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Bundles are traditionally employed for studying various algebraic systems in
mathematical analysis. The technique of bundles is used in examining Banach
spaces, Riesz spaces, C*-algebras, Banach modules, etc. (see, for instance, [3, 6, 7,
13-15]). Representation of some objects of functional analysis as spaces of sections
of corresponding bundles serves as a basis for some theories valuable in their own
right. One of these theories in [8-12] is devoted to the notion of a continuous Banach
bundle {(CBB) and its applications to lattice normed spaces (LNSs). Within this
theory, in particular, a representation is obtained for an arbitrary LNS as a space
of sections of a suitable CBB.

In some sense, a CBB over a topological space Q) formally reflects the intuitive
notion of a family of Banach spaces {X4)qeq varying continuously from point to
point in the space Q. To be more precise, a Banach bundle 2" over Q is a mapping
associating with each point ¢ € @ a Banach space 2°(g) the so-called stalk of 2
at ¢. Furthermore, the bundle 2 is endowed with some structure that allows us to
speak about continuity of sections of the bundle (a section is a function w defined
on a subset of @ and taking values u(q) € Z (g) for all ¢ € domw). The notion
of a section can be regarded as a generalization of the notion of a vector valued
function: if X is a Banach space then X-valued functions are sections of the Banach
bundle whose stalks are all equal to X.

In many questions of analysis, an essential role is played by duality theory,
one of whose basic tools is the concept of a dual space (see, for instance, [17]).
Existence of a functional representation for the initial space by means of sections of
some bundle allows us to construct an analogous representation for the dual space.
In particular, the problem of representing a dual LNS leads to the notion of a dual
Banach bundle.

Which CBB £ should be considered dual to a given bundle 2" (discussed,
for instance, in [7-9, 12, 19]) is a question closely connected with the notion of
a homomorphism. A homomorphism v of a continuous Banach bundle £ over Q is
a functional valued mapping v : ¢ +— v(g) € Z (¢g)’ taking every continuous section
u of the bundle 2 into the continuous real-valued function (ulv) : ¢ — (u(g)|v(g))-
When we try to define a dual CBB 2/, the following two requirements are worth
to be imposed: first, homomorphisms should be continuous sections of the bundle
Z"’ and, second, all continuous sections of 2"/ should be homomorphisms.

In the case of ample bundles over extremally disconnected compact spaces,
the problem of defining a dual CBB is solved in [8] (see also {12]). However, the ap-
proach to the definition of a dual bundle presented in that article rests essentially
on the specific properties of ample bundles and extremally disconnected compact
spaces and, thus, cannot be extended to a wider class of bundles.

The natural intention to extend the domain of application for duality theory
leads to the problem of constructing a dual CBB for an arbitrary Banach bundle
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over an arbitrary topological space. The study of this problem is the main topic of
the present chapter, where, in particular, a definition of a dual bundle is presented,
with the above-formulated requirements fulfilled, and a number of necessary and
sufficient conditions is suggested for existence of a dual bundle.

In Section 3.1, auxiliary results are collected on topological spaces, Banach
spaces, and functions acting in them.

Section 3.2 is devoted to studying the notion of a homomorphism of a Banach
bundle. In particular, description of homomorphisms is suggested therein for a wide
class of bundles and the question is examined of continuity of the pointwise norm
of a homomorphism.

The question about the possibility of representing the space of all homomor-
phisms from a CBB £ into a CBB % as the space of continuous sections of some
Banach bundle leads to the notion of an operator bundle B(Z",%'). In Section 3.3,
some necessary and sufficient conditions are given for existence of such a bundle.

In Section 3.4, the notion of a dual Banach bundle is introduced and studied.
This bundle is a particular case of an operator bundle (considered in the previous
section). The definition of a dual bundle therein generalizes that of [8, 12] where
the case is considered of an ample bundle over an extremally disconnected compact
space. In the same articles it is established in particular that every ample CBB has
the dual bundle. In the general case, dual bundles may fail to exist. Nevertheless,
the above generalization is justified by the fact that new classes arise of CBBs that
have dual bundles. In Section 3.4, various necessary and sufficient conditions are
presented for existence of a dual bundle, the norming duality relations are estab-
lished between the bundles 2" and 2", and the questions are studied of existence
of the second dual bundle and embedding of a bundle into its second dual.

In examining the notion of a dual bundle, one of the natural steps is consid-
eration of weakly continuous sections (these are sections continuous with respect
to the duality between a bundle and its dual). The notion of a weakly continuous
section is introduced and studied in Section 3.5. In particular, the question is dis-
cussed about continuity of weakly continuous sections for various classes of Banach
bundles and conditions are suggested for coincidence of the space of weakly con-
tinuous sections of a trivial CBB and the space of weakly continuous vector valued
functions acting into the corresponding stalk.

When speaking about Banach bundles, we use the terminology and notation
of [8] (see also [12]). In particular, we distinguish the notion of a Banach bundle
and that of a continuous Banach bundle and employ the approach to the definition
of continuity for sections by means of the notion of a continuity structure. All nec-
essary information on the theory of Banach bundles can be found in [3, 7-12].

If 2 and % are some CBBs over a topological space @) then we denote by
Hom(Z,%) the set of all Q-homomorphisms from 2 into % (which is denoted by
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Homg (2, %) in [8, 12]). As usual, the symbol Homp(2', %) is used for denoting
the set of D-homomorphisms from Z|p into #|p, where D C Q. Instead of “Q-
homomorphism” we just say “homomorphism.” Analogous convention is effective
concerning the terms “Q-isometric embedding” and “Q-isometry”

In contrast to [8, 12], we use the symbol Xq for denoting the trivial Banach
bundle with stalk X over a topological space Q. The symbol Z denotes the trivial
CBB with stalk R over the topological space under consideration.

Let Z be a continuous Banach bundle over a topological space @, let u be
a section of Z" defined on an A C @, and let v be a section of 2" definedona B C Q
such that v(q) € 2 (q)’ for all ¢ € B. The symbol (u|v) denotes the function acting
from AN B into R by the rule (u]v)(q) = (u(q)|v(g)).

All vector spaces under consideration are assumed over R, the field of reals.

3.1. Auxiliary Results

This section contains facts to be used in the sequel about topological and
Banach spaces as well as functions acting in this spaces. The collected results are
auxiliary and do not involve the notion of a Banach bundle.

3.1.1. Lemma. Let X be a normed space and let z and y be norm-one vectors
in X. Then either of the intervals [z,y] or [z, —y| does not intersect the open ball
with radius 1/2 centered at the origin, i.e..

i — > i - - > 1/2.
Ag[lofy”llf\:H(l Ayl 21/2 or Ag[})f’I]IIA:H(l ANyl =1/

<1 Assume that there are vectors u = Az+(1—\)(~y) and v = px+(1—p)y such
that |Jull < 1/2 and ||v|| < 1/2. Obviously, 0 < A,u < 1 and = # £y. Moreover,
the vectors u and v are linearly independent. Hence, z = au+ fv and y = yu + 6v
for some «,(,7,6 € R. Linear independence of (u,v) and (z,y), together with
the equalities

EHE-6) GEN6-6)
N NN

a BY _ 1 1—p 1-=X
v 6] Adpu—2pu\ —p A )

ie.,
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The relations

ol +

1= llel < lallul + [81]v) < <212

and o+ 19
1= llyll < Illull + 8lliell < 25

allow us to conclude that

1 1
+ <1,
lal+16] v+ 19

ie., [a| + 18| + 7]+ 16] < (el + |81 (|7| + |8])- Tt is easy to see that A+ p — 2 p >
X 4+ p? — 2 \p > 0. Furthermore, |al + 8] = (2 — A — w)/(A+ 1 — 2Ap) and
[yl +16] = (A + p)/ (A + p — 2Ap), whence

2 < 2-A—p A+
A+ —2Mp A+ =22 A+p—2u’

Consequently, 2(A + g — 22p) < 2(A + ) — (A + p)? and, finally, (A — p)? < 0. This
contradiction completes the proof. >

3.1.2. The following statement may be found, for instance, in [21, Proposi-
tion 1 (SP1)].

Lemma. If a Banach space X possesses the Schur property then every weakly
Cauchy sequence in X is norm convergent.

< Consider a norm divergent sequence (z,) C X and show that it is not
a weakly Cauchy sequence. There exist a number € > 0 and a strictly increasing
sequence (ng) C Nsuch that ||z, —Zn,, || > € for allodd k € N. Since the sequence
(Tny — Tn,,,) does not vanish in norm and X possesses the Schur property, there
is a functional ' € X’ such that the numerical sequence (Zn, — Tn,,, | ') does
not vanish. Consequently, the subsequence (z, }, together with the initial sequence
(zn), is not a weakly Cauchy sequence. >

3.1.3. Lemma. Let X be an infinite-dimensional separable Banach space.
Then every infinite-dimensional Banach subspace of X' includes a weakly™ null
sequence of norm-one functionals.

< Let Y be an infinite-dimensional Banach subspace of X’. Consider a sequence
(yn) of norm-one vectors in Y such that |ly; — y;|| = 1/2 whenever i # j (see, for
instance, [18, 8.4.2]). By [4, XIII], from (y») We can extract a subsequence (yn,,)
convergent weakly* to an element y € X’. It is clear that y € Y. For every m € N,
pub Zm = Yn, —y. Let € > 0 and let (zm,) be a subsequence of (zy) such that
|zme || > € for all k € N. Then (2zm, / ||2m,|l) is a sought sequence. &>
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3.1.4. Lemma. Let X be an infinite-dimensional Banach space. Then there
exist a weakly vanishing net (£q)aex C X and a norm vanishing net (zj,)aex C X'
such that {zy|zl,) = 1 for all & € R,

< As R we consider the set of all finite subsets of X’ ordered by inclusion.

Fix an o = {z},...,7,} € X and, employing the fact that X is infinite-
dimensional, take an element zo € [;—; ker z; with norm [|z4|| = n. Next, choose
a functional !, € X’ satisfying the equalities (zq|2z),) = 1 and ||z, || = 1/n.

Obviously, the net (z/,)qen vanishes in norm. Show that the net (za)aer is
weakly vanishing. Let U be an arbitrary weak neighborhood about zero in X.
Choose functionals z}, . .., 2/, € X’ so that (., kerz; C U. Then z4 € [, kerz;
CUforallae®, a={zl,...,z,}. >

3.1.5. Let (z,) be a sequence in a Banach space X.

Lemma. The following are equivalent:

(a) for every sequence () C X’ and every element x' € X', weak”
convergence z,, — z' implies (zn|z},) — 0;

(b) for every sequence (z},) C X' and every element 2’ € X', weak"
convergence x4, — ' implies {zs|z},) — 0 as n,m — oo;

(c¢) (zn) is weakly null and (zy|x],) — O for every weakly"™ null sequence
(zn) € X';

(d) (z,) is weakly null and (z,|z,,) — 0 asn, m — oo for every weakly*
null sequence (z,,) C X';

(e) suppen l{znlzl,)| — 0 as n — oo for every weakly™ null sequence
(zr) C X;

(f) for every operator T € B(X,co), the sequence (T'z,) vanishes in
norm.

The proof of equivalence of the above assertions is a routine and quite simple
exercise.

DEFINITION. Say that a sequence is w-w*-vanishing if (z,) satisfies one of the
conditions (a)—(f) of the above lemma. If z € X and the sequence (z, — z) is
w-w*vanishing then we say that (z,) w-w*converges to z.

A Banach space X is said to possesses the WS property (or the weak Schur
property) if every w-w*convergent sequence in X converges in norm (or, which is
the same, every w-w*vanishing sequence vanishes in norm).

We list some evident facts concerning the above notions.
Proposition. The following are true:

(1) Each norm convergent sequence is w-w*-convergent.
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(2) Every subsequence of a w-w*-convergent sequence is also w-w*
convergent.

(3) If X and Y are Banach spaces, T € B(X,Y), and a sequence
(zn) C X Is w-w*convergent to an x € X, then the sequence
(T'zy,) is w-w*convergent to Tx.

(4) If a Banach space possesses the WS property then this property is
also enjoyed by every Banach subspace.

(5) If a Banach space X possesses the WS property then this property
is also enjoyed by every Banach space isomorphic to X.

(6) If a Banach space contains a copy of a space which does not possess
the WS property, then the space does not possess the WS property
either.

3.1.6. Lemma. If a Banach space X has weakly* sequentially compact dual
ball then X possesses the WS property. The converse fails to be true.

< Suppose that X does not possess the WS property. Then there exists a w-w™
vanishing sequence (z,) C X which does not vanish in norm. Without loss of
generality, we may assume that ||z,|| > ¢ for all n € N and a suitable ¢ > 0.
Since X has weakly* sequentially compact dual ball, from a sequence of functionals
(z!)) C X' satisfying the conditions ||z}|| = 1 and (z|z;,) > € for all n € N we
can extract a weakly* convergent subsequence z,, . However, (2, |7,,) > €, which
contradicts the fact that (zn,) is w-w*vanishing.

The space £ (R) can be considered as a counterexample to the converse as-
sertion. Indeed, this space possesses the Schur property and, therefore, the WS
property. On the other hand, as is shown in [4, XIII], the dual ball of the space
£L(R) is not weakly* sequentially compact. &>

Each of the following properties of a Banach space X implies the WS property:

(1) X possesses the Schur property;

(2) X is separable;

(3) X' does not contain a copy of £;

(4) X is reflexive;

(5) X is a subspace of a weakly compactly generated Banach space;
(6) for every separable subspace Y of X, the space Y’ is separable.

Property (1) obviously implies the WS property, and the other properties guar-
antee that X has weakly* sequentially compact closed dual ball (see [4, XIII]}, which
allows us to apply the last lemma. Recall that a Banach space Y is said to be weakly
compactly generated if Y contains a weakly compact absolutely convex set whose
linear span is dense in Y.
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3.1.7. A Banach space X is said to possess the Dunford—Pettis property if
(zn|zy,) — 0 for all weakly null sequences (z,) C X and (z},) C X'.

In Section 3.5, within the study of weakly continuous sections of Banach bun-
dles, the important role is clarified of the question whether a Banach space under
consideration possesses the following property close to the Dunford-Pettis property.

DEFINITION. Say that a Banach space X possesses the DP* property if

(zpl|z),) — 0 for every weakly null sequence (zp), C X
and every weakly® null sequence (z,) C X'

(Note that there is no reason to consider the analog of the DP* property for nets,
since, in view of Lemma 3.1.4, only finite-dimensional spaces possess such a prop-
erty.)

It is clear that X possesses the DP* property if and only if the sets of weakly
convergent and w-w*convergent sequences in X coincide.

A Banach space X with the property that weakly* null sequences in X’ are
weakly null is called a Grothendieck space (see [4, VII, p.121]). Obviously, every
reflexive Banach space is a Grothendieck space.

The following assertions are easy to verify.

Lemma. Let X be a Banach space.

(1) If X possesses the Schur property then X possesses the DP* prop-
erty.

(2) If X possesses the DP* property then X possesses the Dunford—
Pettis property.

(3) The space X possesses the WS and DP* properties if and only if
X possesses the Schur property.

(4) For a Grothendieck space, the DP* property is equivalent to the
Dunford-Pettis property.

It is worth noting that assertion (2) does not admit conversion. Indeed,
the space cp does not possess the Schur property and possesses the WS property,
since ¢y is separable; therefore, by (3), cg does not possess the DP* property. At the
same time, ¢ enjoys the Dunford-Pettis property, since cj ~ £* possesses the Schur
property.

