Du

)
for some partition

of unity (Du)u∈U in the algebra Clop(D). Obviously, v−1(X) = D. Since

the section v is open, we have D = cl v−1
(∪

u∈U imu
)
. In addition, the set

A = v−1
(∪

u∈U imu
)
is open and dense in D.

With each element u ∈ U we associate a clopen set Cu = {v = u} =

v−1(imu). The obvious equality A =
∪

u∈U Cu implies that
∨

u∈U Cu = D.
In view of the exhaustion principle, there is a partition of unity (Du)u∈U in
the algebra Clop(D) such that Du ⊂ Cu for all u ∈ U . Put w =

∪
u∈U u|Du .

It is clear that, for each u ∈ U , the equalities w|Du = u|Du = v|Du hold, since
Du ⊂ {v = u}. Consequently, by the extension principle, ext(w) = v, which
proves the desired inclusion.

(5)→(1): It is su�cient to observe that D = pr
(
cl
∪

u∈U imu
)
and use

Proposition 3.6 (3).

Equivalence of (1) and (6) is evident. ◃



Function Representation of V(B) 117

Obviously, the section u of the statement of the proposition is unique.
We call that section the ascent of the set U and denote it by U↑. In case U is
a nonempty subset of C(Q, V Q), the notion of the ascent of U coincides with
the eponymized notion of 1.8.

4. Function representation of a Boolean-valued universe

Throughout the section, we assume that Q is an extremally disconnected
Hausdor� compact space and U is a Boolean-valued universe over Clop(Q).

4.1. For the further considerations we need the notion of the quotient
class X/∼ where X is a class (that need not be a set) and ∼ is an equiva-
lence relation on X. The traditional de�nition of quotient class, for the case
in which X is a set, cannot be always applied to the case of a class, since
the elements of X equivalent to a given x ∈ X form a class that need not be
a set. We can overcome this di�culty with the help of the following fact:

Theorem (Frege{Russell{Scott). For every equivalence relation ∼ on

a class X, there exists a function F : X → V such that

F (x) = F (y) ↔ x ∼ y for all x, y ∈ X. (∗∗)

As F we can take the function de�ned as follows:

F (x) =
{
y ∈ X | y ∼ x & (∀z ∈ X)

(
z ∼ x→ rank(y) 6 rank(z)

)}
.

This function F is conventionally called the canonical projection of the equiv-
alence relation ∼. The relation (∗∗) allows us to regard F (x) as an analog of
the coset containing an element x ∈ X. In this connection, we denote F (x)
by ∼(x).

4.2. For each point q ∈ Q, introduce the equivalence relation ∼q on
the class U as follows:

u ∼q v ↔ q ∈ ∥u = v∥.

Consider the bundle V Q =
{(
q,∼q(u)

) ∣∣ q ∈ Q, u ∈ U
}
and make the conven-

tion to denote a pair
(
q,∼q(u)

)
by û(q). Obviously, for every element u ∈ U,

the mapping û : q 7→ û(q) is a section of the bundle V Q. Note that, for each

x ∈ V Q, there exist u ∈ U and q ∈ Q such that û(q) = x. In addition,
the equality û(q) = v̂(q) holds if and only if q ∈ ∥u = v∥.

Make each stalk V q of the bundle V Q into an algebraic system of signa-
ture {∈} by letting

V q |= x ∈ y ↔ q ∈ ∥u ∈ v∥,
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where the elements u, v ∈ U and such that û(q) = x and v̂(q) = y. It is easy to
verify that the above de�nition is sound. Indeed, if û1(q) = x and v̂1(q) = y
for another pair u1, v1, then the containments q ∈ ∥u ∈ v∥ and q ∈ ∥u1 ∈ v1∥
are equivalent.

It is easily seen that the class {û(A) | u ∈ U, A @ Q} is a base of some

open topology on V Q, which allows us to regard V Q as a continuous bundle.

4.3. Theorem. (1) The bundle V Q is a continuous polyverse.
(2) The mapping u 7→ û is an isomorphism between the Boolean-valued

universes U and C(Q, V Q).

We divide the proof of the last theorem into several steps.

4.4. Lemma. If u ∈ U and A @ Q then û(A) @ V Q.

▹ For every element x ∈ V Q\û(A), there exist v ∈ U and q ∈ Q such
that x = v̂(q).

If q ∈ A then û(q) ̸= x = v̂(q), q ∈ ∥u ̸= v∥, and, thus, the set v̂(∥u ̸= v∥)
is a neighborhood about x disjoint from û(A). If, otherwise, q /∈ A, then
the neighborhood v̂(Q\A) about x is disjoint from û(A). ◃

4.5. Lemma. The classes {û | u ∈ U} and C(Q, V Q) coincide.

▹ Consider an arbitrary element u ∈ U and show that the section û is
continuous. If v ∈ U and A @ Q then the set û−1

(
v̂(A)

)
= A ∩ ∥u = v∥ is

open. Arbitrariness of v and A allows us to conclude that û ∈ C(Q, V Q).

