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Bundles are traditionally employed for studying various algebraic systems in 
mathematical analysis. The technique of bundles is used in examining Banach 
spaces, Riesz spaces, C' -algebras, Banach modules, etc. (see, for instance, [3, 6, 7, 
13-15]). Representation of some objects of functional analysis as spaces of sections 
of corresponding bundles serves as a basis for some theories valuable in their own 
right. One of these theories in [8- 12] is devoted to the notion of a continuous Banach 
bundle (eBB) and its applications to lattice normed spaces (LNSs). Within this 
theory, in particular, a representation is obtained for an arbitrary LNS as a space 
of sections of a suitable eBB. 

In some sense, a eBB over a topological space Q formally reflects the intuitive 
notion of a family of Banach spaces (Xq)qEQ varying continuously from point to 
point in the space Q. To be more precise, a Banach bundle 9: over Q is a mapping 
associating with each point q E Q a Banach space 9:(q) the so-called stalk of 9: 
at q. Furthermore, the bundle 9: is endowed with some structure that allows us to 
speak about continuity of sect.ions of the bundle (a section is a function u defined 
on a subset of Q and taking Values u(q) E 9:(q) for all q E domu) . The notion 
of a section can be regarded as a generalization of the notion of a vector valued 
function: if X is a Banach space then X -valued functions are sections of the Banach 
bundle whose stalks are all equal to X. 

In many questions of analysis, an essential role is played by duality theory, 
one of whose basic tools is the concept of a dual space (see, for instance, [17]). 
Existence of a functional representation for the initial space by means of sections of 
some bundle allows us to construct an analogous representation for the dual space. 
In particular, the problem of representing a dual LNS leads to the notion of a dual 
Banach bundle. 

Which eBB 9:' should be considered dual to a given bundle 9: (discussed, 
for instance, in [7-9, 12, 19]) is a question closely connected with the notion of 
a homomorphism. A homomorphism v of a continuous Banach bundle 9: over Q is 
a functional valued mapping v : q f-t V (q) E 9: (q)' taking every continuous section 
u of the bundle 9: into the continuous real-valued function (ulv) : q f-t (u(q)lv(q)). 
When we try to define a dual eBB 9:', the following two requirements are worth 
to be imposed: first, homomorphisms should be continuous sections of the bundle 
9:' and, second, all continuous sections of 9:' should be homomorphisms. 

In the case of ample bundles over extremally disconnected compact spaces, 
the problem of defining a dual eBB is solved in [8] (see also [12]). However, the ap
proach to the definition of a dual bundle presented in that article rests essentially 
on the specific properties of ample bundles and extremally disconnected compact 
spaces and, thus, cannot be extended to a wider class of bundles. 

The natural intention to extend the domain of application for duality theory 
leads to the problem of constructing a dual eBB for an arbitrary Banach bundle 
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over an arbitrary topological space. The study of this problem is the main topic of 
the present chapter, where, in particular, a definition of a dual bundle is presented, 
with the above-formulated requirements fulfilled, and a number of necessary and 
sufficient conditions is suggested for existence of a dual bundle. 

In Section 3.1, auxiliary results are collected on topological spaces, Banach 
spaces, and functions acting in them. 

Section 3.2 is devoted to studying the notion of a homomorphism of a Banach 
bundle. In particular, description of homomorphisms is suggested therein for a wide 
class of bundles and the question is examined of continuity of the pointwise norm 
of a homomorphism. 

The question about the possibility of representing the space of all homomor
phisms from a eBB :r into a eBB '?!/ as the space of continuous sections of some 
Banach bundle leads to the notion of an operator bundle B(:r, '?!/). In Section 3.3, 
some necessary and sufficient conditions are given for existence of such a bundle. 

In Section 3.4, the notion of a dual Banach bundle is introduced and studied . 
This bundle is a particular case of an operator bundle (considered in the previous 
section) . The definition of a dual bundle therein generalizes that of [8, 12J where 
the case is considered of an ample bundle over an extremally disconnected compact 
space. In the same articles it is established in particular that every ample eBB has 
the dual bundle. In the general case, dual bundles may fail to exist. Nevertheless, 
the above generalization is justified by the fact that new classes arise of eBBs that 
have dual bundles. In Section 3.4, various necessary and sufficient conditions are 
presented for existence of a dual bundle, the norming duality relations are estab
lished between the bundles :r and :r', and the questions are studied of existence 
of the second dual bundle and embedding of a bundle into its second dual. 