Recall that the intersection (union) of countably many open (closed) subsets
of a topological space is called a o-open (o-closed) set.

Let K be a quasiextremally disconnected compact Hausdorff space (i.e. a com-
pact Hausdorff space in which the closure of every open o-closed subset is open).
The spaces £*° and C(K) are Grothendieck spaces enjoying the Dunford—Pettis
property and not the Schur property (see, for instance, [4, VII, Theorem 15, Exer-
cise 1 (i), XI, Exercise 4 (ii)], [1, Theorem 13.13], and [20, Theorem V.2.1]).
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Corollary. Let K be a quasiextremally disconnected compact Hausdorfl
space.
(1) The Banach spaces £*° and C(K) possess the DP* property.
(2) Every Banach space containing a copy of £*° does not possess
the WS property.

< The claim follows immediately from the above-indicated properties of £
and C(K), assertions (4) and (3) of the last lemma, and Proposition 3.1.5 (6). >

3.1.8. Lemma. Given an arbitrary topological space Q, the following are
equivalent:
(a) all functions in C(Q) are locally constant;
(b) for every sequence of functions (f,) C C(Q) and every point q € Q,
there exists a neighborhood about q such that all functions fy,
n € N, are constant on the neighborhood;
(c) for every sequence of functions (f,) C C(Q), there is a partition of
Q into clopen sets such that all functions f,, n € N, are constant
on every element of the partition.

< (a)—(b): It is sufficient to find a neighborhood about g on which all functions
gn = |fn— fr(@)|A1, n € N, vanish. Since, the sum g = Y n; gn/2" is a continuous
function and g{g) = 0, by (a) there is a neighborhood about ¢ on which g = 0. It is
clear that all functions g,, n € N, vanish too.

(b)—(c): According to (b), for every point ¢ € @, the intersection (,,cn{fn =
fn(q)} of closed sets is a neighborhood about its every point; therefore, this inter-
section is clopen. All intersections of this kind form a sought partition of Q.

The implication (c)—(a) is evident. &>

DEFINITION. A topological space Q satisfying one of the equivalent conditions
(a)—(c) of Lemma 3.1.8 is called functionally discrete.

3.1.9. A point of a topological space is o-isolated or a P-point if the intersec-
tion of every sequence of neighborhoods about this point is again a neighborhood.

REMARK. A Hausdorff topological space containing a single nonisolated point
is a normal and Baire space.

Proposition. Let Q be a completely regular topological space.

(1) The following are equivalent:
(a) Q is functionally discrete;
(b) all points in Q are o-isolated;
(c) every o-open subset of Q is open;
(d) every o-closed subset of Q is closed.
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(2) If Q is functionally discrete then all countable subsets of Q) are
closed.

(8) The converse of (2) is false.

< (1): (a)—(b): Consider an arbitrary point g € Q, a sequence (Uy) of neigh-
borhoods about ¢, and put V' = [, .y Un. Since the space Q is completely regular;
for every n € N, there is a continuous function f,, : @ — [0, 1] such that f,(¢) =0
and f, =1 on Q\U,. The sum

F=> fa/2":Q—[0,1]
n=1

is a continuous function and, by (a), vanishes on some neighborhood Uy about
g. Since f > 0 outside V/, the neighborhood Uy is a subset of V; therefore, V is
a neighborhood about ¢ too.

(b)—(c): By (b), the intersection of a sequence of open subsets of Q is a neigh-
borhood about its every point and, hence, is open.

(c}—(a): By (c), for every function f € C(Q) and a point ¢ € @, the intersec-
tion

({reQ: 15 - f(g)l < 1/n}

neN

is a neighborhood about ¢ on which the function f is constant.

Equivalence of the mutually dual assertions (c) and (d) is evident.

(2): Tt is sufficient to observe that countable subsets of Q are o-closed and to
apply (1).

(3): Construct a completely regular topological space @ whose all countable
subsets are closed and choose a function in C(Q) which is not locally constant.

Make the interval [0,1] into a topological space @ by taking as a base for open
sets all subsets of (0, 1] and all subsets of the form [0,t]\\S, where t € (0,1] and S is
a countable subset of (0, 1]. The topological space @ is constructed. It is clear that
all countable subsets of @ are closed. Since @ is a Hausdorff space and contains
a single nonisolated point, it is normal (see the remark above the proposition);
therefore, @ is completely regular. It is easy to see that the identity mapping of
[0,1] is continuous and is not constant on every neighborhood about 0. &>

3.1.10. Recall that a topological space is countably compact if from every
countable open cover of this space we can refine a finite subcover. A topological
space is perfectly normal if it is normal and its every closed subset is o-open.
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Proposition. Let Q be a completely regular topological space. Under each of
the following conditions, the space @ includes a nonclosed countable subset (hence,
Q is not functionally discrete):

(1) Q includes a nondiscrete countable compact subspace;

(2) Q includes an infinite compact subspace;

(3) Q includes a nondiscrete subspace that is a Fréchet—Urysohn space;
(4) Q@ includes a convergent sequence of pairwise distinct elements;

(5) Q@ contains a nonisolated point at which there is a countable base.

Furthermore, a perfectly normal topological space is functionally discrete only
if it is discrete.

< It is known (see, for example, [2, III, assertion 189]) that a topological
space is countably compact if and only if its every infinite subset has a limit point.
Using this criterion, we easily prove that condition (1) is sufficient for existence of
a nonclosed countable subset of Q. Sufficiency of conditions (2), (4), and (5) is
easily validated. Condition (3) is equivalent to (4).

For a nondiscrete perfectly normal topological space, existence of a not locally
constant function follows from the Vedenisov Theorem (see [5, 1.5.19]). >

3.1.11. If a topological space @ is functionally discrete and completely regular
then Q satisfies none of the conditions 3.1.10 (1)—(5). In particular, if Q is nondis-
crete then @ cannot be compact, first-countable, or metrizable. These observations
essentially restrict the class of topological spaces in which @ may fall. Therefore, it
is worth verifying that a completely regular functionally discrete topological space
need not be discrete.

First, for an arbitrary upward-directed set X without greatest element, define
a nondiscrete normal topological space N*. As the underlying set we take R =
R U {00}, where co ¢ R. Endow R with an order, regarding R as an ordered
subset of R and assuming co > a for all @ € R. Consider open the subsets of
X and all intervals of the form (a,00] := {8 € R : @ < < o0}, where a € R
to be open. Therefore, R* becomes a topological space. Since X has no greatest
element, the point oo € N* is nonisolated; hence, the topology of N* is nondiscrete.
The space R* is normal, since it is Hausdorff and contains a single nonisolated point
(see Remark 3.1.9).

REMARK. (1) If all countable subsets of X have upper bounds, every continu-
ous function f: X* — R takes a constant value f(oco) on some neighborhood about
oo. (For instance, the intersection

() {aer: |f(a) - f(oo)| < 1/n}

neN
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is such a neighborhood.)
(2) For an arbitrary topological space P, continuity of a function f: X* — P

is equivalent to the fact that the net (f (a))aex converges to f(co).

ExAaMPLE. There exists a functionally discrete normal topological space that
is not discrete.

< Let R be an upward-directed set without greatest element and let all count-
able subsets of R have upper bounds. For instance, an arbitrary uncountable cardi-
nal or the set of all countable subsets of an uncountable set (ordered by inclusion)
is such an upward-directed set. Then, by the above remark, X* is a sought space. >

3.1.12. Lemma. LetY be a locally convex space and let a sequence (yn) CY
converge to some y € Y. Suppose that a vector valued function u : [0,1] — Y
satisfies the equality u(0) = y and, for every n € N, maps the interval [;1'_—1, %] onto
the interval [yn+1,Yn] by the formula

A 1-A
o(F ) e 0 oA

Then u is continuous.

< It is clear that u is continuous on the half-open interval (0, 1]. Take an ar-
bitrary neighborhood V about y = u(0), take an arbitrary convex neighborhood
W C V about the same element, and consider a number ng such that y, € W for
n 2 ng. Then, in view of convexity of W, the inclusion u([O, ;ng]) C W holds. >

3.1.13. Lemma. Let X be an infinite-dimensional Banach space, whereas @ is
not a functionally discrete topological space. Then there exists a weakly* continuous
function from Q into X' whose pointwise norm is bounded and discontinuous.

< By the Josefson-Nissenzweig Theorem [4, XII], there exists a weakly* null
sequence (z,,) of norm-one vectors in X’. Put y1 = z{ and

_{ i, Ayn+ (1= Nzl > 1/2 for all A € [0, 1],
Ynt1 = ' .
—Zp,1, Otherwise

for every n € N. Obviously, the sequence (y,) is weakly* null and, by Lemma 3.1.1,
every interval [y}, .1, y5], n € N, does not intersect the open ball with radius 1/2
centered at the origin. Then the vector valued function u : [0,1] — X’ defined in
Lemma 3.1.12 (where Y is equal to the space X’ endowed with the weak* topology
and y equals to 0) is weakly* continuous. At the same time, [Jul|(0) = 0 and

(0, 1]) € [1/2,1],
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Now consider a function f € C(Q) such that f is not constant on each neigh-
borhood about a point ¢ € @ and put g = |f—f(q)|Al. It is clear that g : Q — [0, 1],
g(g) = 0, and ¢ € cl{g > 0}. Consequently, the composition uog: @ — X' is
a sought vector valued function. >

3.1.14. Let X be a Banach space. A subset F' C X’ is called total (or sepa-
rating) if, for every nonzero element z € X, there is a functional 2’ € F such that
(zla’) # 0.

REMARK. In each of the following cases, the dual X’ of a Banach space includes
a countable total subset:

(1) X is separable;
(2) X is isomorphic to the dual of a separable Banach space.

< (1): Consider a set {z, : n € N} everywhere dense in X. With each number
n € N, associate a norm-one functional x;, € X’ such that {zn|z],) = |zx||. Then,
for an arbitrary nonzero element z € X, there is an n € N for which ||z — z,|| <
|lz||/3 and, consequently,

[(zlz7)| = [(@nlzp)| — [{@n — 2 | 25)]

2 [lzall = ll2ll/3 = llzll - ll=l1/3 = llzll /3 > 0.

(2): Without loss of generality, we may assume that X = Y’, where YV is
a separable Banach space. It remains to observe that the image of a countable
everywhere dense subset of Y under the canonical embedding of Y into Y” is
total. >

Given a topological space @ and a Banach space X, the symbol C,(Q, X)
denotes the totality of all weakly continuous functions from @ into X.

Lemma. Let X be a Banach space and let @) be a functionally discrete topo-
logical space. Suppose that X' includes a countable total subset. Then C(Q,X) =
Cu(@, X).

< Consider an arbitrary vector valued function u € Cy,(Q, X). It is sufficient
to show that, for some partition of @ into clopen subsets, the function u is constant
on each element of the partition.

Let {z], : n € N} be a total subset of X’. Since u is weakly continuous,
(u|z},) € C(Q) for all n € N. According to 3.1.8 (c), there is a partition of Q into
clopen subsets such that all functions (u|z],), n € N, are constant on each element
of the partition. Since the set {z, : n € N} is total, the function u is constant on
each element of the partition. >
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3.2. Homomorphisms of Banach Bundles

The current section, as follows from its title, is devoted to studying homomor-
phisms of Banach bundles. Some of the facts below are of interest in their own
right, but usefulness of the majority of the results in the section reveals itself later,
in studying operator bundles (see Sections 3.3 and 3.4).

The first group of results, 3.2.1-3.2.4, suggests a number of conditions guaran-
teeing that continuous sections of a Banach bundle with operator stalks are homo-
morphisms.

Subsections 3.2.5-3.2.7 provide a repeatedly employed useful way of construct-
ing sections, homomorphisms, and Banach bundles.

In 3.2.8 and 3.2.9, the notion of the dimension of a Banach bundle is studied.
The results obtained, concerning domains of constancy for the dimension, are, to
our opinion, of interest in their own right.

In 3.2.10, a description is given for homomorphisms of Banach bundles over
a first-countable topological space. This result is supplied with examples (3.2.11)
which justify essence of the restrictions imposed on the topological space.

Closing this section, we study the question of continuity for the pointwise
norm of a homomorphism acting from a CBB with constant finite dimension into
an arbitrary CBB (3.2.12). A number of examples (see 3.2.13) demonstrates that
the constancy of dimension is an essential requirement.

3.2.1. Proposition. Let ', %, and % be CBBs over a topological space @,
with 2°(q) C B(Z (q),% (q)) for all ¢ € Q, and let sets of sections % C C(Q, Z)
and ¥ C C(Q, %) be stalkwise dense in 2" and & . Suppose that the global section
w® u of #¥ is continuous for every uw € % and w € # . Then, for every D C Q,
the inclusion C(D, Z) C Homp(Z', %) holds.

< Fix an arbitrary subset D C Q, elements & € C(D, %) and w € C(D, &),
and a point ¢ € D. We prove that the section W ® T of # is continuous at g.
By [8, Proposition 1.3.2], it is sufficient to show upper semicontinuity of the function
Jw®w—v|| : D — R at the point g for every v € C(D,%). Let ¢ > 0 and
v € C(D,%). We find a neighborhood about g on which

lw®u—v| <wen-uv|g)+e.

Take an element u € % such that |[w|(¢g)||z — ul|(g) < /8. By continuity
of the real-valued functions ||[& — u|| and ||@||, we may find a neighborhood U
about ¢ on which ||[w||||z — u|] < £/4. Similarly, we take an element w € # and
a neighborhood U, about g such that |[w—wl|(q)|Jull(q) < &/8 and |[T—w|||Ju| < /4
on U,. Then, on the intersection U; N Uy, the following hold:

lwut-wu|<|[teu-TRu|+ [TQu—wul
< @l — wll + 1@ — wiillull < e/4+¢/4=¢€/2.
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The same calculations yield the inequality | ® T — w ® u|(¢) < £/4. Now we take
a neighborhood Us about ¢, on which |lw® u — v|| < Jw ® u —v||(g) + £/4. On the
neighborhood U; N Uz N U3 about g, the following hold:

S|t -—weul|+ lweu—1|
<e/2+ lw®u—vl(g) +¢/4

g2+ lueu-weul(q) + et - vl(g) +e/4
<e/2+e/d+|veT—|(q) +e/4
=w®u-1l(qg) +e,

o ®w— vl

which completes the proof. >

3.2.2. Corollary. Let ', %, and & be CBBs over a topological space Q,
with Z(q) C B(ﬁ&”(q),@(q)) at every point ¢ € Q. Suppose that C(Q,Z) C
Hom(Z",#'). Then, for every D C Q, the inclusion C(D, %) C Homp(Z ,%)
holds. :

< The claim follows from 3.2.1 with 2 = C(Q, &) and ¥ = C(Q, %). >

8.2.3. Corollary. The inclusion C(Q, B(X,Y)) C Hom(Xg,Yq) holds for ar-
bitrary Banach spaces X and Y.

< Put % and # equal to the sets of all constant X-valued and B(X,Y)-valued
functions and apply Proposition 3.2.1. >

One of the natural questions which may arise when considering the above
corollary is as follows: When does the equality

C(Q, B(X, Y)) = HOHI(XQ, YQ)

hold? This question is addressed in Section 3.3.

3.2.4. Corollary. Let Z', %, and & be CBBs over a topological space @
and let Z(q) C B(%’(q),@(q)) at every point ¢ € Q. Suppose that the space
Hom(Z', %) includes a continuity structure for . Then C(Q, Z) C Hom(Z ,%).