We now establish the reverse inclusion. Take an f ∈ C(Q, V Q). For each
point q ∈ Q, choose an element uq ∈ U such that ûq(q) = f(q) and assign

Aq := {p ∈ Q | ûq(p) = f(p)} = f−1
(
û(Q)

)
@ Q. Thus, (Aq)q∈Q is an open

covering of the compact space Q from which we can re�ne a subcovering
(Aq)q∈F , where F is a �nite subset of Q. By the exhaustion principle, there is
an antichain (Bq)q∈F such that Bq ⊂ Aq for all q ∈ B and

∪
q∈F Bq = Q. Since

the Boolean-valued algebraic system U satis�es the mixing principle, we may
consider u = mixq∈F Bquq ∈ U. It is easy to become convinced that û = f . ◃

4.6. Lemma. The topology of V Q is extremally disconnected.

▹ The claim follows from Lemmas 4.4 and 4.5 and Proposition 2.5. ◃

4.7. Lemma. The mapping (u 7→ û) : U → C(Q, V Q) is bijective and,
for all u, v ∈ U, the following equalities hold:

∥u = v∥U = ∥û = v̂∥C(Q,V Q),

∥u ∈ v∥U = ∥û ∈ v̂∥C(Q,V Q).
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▹ It is easily seen that, for all u, v ∈ U and q ∈ Q, we have:

V q |= û(q) ∈ v̂(q) ↔ q ∈ ∥u ∈ v∥,
V q |= û(q) = v̂(q) ↔ q ∈ ∥u = v∥.

The desired equalities are thus established. In Lemma 4.6, it is shown that
the mapping u 7→ û is surjective. We are left with proving its injectivity.
Let elements u, v ∈ U be such that û = v̂. Then ∥u = v∥ = ∥û = v̂∥ = Q, which
implies the equality u = v due to the fact that the system U is separated. ◃

Thus, the triple
(
C(Q, V Q), ∥ ·= · ∥, ∥ ·∈ · ∥

)
is a Boolean-valued alge-

braic system over Clop(Q) isomorphic to U and, hence, C(Q, V Q) is a Boolean-
valued universe over Clop(Q).

4.8. Lemma. If u ∈ C(Q, V Q) then xuy is a clopen subset of V Q.

▹ Take a u ∈ C(Q, V Q). Since C(Q, V Q) satis�es the ascent principle,

u = ascξ∈�Bξuξ for some family (uξ)ξ∈� of continuous sections of V Q and

a family (Bξ)ξ∈� of clopen subsets of Q. For each v ∈ C(Q, V Q), the following
relations hold:

v−1

(
cl
∪
ξ∈�

uξ(Bξ)

)
= cl

∪
ξ∈�

v−1
(
uξ(Bξ)

)
= cl

∪
ξ∈�

Bξ ∩ ∥v = uξ∥

=
∨
ξ∈�

Bξ ∧ ∥v = uξ∥ = ∥v ∈ u∥ = v−1(xuy).

Thus, in view of Lemma 2.7, the equality xuy = cl
∪

ξ∈� uξ(Bξ) is established.

The set
∪

ξ∈� uξ(Bξ) is open; therefore, by Lemma 4.6, the class xuy is a clopen
set. ◃

4.9. Lemma. For every subsetX @ V Q, there is a section u ∈ C(Q, V Q)
such that xuy = X.

▹ With each element x ∈ X we associate a section ux ∈ C(Q, V Q) such

that x ∈ imux. Obviously, the set Bx = u−1
x (X) is clopen. Consider the ascent

u = ascx∈X Bxux and establish the equality xuy = X. Since x ∈ ux(Bx) ⊂ X
for all x ∈ X, we have X =

∪
x∈X ux(Bx) = cl

∪
x∈X ux(Bx). For an arbitrary

section v ∈ C(Q, V Q), the following relations hold:

v−1(X) =
∪
x∈X

v−1
(
ux(Bx)

)
= cl

∨
x∈X

Bx ∧ ∥v = ux∥ = ∥v ∈ u∥ = v−1(xuy).

In view of Lemma 2.7, the desired equality is established. ◃
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4.10. Lemma. For every formula φ(t1, . . . , tn) and arbitrary sections

u1, . . . , un ∈ C(Q, V Q), the following equality holds:

∥φ(u1, . . . , un)∥ =
{
q ∈ Q

∣∣ V q |= φ
(
u1(q), . . . , un(q)

)}
.

▹ The proof of the lemma repeats that of the pointwise truth-value
theorem (see 3.10). ◃

The last lemma implies in particular that the extensionality and regularity
axioms are true in each stalk. Thus, Theorem 4.3 is completely proven.

In conclusion, we state a theorem that combines the basic results of Sec-
tions 3 and 4.

Theorem. Let Q be the Stone space of a complete Boolean algebra B.
(1) The class C(Q, V Q) of continuous sections of a polyverse V Q on Q is

a Boolean-valued universe.
(2) For an arbitrary Boolean-valued universe U over B, there exists a con-

tinuous polyverse V Q on Q such that C(Q, V Q) is isomorphic to U.
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