In examining the notion of a dual bundle, one of the natural steps is consid
eration of weakly continuous sections (these are sections continuous with respect 
to the duality between a bundle and its dual). The notion of a weakly continuous 
section is introduced and studied in Section 3.5. In particular, the question is dis
cussed about continuity of weakly continuous sections for various classes of Banach 
bundles and conditions are suggested for coincidence of the space of weakly con
tinuous sections of a trivial eBB and the space of weakly continuous vector valued 
functions acting into the corresponding stalk. 

When speaking about Banach bundles, we use the terminology and notation 
of [8J (see also [12]). In particular, we distinguish the notion of a Banach bundle 
and that of a continuous Banach bundle and employ the approach to the definition 
of continuity for sections by means of the notion of a continuity structure. All nec
essary information on the theory of Banach bundles can be found in [3, 7-12J. 

If :r and '?!/ are some eBBs over a topological space Q then we denote by 
Hom(:r, '?!/) the set of all Q-homomorphisms from :r into '?!/ (which is denoted by 
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HomQ (&:, '?]I) in [8, 12]). As usual, the symbol HomD (&:, '?]I) is used for denoting 
the set of D-homomorphisms from &:ID into '?]lID, where D C Q. Instead of "Q
homomorphism" we just say "homomorphism." Analogous convention is effective 
concerning the terms "Q-isometric embedding" and "Q-isometry:' 

In contrast to [8, 12], we use the symbol XQ for denoting the trivial Banach 
bundle with stalk X over a topological space Q. The symbol !% denotes the trivial 
eBB with stalk JR over the topological space under consideration. 

Let &: be a continuous Banach bundle over a topological space Q, let u be 
a section of &: defined on an A C Q, and let v be a section of &: defined on aBc Q 
such that v(q) E &:(q)' for all q E B. The symbol (ulv) denotes the function acting 
from An B into JR by the rule (ulv)(q) = (u(q)lv(q)). 

All vector spaces under consideration are assumed over JR, the field of reals. 

3.1. Auxiliary Results 

This section contains facts to be used in the sequel about topological and 
Banach spaces as well as functions acting in this spaces. The collected results are 
auxiliary and do not involve the notion of a Banach bundle. 

3.1.1. Lemma. Let X be a normed space and let x and y be norm-one vectors 
in X. Then either of the intervals [x, y] or [x, -y] does not intersect the open ball 
with radius 1/2 centered at the origin, i.e .. 

inf II AX + (1 - A)yll ?: 1/2 or inf IIAX + (1- A)( -y)1I ?: 1/2. 
AE[O,l] AE[O,l] 

<I Assume that there are vectors u = Ax+(I-A)( -y) and v = p,x+(1- p,)y such 
that lIuli < 1/2 and Ilvll < 1/2. Obviously, 0 < A, p, < 1 and x f. ±y. Moreover, 
the vectors u and v are linearly independent. Hence, x = au + f3v and y = "(u + t5v 
for some a,f3,"(,t5 E R Linear independence of (u,v) and (x , y), together with 
the equalities 

implies that 

( a f3)=(A A_l)-l, 
"( t5 p, I-p, 

i.e., 

( a f3) 1 (1-P, I-A) 
"( t5 - A + p, - 2Ap, - p, A . 
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The relations 

and 

1 = IIxll ( lailiull + 1I1111vll < lal ; 1111 

1 = IIYII ( hiliull + lolllvil < h'l; 101 

allow us to conclude that 

1 1 

lal + 1111 + h'l + 101 < 1, 
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i.e., lal + 1111 + h'l + 101 < (Ial + 1(11)(hl + 101). It is easy to see that A + fJ, - 2AfJ, > 
A2 + fJ,2 - 2AfJ, ~ O. Furthermore, lal + 1111 = (2 - A - fJ,)/(A + fJ, - 2AfJ,) and 
11'1 + 101 = (A + fJ,)/(A + fJ, - 2AfJ,), whence 

2 2-A-fJ, A+fJ, 
A + .jJ, - 2AfJ, < A + fJ, - 2AfJ, A + fJ, - 2AfJ, 

Consequently, 2(A + fJ, - 2AfJ,) < 2(A + fJ,) - (A + fJ,)2 and, finally, (A - fJ,)2 < O. This 
contradiction completes the proof. c> 

3.1.2. The following statement may be found, for instance, in [21, Proposi
tion 1 (SPl)] . 

Lemma. If a Banach space X possesses the Schur property then every weakly 
Cauchy sequence in X is norm convergent. 