< Taking C(Q, Z°) as %, the above-mentioned continuity structure for 2 as
%, and applying Proposition 3.2.1, we obtain the claim. >

3.2.5. In the sequel, we use the following auxiliary result.

Lemma. Let Q be a completely regular topological space. Suppose that q € Q
is a limit point for a countable discrete set {g, : n € N}, with ¢; # q; whenever
i 7.

(1) There is a sequence (W,,) of open subsets of Q such that g, € W,,,
cdW,n clUk;én Wy =@, and q ¢ clW,, for alln € N,
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Consider continuous functions fp : Q@ — [0,1], fn =0 on Q\W, for alln € N.
Furthermore, let (€,) be a vanishing numerical sequence.
If at q there is a countable base then we may additionally stipulate that

(C1 UneN Wn)\ UnEN cdlWn = {q}.
(2) The function f: Q — [0, 1] defined by the formula

E’ﬂfn(p)a p € Wna
flp) =
0, p ¢ UnEN Wn
is continuous.
(3) Let 2 be a CBB over Q. Given a sequence (un)nen C C(Q, Z7)

such that |Jup]] < M on W,, from some index on, the section u
over Q defined by the formula

[ enfa(P)un(p), pE Wy,
u(p) =
’ 07 p ¢ UnEN Wn
is continuous.
(4) Let & and % be CBBs over Q. If (Hp)nen C Hom(Z', %) and

IHnll < K on W, for all n from some index on, then the mapping
H:peQw H(p) € B(Z (p),%(p)) defined by the formula

Enfn(p)Hn(p)a p € W’na
07 p ¢ UnEN Wn

is a homomorphism from % into %.

(5) If X is a topological vector space and a sequence (z,) C X con-
verges to an x € X, then the vector valued function u : Q — X
defined by the formula

w(p) = fu(P)zn + (1 - fn(p))iT?, pEW,,
(p) = { z. p & Uy W

H) =

is continuous.

(6) If X is a Banach space and a sequence of functionals (z}) C X'
converges weakly* to an ' € X', then the vector valued function
H : Q — X' defined by the formula

_ fn(p)zs, + (1 - fn(p))xl> p e Wy,
H(p) = { o, p & Unen Wa

is a homomorphism from Xq into Z.
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< (1): By induction, for every n € N, we construct open sets Wy, V,, C Q.
Since the space Q is regular, the point ¢; and the closed set cl{gx : & > 2} have
disjoint open neighborhoods W; and V;. We may assume that clW; NclV; = @.
If Wy and Vi are chosen for all k¥ < n then we take W,,,1 and V41 so that V,
contain Wy,41 and V41, and the sets cl W,,; and clV,,41 separate the point gn41
and the closed set cl{gx : £ > n + 2}. It is easy to see that (W,) is a sought
sequence.

Finally, let (U,) be a countable base for open neighborhoods about g, with
Ui = Q and U, D Uy for all n € N. Then, when constructing the sequence of
sets Wy, we may take W,, C Uy(n), where k(n) = max{k € N : g, € Ui}. This
provides the desired relation, (cllU,cy Wn)\Upen el Wn = {q}-

(2): It is obvious that the function f is the pointwise sum of the uniformly
convergent series E:’zl &nfn; therefore, f is continuous.

Assertions (3)—(5) may be proven in much the same way by using Proposition
(8, 1.3.6] for (3) and [8, 1.4.11] for (4).

(6): By (5) the function H is weakly* continuous; therefore, H ® u € C(Q) for
all constant functions u : @ — X. It remains to observe that the pointwise norm
of H is bounded by construction and to apply [8, Theorem 1.4.9]. >

3.2.6. Corollary. Let Z and % be CBBs over a completely regular topolog-
ical space Q. Suppose that a sequence (gn)nen, ¢; # g; (¢ # j) converges to a point
q and q # qi for all k € N.

(1) Let z, € Z(qn) (n € N), let z € Z(q), and let the conver-
gence (¢n,zn) — (g,z) as n — oo hold in the topological space
Q® Z (see [8, 1.1.4]). (For z =0, this is equivalent to the equal-
ity limp oo [|Zn]l = 0.) Then there exists a bounded section u €
C(Q, ') such that u(q,) = z,, for alln € N and u(q) = z.

(2) Let H, € Hom(Z ', %) (n € N) and let the sequence (||Hy|)nen be
uniformly vanishing. Then there exists a bounded homomorphism
H € Hom(Z,%) such that H(g,) = Hyp(gn) for all n € N and
H(q) =0.

(3) Let X be a topological vector space. Suppose that the sequence
(zn) C X converges to an z € X. Then there is a continuous
vector valued function u : @ — X such that u(gn) = =z, for all
n € N and u(q) = z.

(4) Let X be a Banach space. Suppose that the sequence (z}) C X' is
convergent weakly* to an ' € X’'. Then there exists a homomor-
phism H € Hom(Xq,Z) such that H(g,) = z, for alln € N and
H(q) =<'

<1 We only need to explain assertion (1). If z = 0, this assertion follows directly
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from Lemma 3.2.5 (3) and Dupré’s Theorem (see (8, 1.3.5]). Dealing with the general
case, use Dupré’s Theorem again and consider a bounded section v € C(Q, Z")
taking the value z at g. From [8, Proposition 1.3.8] it follows that ||z, —v(gn)|| — 0
as n — o0o. Since the assertion under proof is true for the case z = 0, there
is a bounded section w € C(Q, Z") satisfying the equalities w(gn) = zn — v(gn)
(n € N) and w(g) = 0. It remains to put u = v + w. >

3.2.7. Lemma. Let X; C X5 C --- be Banach spaces, let Q be a completely
regular topological space, and let (Up)nen be a partition of Q such that the sets
Ui U---UU, are closed for all n € N. Then there is a CBB %2 over Q satisfying
the following conditions:

(a) Z'|u, =Xn forallneN;
(b) if the sequence of functionals x;, € X,, (n € N) is such that =], ;
extends z], and ||z,|| < 1 for all n € N, then the mapping H
satisfying the relations H|y, = z/, (n € N) belongs to Hom (%2, %).
<1 Consider a (discrete) Banach bundle 2 satisfying condition (a) and define
a continuity structure in 2" as follows: Put

Co = C(Q);
Cn={f€C(Q)ZfEOOIlUlU"-UUn}, n € N.

It is clear that the set of sections
€ = {f1$1+"'+fn1‘n2 fieC;, z; € X5, 1=1,...,n, nEN}

of the bundle Z" is a subspace of the space of all global sections of Z". Moreover,
the set € is stalkwise dense in Z". Indeed, let ¢ € Q, z € Z'(g), and let a number
n € N be such that ¢ € U,. Since the space Q is completely regular, there is
a function f € C,_1 such that f(q) = 1. Therefore, fz belongs to ¥ and passes
through z at ¢. Consequently, ¥ is a continuity structure in 2~ which makes Z°
a CBB.

Let H satisfy condition (b). Verify that H € Hom(Z ,%). By Theorem
[8, 1.4.9], it is sufficient to show that H @ u € C(Q) for allu € €. If u = fiz; +
o+ fnzn € €, where f; € C;, z; € X;,1=1,...,n, then, for all ¢ € Q, the equality
(H ® u)(g) = (u(g)|z,) holds. Next,

(w@)lzn) = fl@)(ziley) + - + fo(a)(@nlzn)-

Therefore, the function H ® u is continuous. >
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3.2.8. DEFINITION. Let 2  be an arbitrary Banach bundle over a set Q.
The function dim £  which, with every point ¢ € @, associates the dimension
dim Z°(g) of the stalk Z(¢) is the dimension of Z .

We say that 2" has constant dimension n if dim 2 (¢) = n for all ¢ € Q.

Lemma. Let Z be a CBB with finite-dimensional stalks over an arbitrary
topological space. For every n =0,1,2,..., consider the following conditions:
(a) the set {dim Z =n} is open;
(b) the set {dim Z <n} is open;
(c) the set {dim & < n} is open;
(d) the set {dim & >n} is closed;
(e) the set {dim Z = n} is closed.

If one of the conditions (a)-(e) holds for every n = 0,1,2,..., then each of
the conditions holds for every n = 0,1,2,.... In this case, all sets mentioned in
(a)—(e) are clopen.

< Tt suffices to observe that, due to [7, 18.1], the sets of the form {dim 2" >n}
and {dim & >n} are open and, therefore, the sets of the form {dim £ <n} and
{dim & < n} are closed. >

3.2.9. Proposition. The following hold:

(1) Let @ be a Baire topological space. Then, for every CBB 2 over @
with finite-dimensional stalks, the union |, 5, int {dim 2" =n} is everywhere dense
in Q.

(2) If the space @ is completely regular and, for every CBB 2~ over Q with
finite-dimensional stalks, the set |, int cl {dim &" =n} is everywhere dense, then
Q@ is a Baire space.

< (1): For proving that the union under consideration is everywhere dense, it
is sufficient, given a nonempty open set U C @, to find an open nonempty subset
W C U such that the dimension of £ is constant on W.

Since @ is a Baire space, there is a number n > 0 such that

V:=intcl{dim £ =n} # @.

Consequently, from [7, 18.1] we easily infer that the set {dim Z < n} is closed;
therefore, V C cl{dim 2 =n} C {dim Z < n}, ie,dim Z < nonV. The relation
V C cd{dim & =n} and the fact that the set V is open imply that there exists
a point ¢ € V N {dim £ =n}. Since the set {dim 2 >n} is open, dim Z > n on
some open neighborhood W C V about ¢q. Thus, the dimension of 2" is constant
on the open nonempty set W Cc V C U.
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(2): Let @ be a completely regular space that is not a Baire space. We will
construct a CBB £ over @ such that 2" has finite-dimensional stalks while the set
Unsoint el {dim & =n} is not everywhere dense.

Since @ is not a Baire space, there exist an open nonempty set U C @ and
a cover (Vy,)nen consisting of nowhere dense subsets V,, C U. Put Uy = Q\U and
Upy1 =V \ (U1 U---UU,) for all n € N. It is clear that, for all n € N, the set
U,, is nowhere dense, the union U; U - -- U U, is closed, and UneN U, = Q.

Consider a sequence X; C X, C --- of finite-dimensional Banach spaces with
strictly increasing dimensions: dim X, < dim X,4; for all n € N. By Lemma 3.2.7,
there exists a CBB Z~ over @ such that %!Un = X, for all n € N. It is easy to see
that

U intcl{dim & =n} = U intclU,, = int Uy,

n>0 m20
where the latter set is not everywhere dense. >
Corollary. If Z is a CBB with finite-dimensional stalks over a Baire space

Q then, for every m = 0,1,2,..., the equality holds

c{dim £ Zzm} =cl U int {dim £ =n}.

nz>m

< Fix a number 0 < m € Z. The inclusion D is obvious. Prove the reverse
inclusion. Let ¢ € Q and dim Z'(g) = m. The union U5, int {dim 2" =n} is
everywhere dense by Proposition 3.2.9 (1),

U int {dim 2 =n} C {dim Z <m},

n<m

and the latter set is closed.
Hence, the point ¢ belongs to the closure of Uan int {dim £ = n}. Therefore,

{dim Z >m} Ccl U int {dim 2" =n},
n>m
which implies the required inclusion. >

3.2.10. The following assertion differs from [8, Theorem 1.4.7] only in the con-
ditions on Q.

Theorem. Let & and % be CBBs over a first-countable completely regular
topological space Q. A mapping H : g € Q — H(q) € B(fé’(q), % (q)) is a homo-
morphism from & into % if and only if H®u € C(Q, %) for allu € C(Q, Z').
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< Necessity follows from [8, Theorem 1.4.4]. Prove sufficiency. In view of
[8, Theorem 1.4.4], it is enough to prove that H is locally bounded. Suppose that
the function ||H|| is not bounded in any neighborhood about a point ¢ € Q. In this
case, since @ is first-countable, there is a sequence (g,) C Q\ {q}, ¢ # ¢; (¢ # J),
convergent to ¢ such that ||H||(g,) > (JJH||(g) +n)? for all n € N. For every n € N,
we take an element z, € Z(gn) so that |H(gn)zn|l = |H(gn)|l and |lzn| < 2.
By Corollary 3.2.6 (1) there exists a bounded section u € C(Q, Z") taking values
u(gn) = £ Ty, for all n € N and u(g) = 0. Then

IH ® ull(@.) = % 1H (@)l > 5 (1HN(g) +n)* > n.

This contradicts continuity of H ® u, since ¢, — q and (H ® u)(g) = 0. >

REMARK. From the above proof and the proof of 3.2.5(3), it is clear that,
in the last theorem, the condition H @ u € C(Q,%) for all u € C(Q,Z") can
be replaced by a “weaker” condition: H @ v € C(Q,%) for all u in a stalkwise
dense C®(Q)-submodule of C®(Q, Z") closed with respect to the uniform norm.
For instance, we may take as such a submodule C*(Q, Z).

3.2.11. Thus, Theorem 3.2.10 is stated for the case of a first-countable topo-
logical space Q. In the literature, the class of Fréchet—Urysohn spaces is usually
the smallest class of topological spaces under consideration which includes the class
of first-countable spaces (cf. [5, 1.6.14]). (Recall that a topological space @ is said
to be a Fréchet-Urysohn space if, for every point ¢ € Q and every P C @, the con-
dition p € cl P implies existence of a sequence in P convergent to g.) Show that
Theorem 3.2.10 cannot be generalized to the class of Fréchet-Urysohn spaces Q.

ExAMPLE. We construct a topological space @ with the following properties:

(a) Q is a Fréchet—Urysohn space;

(b) Q@ is a normal space;

(c) Q is not first-countable;

(d) Q is not locally pseudocompact;

(e) Q@ is a Baire space;

(f) there exist a CBB 2 over Q with finite-dimensional stalks and a mapping
H:geQw— H(g) € Z(q) such that Heu € C(Q) for allu € C(Q, Z),
but H ¢ Hom(Z', Z);

(g) for every infinite-dimensional Banach space X, there is a mapping H :
Q — X' such that H®@u € C(Q) for all u € C(Q, %), but H ¢
Hom(Xq, %).

Consider the set @ = (N x N) U {oco}, where co ¢ N x N, and endow Q with
a topology in the following way. We regard all elements of N x N as isolated points
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and all subsets U C @, for which co € U and
(VmeN) 3npm eN) (Vn2ny,) (m,n) el,

as neighborhoods of co. It is clear that
c(Q) = {f Q=R : lim f((m,n)) = f(co) for all m € N}. (1)
n—0o0

Verify that the topological space Q possesses properties (a)—(g).

(a): It is sufficient to consider a subset P C @ that does not contain a sequence
convergent to oo and show that co ¢ ¢l P. Obviously, for every m € N, there is
a number n,, such that {(m,n) € P :n € N} c {(m,1),...,(m,nm)}. Hence,
the set P and the neighborhood {(m,n) : m € N, n > ny,} U {co} about co are
disjoint; therefore, co ¢ cl P.

(b), (e): See Remark 3.1.9.

Conditions (c) and (d) immediately follow from assertion (f) proven below and
Theorems 3.2.10 and [8, 1.4.7] respectively.

(f): Consider a CBB 2" over @ such that Z2°(q) = R for all g € NxN, 2 (00) =
{0}, and C(Q,Z) = {vu € C(Q) : u(co) = 0}. Define an H by the equalities
H(oco) = 0 and H((m,n)) = m for all (m,n) € N x N. It is easy to verify that
H®ue C(Q) for all u € C(Q, Z) (see (1)). Nevertheless, the pointwise norm of
H is not locally bounded; therefore, by [8, Theorem 1.4.4], H ¢ Hom(Z", %).

(g): By the Josefson—Niessenzweig Theorem [4, XII], there is a weakly* null
sequence (z},) of norm-one vectors in X’. Define H(c0) = 0 € X' and H((m,n)) =
ma,, for all (m,n) € N x N. Then H ® u € C(Q) for an arbitrary section u €
C(Q, Xq). Indeed, for every m € N, the relation limn_,oo(H®u)((m, n)) = 0 holds,
since (H ((m, n)))nGN is a weakly* null sequence and ||lu((m,n)) — u(co)|| — 0 as
n — oo. It remains to observe that the pointwise norm of H is not locally bounded
and to apply [8, Theorem 1.4.4].

3.2.12. Theorem. Let a CBB 2  over a topological space @ have constant
finite dimension, let % be an arbitrary CBB over Q, and let % be a subset of
C(Q, &) stalkwise dense in 2. If a mapping H : p € Q — H(p) € B(Z (p), % (p))
is such that H ® u € C(Q,%) for every w € %, then H € Hom(Z ,%) and
the pointwise norm || H|| is continuous.

< Fix an arbitrary point ¢ € Q and prove continuity of ||H|| at this point. Due
to the relation

|H@)| = sup {HH(pf(mT{n;m u(@) || u e 7}

=sup { (g plH ®ul) @) e 2}



128 Chapter 3

valid for all p € Q, the function ||H|| is lower-semicontinuous. It remains to prove
that the function ||H| is upper-semicontinuous at g. Take an arbitrary ¢ > 0 and
prove that, in some neighborhood U about g, the inequality |H|| < [|H|l(¢) + €
holds.

Since the stalk Z'(q) is finite-dimensional, there is a collection of sections
u = (ug,...,un) C lin% such that the values ui(q),...,un(qg) lie on the unit
sphere and constitute a basis for 2 (g). Since the set

A={XeR": | Aul(q) =1}
is bounded in R™, the number
|AllL :=sup{|A1] + -+ [An] : (A1, .-, An) € A}
is finite. (Here and in the sequel, we denote by Au the sum Aju; + -+ + Aqun.)
Choose some number § € (0,1) such that X5 (6 + |H||(¢)) < IHI(q) +e.
By [16, Lemma 7], there exists a neighborhood Us about g, where 1 — 4 <
IAu]l € 1+ for all A € A. Without loss of generality, we may assume that the col-

lection u(p) = (u1(p), .. ,un(p)) is linearly independent for every element p € Us
(see [7, 18.1]). In particular, an arbitrary vector z € 2 (p) can be represented as

Izl
z = (Azu)(p
eul =)
with a suitable A; € A. Since the sections H ® u;, ¢ = 1,...,n, are continuous,
there exists a neighborhood U C Us about ¢ such that
[Ally max {||1H ® will(p) = |1H @ uill(g)| : i=1,...,n} <&

for all p € U. At a point p € U, the value of the norm || H(p)|| is attained at some
vector z(p) € Z'(p), ||lz(p)|| = 1. Hence,

1#1l(p) = 1 H (p)(p)Il = IH ® (Aspyu)ll(p)

ot
Az myull(p)
< =5 (17 @ (etI®) - 17 @ () 1(9)

+1H © (aryw) (@)

< o (I max {1 © walp) ~ 1H @ ul9)] :
i=1...,n} +1H1@)
< (G 1HI@) < 1HI@ +-.

The fact that H € Hom(Z",%') now follows from continuity of ||H| and [8, Theo-
rem 1.4.4]. >
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Corollary. Let Z and % be CBBs over the same topological space. If Z has
constant finite dimension then the pointwise norm of every homomorphism from
Z into % is continuous.

3.2.13. As we see from the examples below, the constant dimension require-
ment for a bundle £ in Corollary 3.2.12 is essential.

Intending to emphasize diversity of situations in which a homomorphism H €
Hom(Z , ) with a discontinuous norm arises for a CBB £~ with finite-dimensional
stalks, we give three different examples. In the first case, the dimension of 2 is
equal to 0 at a unique discontinuity point of the function ||H|| and the dimension
of & is equal to 1 at other points. In the second case, the dimension of &~ takes
two distinct (possibly, nonzero) values and, in the third case, the dimension of Z
takes infinitely many distinct values and the function ||H|| is discontinuous at every
point.

EXAMPLES. (1) Let @ = [0,1]. Define Z(¢) = R whenever 0 < ¢ < 1 and
Z (0) = {0}. Consider the set {uv € C[0, 1] : u(0) = 0} as a continuity structure in
Z . Then the pointwise norm of the homomorphism H identically equal to values
idg on the half-open interval (0, 1] is not continuous at the point 0 € Q. It is easy
to verify that, in this case, Hom(Z , %) can be identified in a natural way with
the space of real-valued continuous functions defined on the interval [0, 1] bounded
on the half-open interval (0, 1] and vanishing at the point 0 € Q. However, such
functions are far from being always continuous.

(2) This time, consider a completely regular topological space () and let g be
a nonisolated point of Q. Define U; = {¢}, Us = Q\U1, and U3 = Uy = --- = @.
Let X be a finite-dimensional Banach space, let X; be a proper subspace of X,
and let X = X5 = --- = X. Fix a norm-one functional 2’ € X’ vanishing on X;
and define f = 0, #, = 2§ = --- = 2’. Consider the CBB &£ of Lemma 3.2.7
and a homomorphism H satisfying condition (b) of the lemma. It is clear that
IZ||(g) = 0 and ||H]] = 1 outside {q}. Therefore, since the point ¢ is nonisolated,
the function ||H]| is discontinuous.

(3) Let @ = Q be the set of rationals with the natural topology and let n — ¢n,
be an arbitrary bijection from N onto Q. Define U, = {g,} for all n € N and
consider an arbitrary sequence of Banach spaces X; C X C --- and an arbitrary
sequence of functionals z/, satisfying condition 3.2.7 (b). We additionally require
that the dimensions of X,, and the norms of z), be strictly monotone increasing. Let
Z be the CBB of Lemma 3.2.7 and let H be a homomorphism satisfying condition
3.2.7(b). It is obvious that the stalks of 2" have pairwise distinct dimensions and
the pointwise norm of H is discontinuous at every point of Q.

The authors are unaware of an answer to the following question: Given a bun-
dle, is the requirement that the dimension be constant on some neighborhood about
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g sufficient for continuity of the pointwise norms of all homomorphisms at g7 The-
orem 3.3.5(2) in the next section gives a positive answer to this question in some
particular case.

3.3. An Operator Bundle

In this section, we suggest a number of necessary and sufficient conditions for
existence of a Banach bundle B(Z", %) whose continuous sections are homomor-
phisms from a CBB £ into a CBB #%'. Separately treated are the cases of arbitrary
bundles 2" and %, bundles with finite-dimensional stalks, and the case of trivial
CBBs and CBBs with constant finite dimension.

3.3.1. Let 2, %, and & be CBBs over a topological space @, with 2°(¢g) C
B(Z (9),% (q)) forall g € Q.

Lemma. The following assertions are equivalent:
(a) C(Q, Z) = Hom(Z,%);
(b) Hom(Z, %) is a stalkwise dense subset of C(Q, Z) in Z (in other
words, Hom(Z,%) is a continuity structure in Z).

< Equivalence of (a) and (b) follows immediately from Corollary 3.2.4. >
Obviously, a bundle % satisfying condition (a) or (b) of the lemma is unique.
This allows us to introduce the following notion.

DEFINITION. The Banach bundle & satisfying condition (a) or (b) of the above
lemma (if such a bundle exists) is called the operator bundle for the CBBs £  and
% and denoted by the symbol B(Z,%).

The above definition of operator bundle generalizes the analogous notion in-
troduced in [8, 1.2.3] for the case of bundles over extremally disconnected compact
Hausdorff spaces.

3.3.2. The following result, repeatedly used throughout the article, provides
the basic criterion for existence of an operator bundle.

Theorem. Let 2 and % be CBBs over a topological space Q. For existence
of the bundle B(Z ,%), it is necessary and sufficient that the pointwise norm of
every homomorphism from Z into % be continuous.

<1 Necessity for continuity of pointwise norms is evident. Sufficiency of this con-
dition may be explained by using the equivalent definition 3.3.1 (b) of an operator
bundle. The stalk B(Z", % )(q) for each point ¢ € Q is the closure of the subspace
{H(g) : H € Hom(Z ,%)} in the Banach space B(Z (q), % (q)). >

By [8, Corollary 2.2.2], in the case of an ample CBB 2 over an extremally
disconnected compact Hausdorff space @, the pointwise norm of every homomor-
phism from £ into an arbitrary CBB # over @ is continuous. Proven by using
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this lemma, by [8, 2.2.3] we see that, in the case indicated, the operator bundle
B(Z,%) exists. This allows us to regard criterion 3.3.2 as a generalization of
[8, Theorem 2.2.3] to the case of an arbitrary CBB over an arbitrary topological
space.

3.3.3. Proposition. If a CBB % over a topological space @ has constant
finite dimension then, for every CBB % over Q, the operator bundle B(Z , %)
exists.

<1 The claim follows from Corollary 3.2.12 and Theorem 3.3.2. &>
Examples 3.2.13, with 3.3.2 taken into account, demonstrate that the constant
dimension requirement for a bundle £~ in the last proposition is essential.

3.3.4. Proposition. Suppose that a CBB 2~ over a completely regular topo-
logical space @ has constant finite dimension. Then, for every CBB % over Q,
the equality B(Z,%)(q) = B(Z (), % (q)) holds at every point ¢ € Q. In par-
ticular, if Z and % have constant finite dimension, then B(Z , %) has the same
property. ‘

< Fix a point ¢ € Q and a linear operator S € B(%Z (q), % (q)). If we construct
a homomorphism H € Hom(Z,%) such that H(q) = S then the claim will be
proven.

First, observe that if W is a closed neighborhood about g, a section w over W
is continuous (locally bounded), and a function f € C(Q) vanishes outside W, then
the global section f * w, defined by the formula

fw(p), peWw,

oo ={] s

is continuous (locally bounded). Hence, in view of [8, Theorem 1.4.4], given a ho-
momorphism G € Homw (£, %), the mapping

H:f*G:pGQ»—»H(p)GB(%(p)yg(P))

is a homomorphism from £ into % because the pointwise norm of H is locally
bounded and H@u = f * (G®u) € C(Q,¥) for all u € C(Q, X).

Recalling the fact that the space Q is completely regular, we can require f(q) =
1. Then H(q) = G(q). Therefore, for proving the claim, it suffices to define
a homomorphism G € Homy (2, %) on any closed neighborhood W about g taking
value S at the point g. By [16, Lemma 7], there exists a linear operator T : 2 (q) —
C(Q, &) such that, for every z € 2 (q), the inequality ||z| < [|[Tz|| holds on some
neighborhood U about ¢. Since, for every point p € U, the operator

Tp:z € Z(q)— (Tz)(p) € Z (p)
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is invertible and the dimension of 2 is constant, we conclude that the range of T'
is stalkwise dense in 2" on U. By Dupré’s Theorem (see [8, 1.3.5]), there exists
a collection of sections ¥ C C(Q, %) such that {v(q) : v € ¥} is a basis for
the subspace Im S C #/(q) on the unit sphere. Therefore, by [16, Lemma 7], there
is a linear operator R : ImS — C(Q, %) such that the range of R coincides with
the linear span of ¥ and ||Ry|| < 2]|y| for every y € Im S on some neighborhood
V about ¢g. By analogy to the definition of the operators T},, we consider a linear
operator R, : Im S — % (p) for every point r € V. It is obvious that the operator
R, is invertible and ||R,|| < 2 for all » € V. At the same time, for all p € U,
the estimate |7, < 1 holds.

Finally, take a closed neighborhood W C UNV about ¢ and, with each element
p € W, associate the linear operator

G(p)=RpoR;'0SoTyo T, : X (p) — ¥ (p).

By [8, Theorem 1.4.9], the mapping G : pe W — G(p)€ B(Z (p), % (p)) thus
obtained is a sought homomorphism, because G(q) = S, |Gl < 2[|R; || S| T,
and Gue C(W, %) forall u € ImT. >

3.3.5. Assertion (1) of the following theorem under the assumption # = Z
presents a particular answer to G. Gierz’s question [7, 19, Problem 1, p. 231].

Theorem. Let & be a CBB with finite-dimensional stalks over a completely
regular Baire space Q and let % be a CBB over Q.
(1) Given a point q of the everywhere dense set |, ,int{dim Z"=n}
(see Proposition 3.2.9) and an operator T € B(Z (q), % (q)), there
exists a homomorphism H € Hom (%, %) such that H(q) =T and
1= < 17
(2) Suppose that there is a countable base at a point ¢ € Q and the bun-
dle % has nonzero stalks on an everywhere dense set. The pointwise
norms of all elements in Hom(Z, %) are continuous at g if and only
if the dimension of % is constant on some neighborhood about q.

<(1): Let 0 < n € Z, g€ int{dim 2 =n}, let U C int{dim £ =n} be a closed
neighborhood about ¢, and let T' € B(Z (g),#(g)). From Proposition 3.3.4 and
[8, Lemma 1.3.9] we easily infer that there is a homomorphism G € Homy (£, %)
such that G(q) =T and |G| < ||T||. Since the space @ is completely regular, there
exists a continuous function f : Q — [0,1] satisfying the equalities f(g) = 1 and
f=0o0n Q\U. It remains to put H = f x G (see the proof of 3.3.4).

(2): Theorem 3.2.12 implies the sufficiency part of the assertion. For proving
necessity, suppose that, in every neighborhood about g, there are points at which
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the dimension of 2" is greater than dim 2 (¢) =: m, and construct a homomorphism
H € Hom(%', %) with discontinuous pointwise norm at g.
By Corollary 3.2.9, the point ¢ belongs to the closure of the open set

U int {dim Z =n};

n>m

moreover, the hypotheses imply that the set {dim % > 0} is open. Since at the point
q there is a countable base, we may take a sequence (¢g,) C U int {dim £ =n}nN
{dim & > 0}, ¢; # q; (i # j), convergent to g.

According to Dupré’s Theorem [8, 1.3.5], there exist bounded sections ui, ...,
um € C(Q, Z) with linearly independent values u1(g), . .., um(g). From [7, Propo-
sition 18.1] it follows that the sections are pointwise linearly independent on an open
neighborhood U about q. Without loss of generality, we may assume that g, € U
for all n € N.

For every n € N, the inequality dim 2 (g,) > m and nondegeneracy of the stalk
% (gy) allow us to find an operator Ty, € B(ﬁ&”(qn),ﬁ’/(qn)) such that 7}, = 0 on
lin{u1(gn),-- -, um(gm)} and |T|| = 1. By (1), for every number n € N, there
is a homomorphism H, € Hom(Z , %) satisfying the relations H,(g,) = T, and
IHn| < 1.

Let %y be the CBB over U with continuity structure lin{uil|u,...,umlv},
let % = @]U, and let » € N. By Theorem 3.2.12, the mapping p € U —
Hpo (D) |tinus (0),...,um(p)} € B(Z0(p), % (p)) has continuous pointwise norm. There-
fore, we can take an open neighborhood V,, C U about g, such that

n>m

1 Hr (D) [1in{ur (), um )3 | < 1/7

for all p € V,.
By Lemma 3.2.5 (1), there exists a sequence (W) of open subsets of @ satis-
fying the conditions cl W,, N cl Uk?én Wi = &, gn € W,, and

(cl U Wn>\ J dWa = {g}.

neN neN

We additionally require that W,, C V,, for all n € N. Moreover, consider a sequence
of continuous functions f, : @ — [0, 1] such that f,(gn,) =1 and f, =0 in Q\W,,.