<J Consider a norm divergent sequence (xn) C X and show that it is not 
a weakly Cauchy sequence. There exist a number € > 0 and a strictly increasing 
sequence (nk) C N such that Ilxnk -xnk+ll1 > € for all odd kEN. Since the sequence 
(Xnk - Xnk+ 1 ) does not vanish in norm and X possesses the Schur property, there 
is a functional x' E X' such that the numerical sequence (xnk - xnk+l I x') does 
not vanish. Consequently, the subsequence (xnk ), together with the initial sequence 
(xn ), is not a weakly Cauchy sequence. c> 

3.1.3. Lemma. Let X be an infinite-dimensional separable Banach space. 
Then every infinite-dimensional Banach subspace 01 X' includes a weakly' null 
sequence of norm-one functionals. 

<J Let Y be an infinite-dimensional Banach subspace of X'. Consider a sequence 
(Yn) of norm-one vectors in Y such that IIYi - Yj II ~ 1/2 whenever i # j (see, for 
instance, [18, 8.4.2]). By [4 , XIII], from (Yn) we can extract a subsequence (Ynm ) 

convergent weakly' to an element Y E X' . It is clear that Y E Y. For every mEN, 
put Zm := Ynm - y. Let € > 0 and let (zmk) be a subsequence of (zm) such that 
IIZmk II > € for all kEN. Then (zmk / Ilzmk II) is a sought sequence. c> 
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3.1.4. Lemma. Let X be an infinite-dimensional Banach space. Then there 
exist a weakly vanishing net (XQ)QEN C X and a norm vanishing net (X~)QEN C XI 
such that (xQlx~) = 1 for all a E N. 

<l As N we consider the set of all finite subsets of XI ordered by inclusion. 
Fix an a = {x~ , .. . , x~} E N and, employing the fact that X is infinite

dimensional, take an element XQ E n~l kerx~ with norm IIxQII = n. Next, choose 
a functional x~ E XI satisfying the equalities (xQlx~) = 1 and IIx~1I = lin. 

Obviously, the net (X~)QEN vanishes in norm. Show that the net (XQ)QEN is 
weakly vanishing. Let U be an arbitrary weak neighborhood about zero in X. 
Choose functionals x~, ... ,x~ E XI so that n~=l ker x~ cU. Then XQ E n~l ker x~ 
C U for all a EN, a ~ {x~, .. . , x~}. C> 

3.1.5. Let (xn) be a sequence in a Banach space X . 

Lemma. The following are equivalent: 
(a) for every seq.uence (x~) C XI and every element Xl E XI, weak' 

convergence x~ --+ Xl implies (xnlx~) --+ 0; 
(b) for every sequence (x:n) c XI and every element Xl E XI, weak' 

convergence x:n --+ Xl implies (xnlx:n) --+ 0 as n, m --+ 00; 

(c) (xn) is weakly null and (xnlx~) --+ 0 for every weakly' null sequence 
(x~) C XI; 

(d) (xn) is weakly null and (xnlx:n) --+ 0 as n, m --+ 00 for every weakly' 
null sequence (x:n) C XI; 

(e) sUPmEN l(xnlx:n)1 --+ 0 as n --+ 00 for every weakly' null sequence 
(x:n) C XI; 

(f) for every operator T E B(X, co), the sequence (Txn) vanishes in 
norm. 

The proof of equivalence of the above assertions is a routine and quite simple 
exercise. 

DEFINITION . Say that a sequence is w-w'-vanishing if (xn) satisfies one of the 
conditions (a)- (f) of the above lemma. If X E X and the sequence (xn - x) is 
w-w'-vanishing then we say that (xn) w-w'-converges to x. 

A Banach space X is said to possesses the WS property (or the weak Schur 
property) if every w-w'-convergent sequence in X converges in norm (or, which is 
the same, every w-w'-vanishing sequence vanishes in norm). 

We list some evident facts concerning the above notions. 

Proposition. The following are true: 

(1) Each norm convergent sequence is w-w'-convergent. 
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(2) Every subsequence of a w-w*-convergent sequence is also w-w*
convergent. 

(3) If X and Yare Banach spaces, T E B(X, Y) , and a sequence 
(xn) C X is w-w*-convergent to an x E X, then the sequence 
(Txn) is w-w*-convergent to Tx. 

(4) If a Banach space possesses the WS property then this property is 
also enjoyed by evelY Banach subspace. 

(5) If a Banach space X possesses the WS property then this property 
is also enjoyed by every Banach space isomorphic to X . 

(6) If a Banach space contains a copy of a space which does not possess 
the WS property, then the space does not possess the WS property 
either. 

3.1.6. Lemma. If a Banach space X has weakly* sequentially compact dual 
ball then X possesses the WS property. The converse fails to be true. 