Define Fo (D) Halp), D EW
_ n\P)dn(pP), P n»
H(p) B { 07 p ¢ UnEN W’”

for all p € Q. It is obvious that ||H|| < 1. Since the space Q is completely regular,
the set Ny = {u € C(Q, Z) : u(g) = 0} enlarges the linear span of lin{us, ..., un}
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to a subset of C(Q, Z") stalkwise dense in Z". By applying [8, Theorem 1.4.9] to
this subset, we show that H is a homomorphism from 2 into %.

If v € lin{uq,...,un} then the series Ele fnHp ® u uniformly converges.
Indeed, its terms have disjoint supports, the pointwise norm of u is bounded, and
I fnHn ® ul| < |Ju for all n € N. Then, by [8, Theorem 1.3.6], the section H ® u
is continuous as the sum of the series.

Now let v € Ng. The section H ® u is continuous on every set clW,, n € N,
since cl W, is a subset of an open set Q \ cl Uk;én Wk, and HQu = f,H, ® u on

this subset. If
pe (cl U Wn>\ U awa

neEN neN

then p = ¢ and the section H @u is continuous at p, since ||H|| < 1 and the function
llull is continuous and vanishes at g. Finally, the set Q\ cl{J, oy Wa is open and
the equality ||H ® u|| = 0 holds on this set.

Thus, H € Hom(Z',#%). Furthermore, |H||(g) =0, |H||(gn) = 1 for alln € N,
and g, — ¢; therefore, the function ||H|| is discontinuous at ¢q. >

3.3.6. Theorem. Let Z and % be CBBs over a first-countable completely
regular Baire space ). Suppose that all stalks of % are finite-dimensional and
the bundle % has nonzero stalks on an everywhere dense subset of Q. Then the op-
erator bundle B(Z ,%') exists if and only if the sets {dim 2 =n} are clopen for
alln=0,1,2,....

< Sufficiency of the indicated condition for existence of the bundle B(Z", %)
follows from Proposition 3.3.3.

For proving necessity, observe that, by Theorem 3.3.2 and assertion (2) of
Theorem 3.3.5, existence of the bundle B(Z", #') implies that the sets {dim 2" =n}
are open for all n =0,1,2,... . It remains to use Lemma 3.2.8. >

3.3.7. The following assertion follows immediately from Theorem 3.3.6.

Corollary. Let Z be a CBB with finite-dimensional stalks over a first-counta-
ble connected completely regular Baire topological space Q and let % be a CBB
over Q with nonzero stalks on an everywhere dense subset of Q. Then existence of
the bundle B(Z ,%’) is equivalent to the fact that the dimension of 2 is constant.

Observe that the space @ satisfying the hypotheses of the above corollary
may fail to be metrizable. It is easy to verify that the Nemytskil plane is such
a nonmetrizable space (see [5, 1.2.4, 1.4.5, 2.1.10]).

3.3.8. In the rest of this section, we mainly deal with trivial CBBs. For these
CBBs, the existence of the bundle B(Xq, Yg) is closely connected with the question
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whether the inclusion
C(Q, B(X, Y)) C Hom(XQ, YQ)

is strict (considered in 3.2.3).

Proposition. Given Banach spaces X and Y, the bundle B(Z,%) exists if
and only if C(Q, B(X,Y)) = Hom(Xg,Yg). Moreover, if the bundle B(Xo,Yo)
exists then it is equal to the trivial CBB with stalk B(X,Y).

< We first prove the second assertion. Let B(Xgq,Yq) exist. Since the rela-
tions B(Xg,Yo)(q) C B(Xq(q),Yq(g)) = B(X,Y) are true at each point ¢ € Q
and the relation C(Q,B(X,Y)) C Hom(Xq,Yp) = C’(Q,B(XQ,YQ)) holds, every
stalk of B(Xg, Yq) coincides with the space B(X,Y). In this case, C(Q, B(X,Y))
is a continuity structure for both B(X,Y)q and B(Xgq,Yq); therefore, these two
CBBs coincide (see [8, 2.1.8, 2.1.9]). Whence it is immediate that the equality
C(Q, B(X, Y)) = Hom(Xg,Yq) is necessary for existence of B(Xq,Yq). Suffi-
ciency is evident by Theorem 3.3.2. >

3.3.9. Corollary. Let X and Y be Banach spaces and let X be finite-dimensi-
onal. Then the bundle B(Xg,Yq) exists and, moreover, B(Xq,Yq) = B(X,Y)qo
and Hom(Xq,Yg) = C(Q,B(X, Y))

< The claim follows from 3.3.2 and 3.3.8. >

3.3.10. Theorem. Let X be an infinite-dimensional Banach space and let Q)
be a topological space. Suppose that, for some CBB % with nonzero stalks, the bun-
dle B(Xq, %) exists. Then the space Q is functionally discrete.

< Assume that there exists a not locally constant function in C(Q) and con-
struct a homomorphism H from Xg into % with discontinuous pointwise norm.
By the theorem of 3.3.2, the theorem will be thus proven.

Due to Lemma 3.1.13, there exists a weakly* continuous vector valued func-
tion w : Q — X' with bounded and discontinuous pointwise norm. Let g be
a discontinuity point of |Jw|]. Consider a section v € C(Q,%) with nonzero
value v(q) and define a mapping H : ¢ € Q — H(q) € B(X,@/(q)) by the rule
H(g) : = € X — (z|w(q))v(q) for all ¢ € Q. Then, for every constant sec-
tion u € C(Q, Xg), the equality H ® u = (ulw)v € C(Q,#) holds. Moreover,
IH] = Jlw]llv|. Boundedness of |Jw| implies local boundedness of IH|. There-
fore, H € Hom(Xq, %) by [8, Theorem 1.4.9]. Finally, since the function flwll is
discontinuous at ¢, and the function |v|| is continuous and nonzero at this point,
121 = lwlllvl ¢ C(Q). >

Below (see 3.3.13) we show that, in the last theorem, the necessary condition
for existence of the operator bundle B(Xq,%) (namely, functional discreteness
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of @) is also sufficient in case the Banach space X is separable. In general, this
condition is not sufficient (cf. Proposition 3.3.14 as applied to the Banach space X’
and the bundle # = £).

3.3.11. Proposition. Let X and Y be Banach spaces, Y # {0}, and let Q be
a topological space that is not functionally discrete. The following are equivalent:
(a) the Banach bundle B(Xq,Yq) exists;
(b) B(X,Y)q = B(Xq,Yq);
(c) Hom(Xgq,Yy) = C’(Q,B(X, Y));
(d) X is finite-dimensional.

<1 Equivalence of (a), (b), and (c) is proven in 3.3.8, (d) follows from (a) by
3.3.10, and (a) follows from (d) by 3.3.9. >

3.3.12. Proposition. Let Z be a CBB over a functionally discrete topological
space Q. Suppose that C(Q, ") includes a countable subset stalkwise dense in Z .
Then, for every CBB % over Q, the bundle B(Z , %) exists.

< Let Z C C(Q, Z) be a countable subset stalkwise dense in 2". Consider
an arbitrary CBB &% over @, a homomorphism H € Hom(Z,%), and a point
g € @ and prove continuity for the pointwise norm of H at q. Since the space Q
is functionally discrete, there is a neighborhood U about q on which all functions
lull, | H ® ull, v € %, are constant. In view of stalkwise denseness of % in &,
the equality || H||(p) = sup{||H ® u||(p) : u € %, |Jull(p) < 1} holds for every point
p € Q; therefore, the function ||H|| is constant on U and, in particular, ||H|| is
continuous at ¢q. It remains to use Theorem 3.3.2. >

3.3.13. Corollary. Let Q be an arbitrary topological space and let X be
a separable infinite-dimensional Banach space. The following are equivalent:
(a) for every CBB & over Q, the bundle B(Xq, %) exists;
(b) the bundle B(Xq, %) exists;
(c) the space Q is functionally discrete.
<1 The implication (a)—(b) is evident, (c) follows from (b) by 3.3.10, and (a)
follows from (c) by 3.3.12. >

3.3.14. Proposition. Let X be a nonseparable Banach space. There exists
a functionally discrete normal topological space Q such that, for every CBB % over
@ with nonzero stalks, the bundle B(Xq, %) does not exist.

< Given a subset F' C X, denote by the symbol F* the annihilator of F, i.e.,
Ft = {2’ € X' (z]z') = 0 for all z € F}. Consider the set

X = {F!: F is a countable subset of X}
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ordered by the rule
F*<F & FD>F;.

It is easy to see that all countable subsets of R have upper bounds. Moreover,
N has no greatest element. Indeed, since the space X is nonseparable, for every
annihilator F+ € X, there exists a nonzero element € X outside the closure of
the linear span of F. On the other hand, there is a functional in F- with nonzero
value at z. Whence, F+ < (F U {z})*.

As is shown in 3.1.11, the space @ := R* is normal and functionally discrete.

Let Z° be an arbitrary CBB over @ with nonzero stalks. Construct a ho-
momorphism H € Hom(Xg,#') with discontinuous pointwise norm. To this end,
consider a section v € C(Q, %) taking nonzero value at the point co € Q. Since
{0} ¢ RN, for every element o € RN, we may take a norm-one functional z/, € a.
Let H(a) = v(a) ® 2, for all @ € R and let H(co) = 0. Then, by [8, Theo-
rem 1.4.9], the mapping H is a homomorphism, since, for every constant section
uy =z, ¢ € X, the section 'H ® u, vanishes on the interval ({z}+, cc]; therefore,
H ® u, is continuous. At the same time, the pointwise norm of H is discontinuous
at co. Consequently, by Theorem 3.3.2 the bundle B(Xg, %) does not exist. >

3.3.15. Lemma. Let R be an upward-directed set without greatest element
and let & be a CBB over R* (see 3.1.11). Suppose that in C(X*, Z") there is
a stalkwise dense subset such that every subset of X of the same cardinality has
an upper bound. Then, for every CBB % over R*, the bundle B(Z ,%) exists.

< Let % be a subset of C'(R*, Z") satisfying the hypotheses of the lemma.

Consider an arbitrary CBB % over R* and verify continuity for the pointwise
norm of an arbitrary homomorphism H € Hom (2 ,#'). Hence, by Theorem 3.3.2,
the assertion will be proven.

For every element v € %, take an a, € R such that |Jul|(a) = |Ju]l(co) and
IH ® ul|(e) = ||H ® u||(c0) for all & > a,, (see Remark 3.1.11(1)). Then, for every
u € %, the two latter equalities hold for o > 8, where 3 is an upper bound for
the set {ay, : uw € Z}. Since % is stalkwise dense in 2, the value of the norm
l|H|| can be calculated at every point @ € R* by the formula ||H||(c) = sup{||H ®
ull(a) : u € %, |Jul(e) € 1}. From this formula we readily see that, for @ > 3,
the pointwise norm of H takes the value ||H||(«) = ||H||(c0) and, therefore, is
continuous. >

Corollary. Given a Banach space X, there is a nondiscrete normal topological
space Q such that, for every CBB % over Q, the bundle B(Xq, %) exists.

< It is sufficient to take @ = R°*, where X is a cardinal greater than the cardi-
nality of X, and use Lemma 3.3.15. >
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3.4. The Dual of a Banach Bundle

In this section, we consider the problem of existence and the properties of
the bundle £ dual to a Banach bundle 2 .

In 3.4.2, we state various necessary and sufficient conditions for existence of
a dual bundle. All assertions in the subsection are direct consequences of results
of the preceding section. Proposition 3.4.3 asserts existence for a dual bundle of
a CBB with Hilbert stalks.

One of the natural steps in studying the notion of a dual bundle is establishing
norming duality relations between the bundles 2" and 2. Item 3.4.5 is devoted to
this subject. As a preliminary, in 3.4.4, we discuss the condition that the stalks of
a CBB are stalkwise normed by the values of the corresponding homomorphisms.
Unfortunately, we have to leave open the question whether this condition always
holds, restricting ourselves to listing certain situations in which the condition is
satisfied.

In 3.4.6-3.4.9, the interrelation is considered between separability of a distin-
guished stalk of a CBB and finiteness of the dimension of the stalks of the bundle
or of the stalks of its dual.

The rest of the section (3.4.10-3.4.15) is devoted to studying the second dual
bundle, Z”. Among the topics considered here, are existence of 2™/, isometry
between the bundles under study, and embedding of a Banach bundle into its second
dual.

3.4.1. DEFINITION. Let £ be a continuous Banach bundle. The bundle
B(Z',%Z) (whenever the latter exists) is called the dual of 2" and denoted by
the symbol Z”. If the bundle £ exists then we say that 2" has the dual bundle.

By Theorem 3.3.2, the dual 2/ exists if and only if the pointwise norms of all
homomorphisms from £ into % are continuous.

3.4.2. Proposition. The following are true:

(1) Every CBB 2 with constant finite dimension over a topological
space @ has the dual bundle. Moreover, if Q) is completely regular
then Z'(q) = Z'(q)' for allq € Q.

(2) ACBB £ with finite-dimensional stalks over a first-countable com-
pletely regular Baire topological space has the dual bundle if and
only if {dim & =n} is a clopen set for every n =0,1,2,....

(3) Suppose that a trivial CBB with stalk X has the dual bundle. Then
the latter is the trivial CBB with stalk X'.
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(4) If a trivial CBB with infinite-dimensional stalk over a topological
space () has the dual bundle then Q is functionally discrete (if, in
addition, @ is completely regular then all of its countable subsets
are closed).

(5) For every nonseparable Banach space X, there exists a functionally
discrete topological space @ such that the CBB Xg has no dual
bundle.

(6) A trivial CBB with infinite-dimensional separable stalk over a topo-
logical space @@ has the dual bundle if and only if @} is functionally
discrete.

(7) For every Banach space X, there exists a nondiscrete normal topo-
logical space Q such that the CBB X has the dual bundle.

(8) If a topological space @ is not functionally discrete then, for every
Banach space X, the following are equivalent:
(a) the dual (Xg) exists;
(b) (X")q = (Xq);
(c) C(Q, X') = Hom(Xq, %);
(d) X is finite-dimensional.
< Assertions (1)—(8) follow directly from 3.3.3 and 3.3.4, 3.3.6, 3.3.8, 3.3.10,
3.3.14, 3.3.13, Corollary 3.3.15, and 3.3.11. >
REMARK. Examples 3.2.13 (1)-(3), with 3.3.2 taken into account, imply that
the constant dimension requirement in assertion (1) of the above proposition is
essential for existence of a dual bundle.

3.4.3. Lemma. Let Q be a topological space and let Z be a CBB over @ with
Hilbert stalks (i.e., all stalks of 2" are Hilbert spaces). For every global section u
of Z and every point q¢ € Q put

h(u){g) = (-, u(q)) € Z'(q)"

Then h|C(Q, Z7)] C Hom(Z , Z). Moreover, h|C(Q, )] is a continuity structure
in the (discrete) Banach bundle with stalks 2" (g) (¢ € Q).

< By [8, 1.4.4], the inclusion h[C(Q, Z)] C Hom(Z", Z) follows from the re-
lations

(ualh(w2)) = (), w2 ) = 3 (Il + fuzl® ~ s = wall?) € C(Q),
la(ua)l = fual

valid for all uy,us € C(Q, Z"). The second assertion follows from the Riesz Theo-
rem. B>
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Proposition. Let & be a CBB with Hilbert stalks. If the dual 2" exists
then &' is isometric to 2 (see [8, 1.4.12]).

< Let @ be a topological space and let 2" be a CBB over Q with Hilbert stalks.
Consider a CBB &% with stalks % (q) = 2 (¢) (¢ € Q) and continuity structure
€ = h[C(Q, Z)] (see the previous lemma). By [8, Theorem 1.4.12 (3)], the bundles
Z and & are isometric. Stalkwise denseness of % in % and the relations ¥ C
Hom(Z',Z) = C(Q, Z") imply that, at every point ¢ € Q, the stalks .2”(g) and
% (q) coincide and ¥ is a continuity structure in 27, ie., ' =%. >

3.4.4. DEFINITION. Let 2" be a CBB over a topological space Q. Say that
Hom(Z ,#) norms Z on a subset D C Q if, for every point ¢ € D and every
z € Z(g), the equality ||z|| = sup{|[(z|H(q))| : H € Hom(Z',%), |H| < 1}
holds. Say that Hom(Z", %) norms 2 if Hom(Z", %) norms 2" on Q.

We are not aware of an example of a CBB 2" for which Hom(.2", #Z) does not
norm % . (Moreover, we do not know if there exists a nonzero Banach bundle whose

dual is zero.) At present, we can only indicate some classes of Banach bundles 2~
for which Hom(Z", #Z) does norm 2. The following bundles fall in such a class:

(1) a CBB & over a topological space @ such that, for every g € Q, the set
{H(q) : H € Hom(Z',%)} € Z (g)' norms Z (q) and, for every homo-
morphism H € Hom(Z, %), there is a homomorphism G € Hom(Z", %)
such that G(q) = H(q) and ||G|| € C(Q);

(2) a CBB & over a completely regular topological space @ satisfying the fol-
lowing conditions: for every ¢ € Q, the set {H(q) : H € Hom(Z', %)} C
Z (g)) norms Z (¢) and, for every homomorphism H € Hom(Z ,%),
there is a homomorphism G € Hom(Z, %Z) such that G(¢) = H(g) and
the pointwise norm of G is continuous at g;

(3) a trivial CBB;

(4) a CBB with constant finite dimension over a completely regular topolog-
ical space;

(8) a CBB over a compact topological space or a locally compact Hausdorff
topological space which admits a countable stalkwise dense set of contin-
uous sections;

(6) a CBB with finite-dimensional stalks over a metrizable locally compact
space;

(7) a CBB with Hilbert stalks;

(8) a CBB over a regular extremally disconnected topological space;

(9) a CBB over N with separable stalk at oo;

(10) a CBB £ over a Hausdorff topological space with finitely many noniso-
lated points such that the stalks of 2" at these points are separable;
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(11) the dual of a CBB.

< A proof of the fact that Hom(Z", %) norms 2  in cases (1) and (2) can be
easily obtained by multiplying the homomorphism G by a suitable element of C(Q).

Cases (3), (4), and (7) are easily reduces to case (1) with the help of Corollary
3.2.3, Proposition 3.4.2(1), and Lemma 3.4.3 respectively.

Case (5) for a compact topological space is considered in [7, 19.16], and the case
of a locally compact Hausdorff (and, hence, completely regular) space is reduced to
the case of a compact space by employing a compact neighborhood about an ar-
bitrary point ¢ and multiplying the homomorphism by a continuous real-valued
function equal to unity at g and vanishing outside the neighborhood under consid-
eration. By analogous reasoning, case (6) can be reduced to (5) with the help of
assertion [7, 19.5 (iii)].

(8): Let 2 be a CBB over a regular extremally disconnected topological
space D. Consider an extremally disconnected compact space @ that includes
D as an everywhere dense subset, and let 3.2 be the Stone-Cech extension of 2
onto @ (see [8, 1.1.4, 2.5.10]). Denote by 3.2 the ample hull of 3.2 (see [8, 2.1.5]).
With every homomorphism H € Hom(8.2 , %) associate the mapping H : ¢ € Q
H(q)lg2 (g, ¢ € Q- From [8, 1.4.4] it follows that H € Hom(8Z ,%). Applying
[8, Theorem 2.3.3 (1)] to the bundle 3.2, we conclude that Hom(8.2 , %) norms
BZ . It remains to observe that {H|p : H € Hom(82", %)} C Homp(Z ,%).

(10): If a Hausdorff topological space @ has finitely many nonisolated points
then, as is easily seen, each of these points is separated from the other nonisolated
points by a clopen neighborhood. Consequently, without loss of generality, we may
assume that @ has a single nonisolated point q.

Let 2 be a CBB over Q with the stalk 2 (q) separable. It is sufficient, given
an z’' € Z'(q), ||z'|| < 1, to construct a homomorphism H € Hom(Z , %) taking
the value H(g) = z’ and satisfying the inequality ||H|| < 1.

Consider a countable system {z, : n € N} of linearly independent elements
in Z (¢g) whose linear span is everywhere dense in 2 (q) and, employing Dupré’s
Theorem (see [8, 1.3.5]), with each number n € N associate a section u, € C(Q, Z")
passing through z,, at ¢. By [7, Proposition 18.1], for every n € N, there exists
a neighborhood U,, about ¢ such that the sections u1,...,u, are pointwise linearly
independent over U,. For all n € N and p € U,, define a functional y,(p) :
lin{u1(p), ..., un(p)} — R by the formula (u;(p)|yn(p)) = (wi(g)|z'), i=1,...,n.

Since ||z'|| < 1, in view of [16, Lemma 7], each neighborhood U, about ¢ can
be replaced by a smaller neighborhood V,, so that the inequalities ||y, (p)|| < 1 be
valid for all p € V,,. Without loss of generality, we may assume that V,, D V41 for
allm e N.
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The fact that the set {un, : n € N} is pointwise linearly independent over

Voo = n Va
neN

allows us, for every point p € Voo, to define a functional yoo(p) : lin{u,(p) : n €
N} — R as a common extension of the functionals y,(p), n € N, ie., to put
{(un(p)|Yoo (P)) = (un(q)|x’) for all n € N. Observe that ||yee(p)|| < 1 for p € Vi
Define
0: p ¢ Vl;
H(p) = yn(p): pe Vn\vn+1§

-y-oo(p)a pe VOO7

where 7,(p), 1 € n < oo, is an arbitrary extension of y,(p) onto the entire stalk
Z (p) with norm preserved. It is clear that H(g) = =’ and || H|| < 1.

Denote by % the set lin{u,, : n € N} complemented by all sections with single-
ton supports. Obviously, the set % is stalkwise dense in 2 and, for each u € %,
the function (u|H) is constant on some neighborhood about ¢ and, hence, continu-
ous. Consequently, by Theorem [8, 1.4.4], the mapping H is a homomorphism.

(9): This is a particular case of (10).

(11): Let Q be a topological space and let 2" be a CBB over Q which has
the dual bundle. From [8, 1.3.9] it follows that, for every point ¢ € @ and every
functional z’' € Z/(g), the relation

'l = sup {(u(g)l2") - v € C(Q, 2)}

holds. On the other hand, by [8, Theorem 1.4.4], for each section u € C(Q, Z),
the mapping

u" g€ Q> u(g)lai(

belongs to Hom(Z/, %) and, moreover, ||u”|| < |lu||. Consequently, Hom(Z"', %)
norms Z'. >

3.4.5. Assertion (3) of the following proposition gives a positive answer to
G. Gierz’s question [7, 19, Problem 2, p.231] for the bundles 3.4.4 (1)—(11) as well
as for bundles with finite-dimensional stalks over completely regular Baire spaces
(see Theorem 3.3.5 (1)).

Proposition. Let Z be a CBB over a topological space Q.
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(1) Suppose that Z has the dual bundle. Then, for every point g € Q
and every element ' € Z'(q), the equality

ll2'|| = sup {|(u(g)|z")| : uw € C(Q, &), lull < 1}
holds. In particular, for every section u' € C(Q, Z'), the relation
'l = sup {[(u|u)] : w € CQ, Z), lull <1}

holds in the vector lattice C(Q).
Suppose that Hom(Z , %) norms & on an everywhere dense subset of Q.

(2) For every section u € C(Q, Z), the relation
llull = sup {|(ulH#)| : H € Hom(Z", %), |H| <1}

holds in the vector lattice C(Q).

(3) The uniform norm of every section u € C®(Q, ') is calculated by
the formula

le)loo = sup{”(u|H)HOQ : H € Hom(Z, %), |H| < 1}.

< (1): Since 2’ € Z'(q)’ and the set C(Q, Z") is stalkwise dense in 2, there
is a sequence of sections (u,) C C(Q, Z) such that [Ju,|/(g) <1 and ||z'|| — 1/n <
(un(q)|z’y < ||2’|| for all n € N. It remains to observe that, by [8, Lemma 1.3.9],
for every m, there is a section v, € C(Q, Z) satisfying the relations v,(g) = un(q)
and foll < 1.

(2): Let D be an everywhere dense subset of @ on which Hom (2", %) norms
& and consider an arbitrary section v € C(Q, Z") and put

Z = {(u|H) : H € Hom(Z , %), |H| < 1}.

It is clear that |lu| is an upper bound for &. If g € C(Q) is an arbitrary upper
bound of & then it is easy to see that, for every point ¢ € D,

9(q) > sup f(q) = llull(9);
fez

hence, g > [|u]|-
(3): Let u € C¥(Q, Z). It is clear that

lulloo = sup{||(u|H)“Oo : H € Hom(Z', %), |H| < 1}.
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To prove the assertion, for an arbitrary & > 0, find a homomorphism H belonging
to Hom (2", %) with ||H|| < 1 and such that ||ulle — & < |[(u[H)|lco-

Consider a point ¢ € @ satisfying the inequality [lul|(¢) > |lu/lc — € and
a neighborhood U about this point on which |Jul] > ||ull — €. Since Hom(Z, %)
norms 2 on an everywhere dense subset of @, there is a p € U such that

lull(®) = lu(@)l| = sup {|(u(p)|H(p))| : H € Hom(Z', %), I1HI <1};

therefore, ||ulleo — € < [(u(p)|H(p))| for some homomorphism H € Hom (%', %),
IH|| < 1. Consequently, ||ullo — € < |[{u|H)|lco- &>

3.4.6. Theorem. Let Q be a completely regular topological space and let
g € Q be a nonisolated point at which there is a countable base. Suppose that
a CBB 2 over Q has the dual bundle. Then separability of the stalk Z (q) implies
that the stalk 2''(q) is finite-dimensional.

< Suppose that the stalk 2°(g) is separable and the stalk 27(g) is infinite-
dimensional. We will construct a homomorphism H from £ into Z with discon-
tinuous norm and thus, according to Theorem 3.3.2, obtain a contradiction with
the hypotheses.

Let a set {z,, : n € N} be everywhere dense in 2 (g) and let (z7,) be a weakly”
null sequence of elements in 2Z/(g) such that ||z},|| = 1 for every n € N (see 3.1.3).
We assume that |(zs|z])| < 1/n for ¢ = 1,...,n, since this can be fulfilled by
passing to a subsequence. Making use of Dupré’s Theorem (see 8, 1.3.5]), for every
n € N, consider sections u, € C(Q, Z) and v, € C(Q, Z"’) such that u,(q) = zn
and v, (q) = z,.

Let (Un)nen be a neighborhood base at g. Since Q is a Hausdorff space, by
induction we can construct a new neighborhood base (Vi )nen at g such that, for
every n € N, the following conditions hold: V11 C VoNU1N-- -NU,, the difference
V,\Vn41 contains a point g, together with an open neighborhood W,, about g,
and the estimates 1/2 < |Jun|| < 2 and |{u;|va)| < 1/n, 4 = 1,...,7, hold on V.
Show that, for every continuous section v € C(Q, Z") and an arbitrary € > 0, forn
large enough, the inequality |(u|v,)| < € holds on V;,. Indeed, let |[u(q) — k|l < e/4
and 1/1 < ¢/2 for some k,I € N. Take an element V,, of the constructed neighbor-
hood base about g on which [Ju — ug|] < /4. Then, for every n > max{k,l,m},
the following relations hold on V:

[(ulvn)] < [(u = uk | vn)| + [ {ug|vn)|

€ €
<lu-uilloal +1/n < S 2+ 5 =
Now define a mapping H : p € Q — H(p) € Z"'(p). Put H(p) = 0 € Z(p)’
whenever p ¢ |J,cy Wn and, for every n € N, put HIWn = (fnvn)|wn, where
fn: Q — [0,1] is a continuous function equal to 1 at gn and vanishing outside W/,.
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The function (u|v) : @ — R is continuous as the pointwise sum of the series
Yoo fa{ulvn) that uniformly converges due to pairwise disjointness of the sets Wi,
(n € N) and the relations supp fr C Wy and supy,, [(u|vs)| < supy, [(u|vp)| — 0
as n — 0o.

Thus, H is a homomorphism, since |H|| < 2 (see [8, 1.4.4]). At the same time,
IH0(gn) = 1fn(gn)lllvnll(gn) = llunll(an) > 1/2 for every n € N. Moreover, ¢, — g
and ||H||(¢g) = 0. Consequently, the homomorphism H has discontinuous pointwise
norm. >

3.4.7. Corollary. Let Q be a completely regular topological space and let
g € @ be a nonisolated point at which there is a countable base. Suppose that
a CBB Z over Q with Hilbert stalks has the dual bundle. Then the stalk 2 (q) is
separable if and only if it is finite-dimensional.

Thus, if a CBB 2" with Hilbert stalks over a completely regular topologi-
cal space has the dual bundle, then the stalk of 2" at a nonisolated point with
a countable base cannot be isometric to £2.

3.4.8. Proposition. Let Q = N be the one-point compactification of the set
of naturals. A CBB 2" over Q with the stalk 2 (0o) separable has the dual bundle
if and only if the dimension of % is finite and constant on some neighborhood
about oco.

< Sufficiency follows from Proposition 3.4.2(2). Establish necessity. Sup-
pose that the bundle 2 under consideration has dual bundle. Then, due to 3.4.6,
the space Z/(00) is finite-dimensional, whence, in view of 3.4.4 (10), it follows that
the stalk 2"(c0) is finite-dimensional too. Put m = dim 2 (c0) and consider sec-

tions u1,...,un € C(Q,Z") with linearly independent values ui(00),. .., um(c0)
which exist by the Dupré Theorem (see [8, 1.3.5]). According to [7, 18.1], the sec-
tions wq,...,u;, are pointwise linearly independent over some neighborhood U

about co and, hence, dim 2 > m on U.