<J Suppose that X does not possess the WS property. Then there exists a w-w*
vanishing sequence (xn) C X which does not vanish in norm. Without loss of 
generality, we may assume that IIxnll > € for all n E N and a suitable € > O. 
Since X has weakly* sequentially compact dual ball, from a sequence of functionals 
(x~) C X' satisfying the conditions Ilx~11 = 1 and (xnlx~) > € for all n E N we 
can extract a weakly* convergent subsequence X~k ' However, (xnklx~k) > €, which 
contradicts the fact that (xnk ) is w-w*-vanishing. 

The space £1 (lR) can be considered as a counterexample to the converse as
sertion. Indeed, this space possesses the Schur property and, therefore, the WS 
property. On the other hand, as is shown in [4, XIII], the dual ball of the space 
£1 (IR) is not weakly* sequentially compact. [> 

Each of the following properties of a Banach space X implies the WS property: 
(1) X possesses the Schur property; 
(2) X is separable; 
(3) X' does not contain a copy of £1; 
( 4) X is reflexive; 
(5) X is a subspace of a weakly compactly generated Banach space; 
(6) for every separable subspace Y of X, the space Y' is separable. 

Property (1) obviously implies the WS property, and the other properties guar
antee that X has weakly* sequentially compact closed dual ball (see [4, XIII]), which 
allows us to apply the last lemma. Recall that a Banach space Y is said to be weakly 
compactly generated if Y contains a weakly compact absolutely convex set whose 
linear span is dense in Y. 
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3.1. 7. A Banach space X is said to possess the Dunford- Pettis property if 

(xnlx~) -+ 0 for all weakly null sequences (xn) C X and (x~) C Xl. 

In Section 3.5, within the study of weakly continuous sections of Banach bun
dles, the important role is clarified of the question whether a Banach space under 
consideration possesses the following property close to the Dunford-Pettis property. 

DEFINITION. Say that a Banach space X possesses the DP* property if 

(xnlx~) -+ 0 for every weakly null sequence (xn) C X 
and every weakly* null sequence (x~) C Xl . 

(Note that there is no reason to consider the analog of the DP* property for nets, 
since, in view of Lemma 3.1.4, only finite-dimensional spaces possess such a prop
erty.) 

It is clear that X possesses the DP* property if and only if the sets of weakly 
convergent and w-w*-convergent sequences in X coincide. 

A Banach space X with the property that weakly* null sequences in XI are 
weakly null is called a Grothendieck space (see [4, VII, p. 121]) . Obviously, every 
reflexive Banach space is a Grothendieck space. 

The following assertions are easy to verify. 

Lemma. Let X be a Banach space. 
(1) If X possesses the Schur property then X possesses the DP' prop

erty. 
(2) If X possesses the DP* property then X possesses the Dunford

Pettis property. 
(3) The space X possesses the WS and DP* properties if and only if 

X possesses the Schur property. 
(4) For a Grothendieck space, the DP* property is equivalent to the 

Dunford-Pettis property. 

It is worth noting that assertion (2) does not admit conversion. Indeed, 
the space Co does not possess the Schur property and possesses the WS property, 
since Co is separable; therefore, by (3), Co does not possess the DP* property. At the 
same time, Co enjoys the Dunford-Pettis property, since Co ~ £1 possesses the Schur 
property. 

Recall that the intersection (union) of countably many open (closed) subsets 
of a topological space is called a (J-open «(J-closed) set. 

Let K be a quasiextremally disconnected compact Hausdorff space (i.e. a com
pact Hausdorff space in which the closure of every open (J-closed subset is open) . 
The spaces £00 and C(K) are Grothendieck spaces enjoying the Dunford-Pettis 
property and not the Schur property (see, for instance, [4, VII, Theorem 15, Exer
cise 1 (ii) , XI, Exercise 4 (ii)], [1, Theorem 13.13]' and [20, Theorem V.2.1]). 
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Corollary. Let K be a quasiextremally disconnected compact Hausdorfl 
space. 

(1) The Banach spaces Coo and C(K) possess the DP' property. 
(2) Every Banach space containing a copy of Coo does not possess 

the WS property. 

<J The claim follows immediately from the above-indicated properties of Coo 
and C(K), assertions (4) and (3) of the last lemma, and Proposition 3.1.5 (6). I> 

3.1.8. Lemma. Given an arbitrary topological space Q, the following are 
equivalent: 

(a) all functions in C(Q) are locally constant; 
(b) for every sequence offunctions (In) C C(Q) and every point q E Q, 

there exists a neighborhood about q such that all functions in, 
n E N, are constant on the neighborhood; 

(c) for every sequence of functions (In) C C(Q), there is a partition of 
Q into clopen sets such that all functions in, n E N, are constant 
on every element of the partition. 