Assume that there is no neighborhood about oo on which the dimension of 2
is constant. Then there exists a strictly increasing sequence of naturals ng such that
dim 2 (ng) > m for all k € N. Given a k € N, choose a functional z}, € & (ng)
satisfying the equalities ||z} || = 1 and (ui(ng)lz)) = - = (um(ng)lz}) = 0.
Introduce a mapping H : ¢ € Q — H(q) € Z(q)’ as follows:

T, g =Tg;
H =
(@) {0, g ¢ {n:keN}

It is clear that [|H|| < 1. Denote by % the set lin{u,...,um} supplemented
by all sections with singleton supports. Obviously, % is stalkwise dense in 2
and, for every u € %, the function (u|H) vanishes on a neighborhood about co
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and, hence, continuous. Consequently, by [8, Theorem 1.4.4], the mapping H is
a homomorphism, which, with 3.3.2 taken into account, contradicts existence of
Z"' in view of the fact that the pointwise norm of H is discontinuous. >

3.4.9. The one-point compactification @ of the set of naturals can be regarded
as the simplest topological space which is, on the one hand, classical (completely
regular, metrizable, compact, etc.) and, on the other hand, nontrivial (nondiscrete,
not antidiscrete, etc.). As Proposition 3.4.8 asserts, a CBB 2" over @ with the stalk
Z (00) separable has the dual bundle if and only if the dimension of 2" is finite and
constant on some neighborhood about co. Moreover, due to Proposition 3.4.2 (4),
every trivial bundle over @) with infinite-dimensional stalk has no dual bundle. Show
that, nevertheless, there exists a CBB over @ with infinite-dimensional stalk at oo
which has the dual bundle.

EXAMPLE. We construct a CBB 2 over Q = N possessing the following prop-
erties: ,

(a) all stalks of 2 on N are finite-dimensional and %2 (co) is nonseparable;

(b) Z exists;

(c) the inclusion Z”/(o0) C Z (00)’ is strict;

(d) Hom(Z,%) = C(Q, Z’) norms Z .

For every natural n, consider the element e, = X(n} € £*° and the coordinate
functional &, € (¢*°)', (z|0,) = z(n) for all z € £°.

Denote by ¢! the image of ¢! under the natural isometric embedding of this
space into (£%°)'. It is clear that §, € £ for all n € N. Put 2 (c0) = £ and
Z (n) =lin{es,...,en}, n €N

Given an element z € £*°, define a section u, of 2 as follows:

(a:(l),...,:n(q),0,0...), g€eN,
z, g = oo.

us(q) = {

It is easy to see that the totality € = {u, : £ € £*°} is a continuity structure in 2
which makes 2" a CBB.

By construction it is immediate that 2  possesses property (a).

(b), (c): Foralln € N and f € 2 (n)’, put

@] F) = ((@Q),...,x(n),0,0,...) | f), =z €L

It is clear that, for each n € N, the correspondence f — f performs an isometric
embedding of 2 (n)’ into £
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Let H be an arbitrary homomorphism from £ into #Z. For every z € £,
the following relations hold:

(z|H(n)) = ((z(1),...,2(n),0,0,...) | H(n))
= (H ® uz)(n) = (H ® ug)(00) = (z | H(c0))

as n — co. Therefore, (H(n)) C ¢! is a weakly Cauchy sequence and, hence, con-
verges in norm, since the space o possesses the Schur property (see Lemma 3.1.2).
Whence it follows that H(co) is the norm limit of the sequence ( H(n)); in partic-
ular, H(co) € ¢! and ||H|| € C(Q). Thus, the CBB 2 has the dual bundle and
Z'(00) # Z (c0)' due to the inclusion Z(c0) C £1.

(d): According to 3.4.4 (1), it is sufficient, given an arbitrary functional y € a,

to present a homomorphism Hy, € Hom(Z", %) such that Hy(co) = y. The sought
homomorphism can be defined as follows:

ylﬁ?f(q)a g€ N>
Y, g = 0.

,(0) = {

The containment Hy € Hom(2', %) is justified by [8, Theorem 1.4.9] (with ¥ = ¥).

3.4.10. The CBB 2" = (Z"')’ (if the latter exists) is called the second dual
of a continuous Banach bundle Z .

It is clear that, for every CBB over a discrete topological space, the second
dual exists. Ample CBBs over extremally disconnected compact Hausdorff spaces
(see [8, 1.3]) form an important available class of continuous Banach bundles for
which the second dual bundles exist.

First of all, we note that existence of 2™/ does not imply existence of Z™".

Proposition. Let X be a separable Banach space with nonseparable dual (for
instance, X = ¢'). Then there exists a topological space @ such that the trivial
CBB Xg has the dual bundle and has no second dual bundle.

< By Proposition 3.4.2 (5), there exists a functionally discrete topological space
Q such that the CBB (X’)g has no dual bundle. By 3.4.2(6), the CBB Xg has
the dual bundle. By assertion 3.4.2 (3), the bundle (Xg)' coincides with (X')g and,
thereby, (X¢g)’ has no dual bundle, i.e., the bundle (X¢g)"” does not exist. &>

REMARK. The CBB 2 constructed in 3.4.9 is also an example of a Banach
bundle which has the dual but not the second dual bundle. Indeed, with each
element n € N associate the functional e;, € £ (n)’ related to the element e, €
Z (n) by the rule (z'|e}) = (en|z’) for all 2’ € Z'(n). Put G(n) = e, for all
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n € Nand G(oo) =0 € Z'(c0). It is clear that the set 2 = {H, : y € £1} is
stalkwise dense in 2. By applying [8, Theorem 1.4.9] (with ¥ = 2), we obtain
the containment G € Hom(Z/, #Z). Furthermore, ||G|| ¢ C(Q) and, hence, in view
of 3.3.2, the CBB 2"’ has no dual bundle, i.e., Z" does not exist.

3.4.11. Proposition. The following are true:

(1) Suppose that a trivial CBB with stalk X has the second dual bun-
dle. Then the latter is the trivial CBB with stalk X".

(2) Ifatrivial CBB over a topological space Q with infinite-dimensional
stalk has the second dual bundle, then Q) is functionally discrete.

(3) Let X be an infinite-dimensional Banach space with separable dual.
Then existence of the second dual for the bundle X is equivalent
to functional discreteness of Q.

(4) For every Banach space X, there exists a nondiscrete normal topo-
logical space Q such that the CBB X has the second dual bundle.

(5) If a topological space Q is not functionally discrete then, for every
Banach space X, the following are equivalent:
(a) (Xq)" exists;
(b) (X" = (Xq)";
(c) (Xq)' exists and C(Q, X") = Hom ((Xq)', #);
(d) X is finite-dimensional.

< Assertions (1), (2), and (5) are simple consequences of Proposition 3.4.2.

A proof of assertion (4) can be obtained by a simple modification of the proof
of Corollary 3.3.15 with Q a nondiscrete normal topological space such that the con-
stant CBBs Xg and (X')g both have dual bundles.

Prove assertion (3). Necessity holds due to (2). Proceeding with sufficiency,
observe first that the space X is itself separable. From 3.4.2(6) it follows that
the dual (Xg)" exists and, in view of 3.4.2(3), the latter coincides with (X’)q.
Applying 3.4.2(6) again, we complete the proof. 1>

3.4.12. In contrast to the situation described in Proposition 3.4.10, existence
of Z” in the following case implies existence of 2.

Proposition. If a CBB with Hilbert stalks over a topological space @ has
the dual bundle then it has the second dual bundle. Moreover, the bundles 2,
Z', and Z" are pairwise isometric.

<1 Obviously, if two CBBs are isometric and one of them has the dual bundle
then the other has the dual bundle too and these duals are isometric. This fact and
Proposition 3.4.3 imply the claim. >
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3.4.13. Let @ be a topological space and let 2" be a CBB over @) which has
the dual bundle. The mapping 2 that associates with every point ¢ € @ the operator

u(q) :z € Z'(q) — z"|a(q)

is called the double prime mapping for Z°. (Here z — z” is the canonical embedding
into the second dual.)

Proposition. Let Q) be a topological space and let Z" be a CBB over @) which
has the dual bundle. Suppose that Hom (2, %) norms Z and let 1 be the double
prime mapping for Z .

(1) For every point q € Q, the operator 1(q) is an isometric embedding
of Z'(q) into Z'(q)’.

(2) Assume that .Z has the second dual bundle. Then the mapping 1
is an isometric embedding of & into Z".
<1 (1): For ¢ € Q and = € Z (g), we have

12" | 21|l = sup {(a'|2") : &' € 27 (q), ||&'l| < 1}

=sup {(z|z') : 2’ € Z'(q), |='|| < 1}
sup {{z]v(q)) : v € C(Q, Z"), llv(g)ll < 1}
sup {(z|v(g)) : v € C(Q, Z7), |vll < 1}
sup {(z|H) : H € Hom(Z, %), |H(9)|| < 1}
=||lz|]| (cf.[8, 1.3.9]).

il

I

(2): In view of (1), the mapping u +— 1 ® u embeds the space C(Q, Z') into
Hom(Z', %) = C(Q, Z") with pointwise norm preserved. It remains to employ
(8, Theorem 1.4.4]. t

3.4.14. Proposition. Let & be a CBB with constant finite dimension over
a completely regular topological space. Then the bundle & exists, Hom(Z , %)

norms %, and the double prime mapping for & performs an isometry of 2
onto Z'".

< By assertion 3.4.2 (1), in the situation under consideration, the dual bundle
2 exists and dim 2 = dim 2 . The same assertion implies that 2" exists and
the equality dim 2™ = dim 2" holds. Hence, for every point g, the stalks 2 (q) and
Z"(q) have the same finite dimension. It remains to apply Proposition 3.4.13 (2)
and [8, Theorem 1.4.12]. >
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3.4.15. Let Q be a topological space and let 2" be a CBB over @ which has
the second dual bundle. In the following cases, the double prime mapping for 2~
is an isometry of 2" onto Z":

(1) & is a trivial CBB with reflexive stalk;

(2) & has constant finite dimension and the topological space Q is
completely regular;

(8) 4 is a CBB with Hilbert stalks;

(4) Z is an ample CBB over an extremally disconnected compact
Hausdorff space @ and all stalks of 2  at nonisolated points are
reflexive.

<1 Assertions (1)—(4) are easy from 3.4.11 (1), 3.4.14, 3.4.12, and [8, 2.3.5 (1),
2.3.7. >

Observe that conditions (2) and (4) imply existence of 2™ without additional
assumptions.

3.5. Weakly Continuous Sections

In this section, we introduce and study the notion of a weakly continuous
section of a Banach bundle.

Since weakly continuous sections are closely connected with homomorphisms
of the dual bundle (which are known to have locally bounded pointwise norms),
the problem is natural of finding conditions that guarantee local boundedness for
weakly continuous sections. Subsections 3.5.3-3.5.5 are devoted to this subject.

In 3.5.6-3.5.12, we study the question of continuity of weakly continuous sec-
tions for various classes of Banach bundles.

The remaining part of this section (3.5.13-3.5.18) is devoted to finding condi-
tions for coincidence of the space of weakly continuous sections of a trivial Banach
bundle and the space of weakly continuous vector valued functions acting into
the corresponding stalk.

3.5.1. Let 2 be a CBB over a topological space Q and let D C Q.

DEFINITION. A section u over D of a bundle £ is called weakly continuous if
(u|H) € C(D) for all H € Hom(Z , #Z). The totality of all these sections is denoted
by Cw(D, Z).

If 2 has the dual bundle then Hom(Z',%Z) = C(Q, %) and, in this case,
weak continuity of a section u is equivalent to continuity of the functions (u|u’) for
allu’ € C(Q, Z).

It is clear that C, (D, Z) is a vector subspace of the space of all sections over
D of the bundle & and includes C(D, Z") as a vector subspace.
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Note that a weakly continuous section need not be continuous. Indeed, consid-
ering the CBB & constructed in 3.4.9 and putting u(n) = en, 7 € N, and u(cc) = 0,
we obtain a weakly continuous (see Remark 3.4.10) but, obviously, discontinuous
section of 2.

3.5.2. Lemma. Let X be a Banach space and let ) be a topological space.
Suppose that D C Q and a sequence (gr) C D converges to a point q € D.
(1) If Q is completely regular and u € Cy(D, Xq) then the sequence
(u(gn)) w-w*converges to u(q).
(2) For every H € Hom(Xq, %), the sequence (H(gn)) is weakly™ con-
vergent to H(q).
(3) IfQ is a completely regular Fréchet—Urysohn space and the points
gn are pairwise distinct and distinct from q then, for every w-w*-
vanishing sequence (z,,) C X, there exists a section u € Cy(D, Xq)
taking the values u(gn) = =, for alln € N and u(q) = 0.
(4) If u € Cy(D,X) then the sequence (u(gn)) converges weakly to
u(g)-
< (1): As is easily seen, we do not restrict generality by assuming that
the points g, are pairwise distinct and distinct from ¢. From 3.2.6 (4) it follows
that, for every sequence (z,,) C X' convergent weakly* to an element z’ € X',
there exists a homomorphism H € Hom(Xq, %) taking the values H(gn) = z, for
alln € N and H(q) = z’. Hence, (u(g)|z,) = (u|H)(gn) — (ulH)(q) = (u(g)]z").
Assertions (2) and (4) are evident.
(3): Let (W,) and (fn) be sequences of open subsets of Q and of continuous
functions from Q into [0, 1] presented in Lemma 3.2.5. Then the section u over D
defined by the formula

fn(p)mna p G D m Wn’
u(p) =
0, p € D\U,hen Wn
is weakly continuous. Indeed, consider an arbitrary H € Hom(Xq,Z%). The func-
tion (u|H) is continuous on each set D N clW,, since cl Wy, is included in
Q\cl | Wi,
k#n

the latter difference is open, and {(u|H) and (z,|H) f. coincide on the intersection
of D and the difference.
Assume that the function {u|H) is discontinuous at some point

pe (cl U Wn>\ U et W

neN neN
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Then there exist an € > 0, a sequence (p,) C D, and a strictly increasing sequence
(nm) C N such that p belongs to cl{py, : m € N}, pr € Wy, and [(u|H)(pm)| > €
for all m € N. Since @ is a Fréchet—Urysohn space, we can extract a subsequence
(Pm,.) convergent to p. It is easy to verify that the sequence (u(pm)) is w-w*
vanishing; therefore, the subsequence u(pn, ) of (u(pm)) is w-w*vanishing too.
At the same time, by (2), the sequence (H(pmk)) converges weakly* to H(p).
Consequently, € < |(u|H)(pm,)| — |(u|H)(p)| = 0. The assumption that (u|H)
is discontinuous at p yields a contradiction. It remains to observe that the function
(u|H) vanishes on the set Q\ cl{J,cy Wn- >

3.5.3. EXAMPLE. There exist a Fréchet—Urysohn space @), a Banach space X,
and a section u € Cy(Q, Xg) that is not locally bounded.

<1 Consider the space @ constructed in Example 3.2.11.

As follows from Corollary 3.1.7(2), the space £ contains a sequence (z)
which is w-w™vanishing and does not converge in norm. Without loss of generality,
we may assume that ||z,| = 1 for all n € N (this may be fulfilled by extract-
ing a subsequence and multiplying the latter by an appropriate constant element-
wise). Put u((m,n)) := mz, for every (m,n) € N x N and put u(co) := 0 € £,
Obviously, the section u is not locally bounded. Show that H ® u € C(Q) for
an arbitrary homomorphism H € Hom ((¢*°)q,%). By Lemma 3.5.2 (2), for every
m, the sequence (H ((m, n)))nGN is weakly* convergent, whence (H @ u)((m,n)) =
m{zn|H ((m,n))) — 0asn — co. The latter relation implies continuity of the func-
tion H ® u (see the description (1) of the elements of C(Q) in Example 3.2.11). >

3.5.4. Proposition. Let 2 be a CBB over a topological space Q. Suppose
that Hom(Z , Z) norms & and the space @ satisfies one of the following conditions:
(a) Q is first-countable and completely regular;
(b) Q is locally pseudocompact. Then every weakly continuous global
section of Z is locally bounded.

< First suppose that @ satisfies condition (a). Assume that there is a weakly
continuous and not locally bounded global section v of 2". In this case, the point-
wise norm ||uf| is unbounded on every neighborhood about some point ¢ € Q.
By Dupré’s Theorem (see [8, 1.3.5]), we may find a bounded continuous global sec-
tion taking the value u(g) at ¢ and, next, subtract this section from wu; therefore,
we may assume that |Jul|(¢) = 0.

Since @ is first-countable, there is a sequence (g,) C @ such that |Jul|(gn) > n2,
¢ # g5 for i # j, and g, — g. Using the hypotheses, for every number n € N, take
a homomorphism H,, € Hom(Z , %) satisfying the relations (u|Hpn)(gn) = ||u(gn)|l
and ||Hyn| < 2.
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Corollary 3.2.6 (2) implies existence of an H € Hom(Z", Z) such that H(q) =0
and H(gn) = £ Hy(gn) for all n € N. On the other hand,

(ulE)(an) = = (6l o) am) = = (g >

which contradicts weak continuity of u, since g, — g and (u|H)(g) = 0.

Now suppose that @ satisfies condition (b). Denote by Hom®(2", %) the space
of all bounded homomorphisms from £ into #Z. Fix an arbitrary weakly con-
tinuous section u of 2 and, for every point ¢ € @, define a linear functional
T, : Hom® (2, %) — R by the formula T,(H) = (u(q)|H(g)). Endowing the space
Hom®(%2 ", %) with the uniform norm and considering an arbitrary pseudocompact
subset U C @, we conclude that ||T,|| < |ju(g)|; moreover,

sup || T, (H)|| = sup |(ulH)(q)| < oo
qelU , qeU

for all H € Hom®(2",%). By [8, 1.4.11}, Hom®(2, %) is a Banach space. There-
fore, sup,ey || 74| < oo in view of the uniform boundedness principle. It remains to
employ the relations

lu(@)ll = sup {|(u(q)|H(2))| : H € Hom(Z', %), |H|I <1} = ||T,|l. ©

Observe that, in the last proposition, conditions (a) and (b) are essential even
if the CBB & is trivial (see 3.5.3).

3.5.5. Corollary. Let X be a Banach space and let Q be a topological space
satisfying (a) or (b) of 3.5.4. Then every weakly global continuous section of Xg
is locally bounded.

< The claim follows immediately from 3.5.4 and 3.4.4 (3). >

3.5.6. REMARK. By the definition of continuity for sections (see [8, 1.1.2]),
if % is a vector space of sections over D C Q of a CBB £ over a topological
space  and all elements of % have continuous pointwise norms, then the inclusion

C(D, Z) C % implies the equality C(D, %) = % .
Proposition. Let & be a CBB over a topological space Q.

(1) Suppose that Z has the dual bundle and let 1 be the double
prime mapping for 2. For every subset D C @), the mapping
u +— t @ u performs a linear embedding of the space of locally
bounded sections u € Cy(D, Z") into Homp(Z',%Z). If, in ad-
dition, Hom(Z , %) norms % then the embedding preserves the
pointwise norm.
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(2) Suppose that Z has the second dual bundle and Hom(Z , %)
norms Z . If a section u € Cy(Q,Z") is locally bounded then
ueC(Q,Z).

< (1): The containment : ® © € Homp(Z”,#) holds in view of [8, Theo-
rem 1.4.9]. Furthermore, if Hom(.2", %) norms 2~ then the equality ||: ® u| = |ul|
follows from 3.4.13 (1).

(2): Let a section u € Cyu(Q, Z") be locally bounded. Then, in view of as-
sertion (1), the containment : ® u € Hom(Z”,#) holds which, together with
the equality Hom(Z"'/, %) = C(Q, Z"), yields continuity of the pointwise norm
of the homomorphism ¢ ® u. Since, due to (1), the functions ||z ® u| and ||ul|
coincide, the latter function is continuous too. Therefore, the vector space % of
locally bounded sections u € C,(Q, Z') consists of sections with continuous point-
wise norms and contains C(Q, Z"). The above Remark allows us to conclude that

U=CQ,%Z) >

3.5.7. Corollary, Let & be a CBB with constant finite dimension over
a completely regular topological space Q). For every subset D C @, the equal-
ity Cp (D, Z') = C(D, Z) holds.

< The claim may be derived from Theorem 3.2.12, Proposition 3.5.6 (1), and
Remark 3.5.6. >

3.5.8. Corollary. Suppose that a topological space @ and a CBB £ over ¢
satisfy the conditions of Proposition 3.5.4. Then existence of Z" implies continuity
of all weakly continuous sections of Z .

<1 This claims follows from Propositions 3.5.4 and 3.5.6 (2). >
3.5.9. Proposition. Let 2 be a CBB with Hilbert stalks over an arbitrary

topological space. If a global section of & is locally bounded and weakly continuous
then it is continuous.

< Let @ be a topological space and let 2" be a CBB with Hilbert stalks over Q.
Fix a locally bounded section v € C,,(Q, Z") and use the mapping h of Lemma 3.4.3
which asserts that
h[C(Q, Z)] C Hom(Z , Z).

Thus, the relations (c|h(uw)) = (ulh(c)) € C(Q) are valid for all ¢ € C(Q, Z").
By [8, 1.4.4] these relations imply h(u) € Hom(Z",%). Therefore,

lull® = (ulh(u)) € C(Q).

Finally, since

lu — ell* = flul® - 2(cla(w)) + Jull® € C(Q)

for every ¢ € C(Q, Z), the section u is continuous. >
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3.5.10. Corollary. Let & be a CBB with Hilbert stalks over a topological
space Q satisfying (a) or (b) of 3.5.4. Then Cy(Q, %) = C(Q, Z').

< The claim follows immediately from Propositions 3.5.4 and 3.5.9, and Lemma
34.3. >

3.5.11. Lemma. Suppose that a CBB 2 over a topological space @ has
the dual bundle. For arbitrary sections u € C(Q, Z°) and v € Cy(Q, Z'), the real-
valued function (u|v) is continuous.

< Let 1 be the double-prime mapping for Z°. Then : ® u is an element of
Hom(Z ', &) according to Proposition 3.5.6 (1). Consequently, (ulv) = (v|:®u) €
c(@). >

Proposition. Suppose that a CBB 2 over a topological space Q has the dual
bundle.

(1) Ifve Cyw(Q,Z") is locally bounded then v € C(Q, Z”).

(2) IfQ satisfies (a) or (b) of 3.5.4 then Coy(Q, Z') = C(Q, Z).

< (1): Let v € Cy(Q, Z') be a locally bounded section. In view of the above
lemma, (ulv) € C(Q) for all w € C(Q,%"). Consequently, v € Hom(Z,%)
due to [8, Theorem 1.4.9] and local boundedness of v. It remains to recall that
Hom(Z,Z) = C(Q, Z").

(2): Tt suffices to prove the inclusion Cy(Q, Z") C C(Q, Z"'). Suppose that
v e Cuw(Q, Z"). In view of the above lemma, (ulv) € C(Q) for all u € C(Q, Z').
If Q satisfies 3.5.4 (a) then v € Hom(Z ,#) due to Theorem 3.2.10; if Q satis-
fies 3.5.4 (b) then v € Hom (2", %) due to [8, Theorem 1.4.7]. Therefore, in both
cases, v € Hom(Z',%Z) = C(Q, Z). >

3.5.12. Theorem. Let X be a Banach space and let Q be a completely regular
Fréchet-Urysohn space.

(1) If X possesses the WS property then Cy(D, Xq) = C(D, Xq) for
all subsets D C Q.

(2) If Cy(D, Xgq) = C(D,Xq) for some subset D C Q which contains
one of its limit points (in particular, if D = @Q and Q is nondiscrete),
then X possesses the WS property.

For instance, if Q is nondiscrete then the equality Cy,(Q, Xg) = C(Q,Xq) is
equivalent to the fact that X possesses the WS property.

< (1): Suppose that the inclusion Cy (D, Xg) D C(D, Xq) is strict for a subset
D C @ and show that X does not possess the WS property. Consider a section
u € Cyu(D, Xg) discontinuous at a point ¢ € D. We may assume that u(q) = 0,
since, otherwise, we can subtract from u the constant section taking the value u(q).
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Since @ is a Fréchet—Urysohn space, we may find a sequence (g,) C D convergent
to ¢ such that [Jul|(¢g,) > e > 0 for all n € N. By Lemma 3.5.2(1), the sequence

u(qn)) is w-w*convergent to u(g) = 0. Consequently, X does not possess the WS
property.

(2): Suppose that X does not enjoy the WS property and establish the inequal-
ity Cy(D, Xq) # C(D,Xq) for every subset D C @ that contains one of its limit
point. Let ¢ € D be a limit point of D. Since @ is a Fréchet—Urysohn space, there
is a sequence (gn) C D\{g} convergent to g. Without loss of generality, we may
assume that ¢; # g; whenever i # j. Since X does not possess the WS property,
we may take a sequence (z,) C X which is w-w*vanishing and does not vanish
in norm. By Lemma 3.5.2(3), there is a section u € Cy, (D, Xg) taking the values
u(gn) = z, for all n € N and u(g) = 0. It is clear that u ¢ C(D, Xq). >

3.5.13. Proposition. For every infinite-dimensional Banach space X, there
exists a normal topological space @ such that the inclusion Cy,(Q, Xg) C Cy(Q, X)
is strict. :

< Let (za)aer and (z,)qex be the nets existent by Lemma 3.1.4. Put @ = R*
(see 3.1.11) and consider vector valued functions v : Q — X and H : Q — X'
satisfying the equalities u(a) = 4, H(a) = z, for all @ € R, u(co) = 0, and
H(co) =0.

In view of Remark 3.1.11(2), the function u is weakly continuous and, in
addition, H € C(Q, X"). In particular, H € Hom (XQ,%). Furthermore, (u|H) =
1 on X and (u|H)(co0) = 0, whence u ¢ Cy,(Q, Xg). >

3.5.14. Corollary. Let X be a Banach space and let Q@ be an arbitrary topo-
logical space. The equality C,(Q,Xo) = Cy(Q,X) holds for every topological
space @ if and only if X is finite-dimensional.

Observe that, in case X is finite-dimensional, we have

C(Q, XQ) = Cu(@, Xq) = Cu(Q, X) = C(Q, X).

3.5.15. Theorem. Let X be a Banach space and let Q be an arbitrary topo-
logical space.
(1) IfQ is a Fréchet-Urysohn space and X possesses the DP* property,
then Cy(D, Xq) = Cy(D, X) for every subset D C Q.
(2) Let a subset D C Q be such that C(Q) contains a function which
is not locally constant on D. If Cy,(D,Xq) = Cy(D, X) then X
possesses the DP* property.
In particular, if Q is a nondiscrete completely regular Fréchet—Urysohn space
then the equality C,,(Q, Xq) = C(Q, X) is equivalent to the fact that X possesses
the DP* property.
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<1 (1): Suppose Cy(D, Xq) # Cuw(D, X) for some subset D C Q. Show that X
does not possess the DP* property. Take a vector valued function u € Cy (D, X) \
Cw(D, X) and consider a homomorphism H € Hom(Xgq, %) such that the function
(u|H) is discontinuous at some point ¢ € D. Then the function (u —u, | H — Hg)
is discontinuous at g, where uq and Hy are constant functions with values u(g) and
H(g). (This is so due to the fact that the functions (u|Hy), (uq|H), and (ue|Hg) are
continuous.) Since Q is a Fréchet—Urysohn space, there is a sequence (g,) C D\ {¢}
which converges to q and satisfies the condition |(u{g.) —u(q) | H(gn) — H(q))| > €
for some € > 0 and all » € N. Furthermore, in view of 3.5.2(2), (4), the sequence
(u(gn) — u(g)) is weakly vanishing and the sequence (H(gn) — H(g)) is weakly*
vanishing. Consequently, X does not possess the DP* property.

(2): Suppose that X does not possess the DP* property. Consider a weakly
null sequence (z,) C X and a weakly* null sequence (z;,) C X’ such that (z,|z7,)
does not vanish. By passing to a subsequence and multiplying all elements of one
of them by #4 for a suitable § € R, we may achieve validity of the inequalities
(zn]x!) = 1 for all n € N. We additionally require that (zp41|z},) + (Zn|Ty41) =0
for all n € N, which in turn can be fulfilled by pairwise multiplication of the elements
x> and xh, x3 and zj, etc. by +£1. Let vector valued functions u : [0,1] — X and
u' :[0,1] — X’ satisfy the equalities u(0) = 0, v’(0) = 0,

(/\?{-H (1- )‘)%) = AZpt1 + (1 = N)zp,
W (ks + (1= NF) = Ml + (1= e
for all A € [0,1] and n € N. By Lemma 3.1.12, the function u is weakly continuous

and v’ is weakly* continuous. Consider the function (u|uw’) : [0,1] — R. Given
arbitrary n € N and 0 < A < 1, we have

() Mgz + 1= N3) = Mnpr + (1= Nzp | Azl .y + (11— Nah,)
N (@) + (1= N {zalel)
+ A1 = A ((@nt1lzn) + (@alzng)
+(1=XN2+0
-1/2)2+1/2

WV

2
2(A
1/2.
Thus, (u|u')(0) = 0 and, in addition, (u|u’) > 1/2 on (0,1]. Next, take a continuous
function g € C(Q) such that the restriction g|p is not constant on any neighborhood
about a point ¢ € D. Without loss of generality, we may assume that g : Q — [0, 1]

and g(q) = 0 (see the proof of 3.1.13). As is easily seen, uo g|p € Cy(D, X) and
W og € Hom(Xg,%). 1t is clear that the function ((uo g)|p | v og) = (ulu’) og|p

\Y%
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vanishes at ¢ and, in addition, the image of the function on each neighborhood
about g intersects the interval [1/2, 00). Consequently, (u o g)|p ¢ Cw(D, Xg).
The last assertion of the theorem follows from (1) and (2) and 3.1.10 (3). >

3.5.16. Corollary. Let X be a Banach space and let Q@ be a topological
space that is not functionally discrete. In each of the following cases, the inclusion
Cw(Q, X0) C Cuw(Q, X) is strict:

(1) X is infinite-dimensional and reflexive;

(2) X is separable and does not possess the Schur property;

(3) X is a Banach space which does not possess the Schur property and
satisfies one of the conditions 3.1.6 (3), (5), or (6).

< In view of assertion (2) of Theorem 3.5.15, it suffices to show that, in each
of the cases under consideration, X does not possess the DP* property. In cases
(2) and (3) the latter is provided by Lemma 3.1.7(3) and, in case (1), we can
employ the Josefson-Niessenzweig Theorem [4, XII] according to which there exists
a weakly* null sequence of norm-one vectors in X", >

3.5.17. Proposition. Let X be a Banach space and let QQ be a functionally
discrete topological space. If X’ includes a countable total subspace then C(Q, X) =
C(QaXQ) = Cw(Q: XQ) = Cw(QaX)'

<1 The claim follows from Lemma 3.1.14, since the relations

C(QvX) = C(Q)XQ) - Cw(Q’XQ) c Cw(QvX)

are always true. >

3.5.18. Corollary. Let Q be a topological space and let X be a separable
Banach space that does not possess the Schur property. The equality Cy,(Q, Xg) =
Cw(Q, X) holds if and only if Q is functionally discrete.

< Necessity follows from 3.1.6 (2), Lemma 3.1.7(3), and Theorem 3.5.15 (2);
sufficiency is justified by Proposition 3.5.17. >
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