<J (a)--->(b): It is sufficient to find a neighborhood about q on which all functions 
gn = lin - in(q)IA 1, n E N, vanish. Since, the sum 9 = 2:~=1 gn/2n is a continuous 
function and g(q) = 0, by (a) there is a neighborhood about q on which 9 == O. It is 
clear that all functions gn, n E N, vanish too. 

(b)---> (c): According to (b), for every point q E Q, the intersection nnEl\IUn = 
in(q)} of closed sets is a neighborhood about its every point; therefore, this inter
section is clopen. All intersections of this kind form a sought partition of Q. 

The implication (c)--->(a) is evident. I> 

DEFINITION. A topological space Q satisfying one of the equivalent conditions 
(a)-(c) of Lemma 3.1.8 is called functionally discrete. 

3.1.9. A point of a topological space is a-isolated or a P-point if the intersec
tion of every sequence of neighborhoods about this point is again a neighborhood. 

REMARK. A Hausdorff topological space containing a single nonisolated point 
is a normal and Baire space. 

Proposition. Let Q be a completely regular topological space. 

(1) The following are equivalent: 
(a) Q is functionally discrete; 
(b) all points in Q are a-isolated; 
(c) every a-open subset of Q is open; 
(d) every a-closed subset of Q is closed. 
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(2) If Q is functionally discrete then all countable subsets of Q are 
closed. 

(3) The converse of (2) is false. 

<l (1): (a)-t(b): Consider an arbitrary point q E Q, a sequence (Un) of neigh
borhoods about q, and put V = nnEN Un. Since the space Q is completely regular; 
for every n E N, there is a continuous function fn : Q -t [0,1] such that fn(q) = ° 
and fn == 1 on Q\Un. The sum 

00 

f = LJn/2n: Q -t [0,1] 
n=l 

is a continuous function and, by (a), vanishes on some neighborhood Uo about 
q. Since f > ° outside V, the neighborhood Uo is a subset of V; therefore, V is 
a neighborhood about q too. 

(b)-t(c) : By (b), the intersection of a sequence of open subsets of Q is a neigh
borhood about its every point and, hence, is open. 

(c)-t(a): By (c), for every function f E C(Q) and a point q E Q, the intersec-
tion 

n {p E Q : If(p) - f(q)1 < lin} 
nEN 

is a neighborhood about q on which the function f is constant. 
Equivalence of the mutually dual assertions (c) and (d) is evident. 
(2): It is sufficient to observe that countable subsets of Q are a-closed and to 

apply (1). 
(3) : Construct a completely regular topological space Q whose all countable 

subsets are closed and choose a function in C(Q) which is not locally constant. 
Make the interval [0, 1] into a topological space Q by taking as a base for open 

sets all subsets of (0, 1] and all subsets of the form [0, t]\S, where t E (0 , 1] and S is 
a countable subset of (0, 1]. The topological space Q is constructed. It is clear that 
all countable subsets of Q are closed. Since Q is a Hausdorff space and contains 
a single nonisolated point, it is normal (see the remark above the proposition); 
therefore, Q is completely regular. It is easy to see that the identity mapping of 
[0,1] is continuous and is not constant on every neighborhood about 0. I> 

3.1.10. Recall that a topological space is countably compact if from every 
countable open cover of this space we can refine a finite subcover. A topological 
space is perfectly normal if it is normal and its every closed subset is a-open. 
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Proposition. Let Q be a completely regular topological space. Under each of 
the following conditions, the space Q includes a non closed countable subset (hence, 
Q is not functionally discrete): 

(1) Q includes a nondiscrete countable compact subspace; 
(2) Q includes an infinite compact subspace; 
(3) Q includes a nondiscrete subspace that is a Frechet-Urysohn space; 
(4) Q includes a convergent sequence of pairwise distinct elements; 
(5) Q contains a nonisolated point at which there is a countable base. 

Furthermore, a perfectly normal topological space is functionally discrete only 
if it is discrete. 

<J It is known (see, for example, [2, III, assertion 189]) that a topological 
space is count ably compact if and only if its every infinite subset has a limit point. 
Using this criterion, we easily prove that condition (1) is sufficient for existence of 
a nonclosed countable subset of Q . Sufficiency of conditions (2), (4), and (5) is 
easily validated. Condition (3) is equivalent to (4). 

For a non discrete perfectly normal topological space, existence of a not locally 
constant function follows from the Vedenisov Theorem (see [5 , 1.5.19]) . [> 

3.1.11. If a topological space Q is functionally discrete and completely regular 
then Q satisfies none of the conditions 3.1.10 (1)-(5). In particular, if Q is nondis
crete then Q cannot be compact, first-countable, or metrizable. These observations 
essentially restrict the class of topological spaces in which Q may fall. Therefore, it 
is worth verifying that a completely regular functionally discrete topological space 
need not be discrete. 

First, for an arbitrary upward-directed set N without greatest element, define 
a nondiscrete normal topological space N·. As the underlying set we take N = 
N U {oo}, where 00 tJ- N. Endow N with an order, regarding N as an ordered 
subset of N and assuming 00 > 0: for all 0: E N. Consider open the subsets of 
N and all intervals of the form (0:,00] := {.8 EN: 0: < f3 ,;:;; oo}, where 0: E N 
to be open. Therefore, W becomes a topological space. Since N has no greatest 
element, the point 00 E N· is nonisolated; hence, the topology of N· is nondiscrete. 
The space N· is normal, since it is Hausdorff and contains a single nonisolated point 
(see Remark 3.1.9). 

REMARK. (1) If all countable subsets of N have upper bounds, every continu
ous function f : N· ---f ~ takes a constant value f(oo) on some neighborhood about 
00. (For instance, the intersection 

n {o: E W: If(o:) - f(oo)1 < lin} 
nEl\! 
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is such a neighborhood.) 
(2) For an arbitrary topological space P, continuity of a function f : N" ......, P 

is equivalent to the fact that the net (J(a})aEN converges to f(oo) . 

EXAMPLE. There exists a functionally discrete normal topological space that 
is not discrete. 

<J Let N be an upward-directed set without greatest element and let all count
able subsets of N have upper bounds. For instance, an arbitrary uncountable cardi
nal or the set of all countable subsets of an uncountable set (ordered by inclusion) 
is such an upward-directed set. Then, by the above remark, N" is a sought space. I> 

3.1.12. Lemma. Let Y be a locally convex space and let a sequence (Yn) C Y 
converge to some Y E Y. Suppose that a vector valued function u : [0,1] ......, Y 
satisfies the equality u(o) = Y and, for every n E N, maps the interval [n~l ' ~l onto 
the interval [Yn+l , Ynl by the formula 

( A 1- A) 
u n+ 1 + -n- = AYn+l + (1- A)Yn, 

Then u is continuous. 

<J It is clear that u is continuous on the half-open interval (0,1] . Take an ar
bitrary neighborhood V about Y = u(O), take an arbitrary convex neighborhood 
W C V about the same element , and consider a number no such that Yn E W for 
n ~ no . Then, in view of convexity of W, the inclusion u([O, ~o ]) c W holds. I> 

3.1.13. Lemma. Let X be an infinite-dimensional Banach space, whereas Q is 
not a functionally discrete topological space. Then there exists a weakly' continuous 
function from Q into X' whose pointwise norm is bounded and discontinuous. 

<J By the Josefson-Nissenzweig Theorem [4, XII], there exists a weakly' null 
sequence (x~) of norm-one vectors in X'. Put Yl = x~ and 

_ { x~+l' IIAY~ + (1 - A)X~+lll ~ 1/2 for all A E [0,1]' 
Yn+l - I h' -Xn+l , ot erWlse 

for every n E N. Obviously, the sequence (Yn) is weakly' null and, by Lemma 3.1.1, 
every interval [Y~+l' y~], n E N, does not intersect the open ball with radius 1/2 
centered at the origin. Then the vector valued function u : [0,1] ......, X' defined in 
Lemma 3.1.12 (where Y is equal to the space X' endowed with the weak' topology 
and Y equals to O) is weakly' continuous. At the same time, Illulll(O) = ° and 
Illulll(O, 1]) C [1/2,1]. 
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Now consider a function 1 E C(Q) such that 1 is not constant on each neigh
borhood about a point q E Q and put 9 = 11-1(q)II\1. It is clear that g: Q -> [0,1]' 
g(q) = 0, and q E cl{g > O}. Consequently, the composition u 0 9 : Q -> X' is 
a sought vector valued function. f> 

3.1.14. Let X be a Banach space. A subset F c X' is called total (or sepa
rating) if, for every nonzero element x EX, there is a functional x' E F such that 
(xix') =I O. 

REMARK. In each of the following cases, the dual X' of a Banach space includes 
a countable total subset: 

(1) X is separable; 
(2) X is isomorphic to the dual of a separable Banach space. 

<l (1): Consider a set {xn : n E N} everywhere dense in X. With each number 
n E N, associate a norm-one functional x~ E X' such that (xnlx~) = Ilxnll. Then, 
for an arbitrary nonzero element x E X, there is an n E N for which IIx - xnll :s; 
Ilxll/3 and, consequently, 

l(xlx~)1 ~ l(xnlx~)I-I(xn - x I x~)1 
~ Ilxnll-llxll/3 ~ Ilxll-llxll/3 - Ilxll/3 > o. 

(2): Without loss of generality, we may assume that X = Y', where Y is 
a separable Banach space. It remains to observe that the image of a countable 
everywhere dense subset of Y under the canonical embedding of Y into Y" is 
total. f> 

Given a topological space Q and a Banach space X, the symbol Cw(Q, X) 
denotes the totality of all weakly continuous functions from Q into X. 

Lemma. Let X be a Banach space and let Q be a functionally discrete topo
logical space. Suppose that X' includes a countable total subset. Then C(Q,X) = 
Cw(Q,X). 

<l Consider an arbitrary vector valued function U E Cw (Q, X). It is sufficient 
to show that, for some partition of Q into clopen subsets, the function u is constant 
on each element of the partition. 

Let {x~ : n E N} be a total subset of X'. Since u is weakly continuous, 
(ulx~) E C(Q) for all n E N. According to 3.1.8 (c), there is a partition of Q into 
clopen subsets such that all functions (ulx~), n E N, are constant on each element 
of the partition. Since the set {x~ : n E N} is total, the function u is constant on 
each element of the partition. f> 
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3.2. Homomorphisms of Banach Bundles 

The current section, as follows from its title, is devoted to studying homomor
phisms of Banach bundles. Some of the facts below are of interest in their own 
right, but usefulness of the majority of the results in the section reveals itself later, 
in studying operator bundles (see Sections 3.3 and 3.4) . 

The first group of results, 3.2.1-3.2.4, suggests a number of conditions guaran
teeing that continuous sections of a Banach bundle with operator stalks are homo
morphisms. 

Subsections 3.2.5- 3.2.7 provide a repeatedly employed useful way of construct
ing sections, homomorphisms, and Banach bundles. 

In 3.2.8 and 3.2.9, the notion of the dimension of a Banach bundle is studied. 
The results obtained, concerning domains of constancy for the dimension, are, to 
our opinion, of interest in their own right. 

In 3.2.10, a description is given for homomorphisms of Banach bundles over 
a first-countable topological space. This result is supplied with examples (3.2.11) 
which justify essence of the restrictions imposed on the topological space. 

Closing this section, we study the question of continuity for the pointwise 
norm of a homomorphism acting from a CBB with constant finite dimension into 
an arbitrary CBB (3.2.12) . A number of examples (see 3.2.13) demonstrates that 
the constancy of dimension is an essential requirement. 

3.2.1. Proposition. Let X, &, and fC be CBBs over a topological space Q, 
with fC(q) c B(X(q) , &(q)) for all q E Q, and let sets of sections 'P/ c C(Q, X) 
and "If! c C (Q, fC) be stalkwise dense in X and fC. Suppose that the global section 
w @ u of & is continuous for every u E 'P/ and w E "If!. Then, for every D C Q, 
the inclusion C(D, fC) c HomD(X, &) holds. 

<J Fix an arbitrary subset D C Q, elements u E C(D, X) and w E C(D, fC) , 
and a point qED. We prove that the section w @ u of & is continuous at q. 
By [8, Proposition 1.3.2], it is sufficient to show upper semicontinuity of the function 
Illw @ u - viii : D --+ lR at the point q for every v E C(D, &). Let c > 0 and 
v E C(D, &). We find a neighborhood about q on which 

Illw@u - viii < Illw@u - vlll(q) + c . 
Take an element u E 'P/ such that Illwlll(q)lllu - ulll(q) < c/8. By continuity 

of the real-valued functions lIIu - ulll and IIIwlll, we may find a neighborhood U1 

about q on which IIIwllllliu - ulll ~ c/4. Similarly, we take an element w E "If! and 
a neighborhood U2 about q such that IIIw-wlll(q) Illulll (q) < c/8 and IIIw-wllllllulll ~ c/4 
on U2 . Then, on the intersection U1 n U2 , the following hold: 

IIIw @ u - w @ ulll ~ IIIw @ u - w @ ulll + IIIw @ u - w @ ulll 
~ IIIwllllliu - ulll + IIIw - wlllilluill ~ c/4 + c/4 = c/2. 
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The same calculations yield the inequality 111m Q9 u - w Q9 ulll(q) < c/4. Now we take 
a neighborhood U3 about q, on which Illw Q9 u - viii :( Illw Q9 u - vlll(q) + c/4. On the 
neighborhood U1 n U2 n U3 about q, the following hold: 

111m Q9 u - viii :( 111m Q9 u - w Q9 ulll + Illw Q9 u - viii 
:( c/2 + Illw Q9 u - vlll(q) + c/4 

:( c/2 + Illw Q9 u - m Q9 ulll(q) + 111m Q9 u - vlll(q) + c/4 

< c/2 + c/4 + 111m Q9 u - vlll(q) + c/4 

= 111m 0 u - vlll(q) + c, 

which completes the proof. [> 

3.2.2. Corollary. Let &:, '!Y, and !Z be CBBs over a topological space Q, 
with !Z(q) c B(&:(q), '!Y(q)) at every point q E Q. Suppose that C(Q,!Z) c 
Hom(&: , '!Y) . Then , for every D C Q, the inclusion C(D , !Z) c HomD(&:' '!Y) 
holds. 

<J The claim follows from 3.2.1 with cP£ = C(Q , &:) and 1// = C(Q, !Z). [> 

3.2.3. Corollary. The inclusion C( Q, B(X, Y)) c Hom(XQ, YQ) holds for ar
bitrary Banach spaces X and Y. 

<J Put cP£ and 1f/ equal to the sets of all constant X-valued and B(X, Y)-valued 
functions and apply Proposition 3.2.1. [> 

One of the natural questions which may arise when considering the above 
corollary is as follows: When does the equality 

hold? This question is addressed in Section 3.3. 

3.2.4. Corollary. Let &:, '!Y, and !Z be CBBs over a topological space Q 
and let !Z(q) C B(&:(q),'!Y(q)) at every point q E Q. Suppose that the space 
Hom( &:, '!Y) includes a continuity structure for !Z. Then C( Q, !Z) c Hom( &:, '!Y). 

<J Taking C(Q, &:) as CP£, the above-mentioned continuity structure for !Z as 
1f/, and applying Proposition 3.2.1, we obtain the claim. [> 

3.2.5. In the sequel, we use the following auxiliary result. 

Lemma. Let Q be a completely regular topological space. Suppose that q E Q 
is a limit point for a countable discrete set {qn : n E N}, with qi =I qj whenever 
i =I j. 

(1) There is a sequence (Wn) of open subsets ofQ such that qn E Wn , 
cl Wn n clUkin W k = 0, and q ~ cl Wn for all n E N. 
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Consider continuous functions fn : Q -+ [0, 1]' fn == ° on Q\Wn for all n EN. 
Furthermore, let (en) be a vanishing numerical sequence. 

If at q there is a countable base then we may additionally stipulate that 
( cl UnEN Wn) \ UnEN cl Wn = {q}. 

(2) The function f : Q -+ [0 , 1] defined by the formula 

is continuous. 
(3) Let !!l' be a CBB over Q. Given a sequence (Un)nEN C C(Q,!!l') 

such that III Un III ~ M on Wn, from some index on, the section U 
over Q defined by the formula 

is continuous. 
(4) Let !!l' and & be CBBs over Q. If (Hn)nEN C Hom(!!l' , &) and 

IIIHnlll ~ K on Wn for all n from some index on, then the mapping 
H : p E Q >--* H (p) E B ( !!l' (p) , & (p») defined by the formula 

H(p) = {enfn(p)Hn(P), p E Wn, 
0, p ~ UnEN Wn 

is a homomorphism from !!l' into &. 
(5) If X is a topological vector space and a sequence (xn) C X con

verges to an x EX, then the vector valued function U : Q -+ X 
defined by the formula 

is continuous. 
(6) If X is a Banach space and a sequence of functionals (x~) C X' 

converges weakly* to an x' E X', then the vector valued function 
H : Q -+ X' defined by the formula 

is a homomorphism from XQ into~. 
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<l (1): By induction, for every n E N, we construct open sets Wn, Vn C Q. 
Since the space Q is regular, the point ql and the closed set cl {qk : k ~ 2} have 
disjoint open neighborhoods WI and VI. We may assume that cl WI n cl VI = 0. 

If Wk and Vk are chosen for all k :;;; n then we take Wn+1 and Vn+1 so that Vn 
contain Wn+1 and Vn+ l , and the sets cl Wn+1 and cl Vn+1 separate the point qn+1 
and the closed set cl{qk : k ~ n + 2}. It is easy to see that (Wn) is a sought 
sequence. 

Finally, let (Un) be a countable base for open neighborhoods about q, with 
UI = Q and Un :J Un+1 for all n E N. Then, when constructing the sequence of 
sets Wn, we may take Wn C Uk(n), where ken) = max{k EN: qn E Ud . This 
provides the desired relation, (cl UnEN W n) \ UnEN cl W n = {q} . 

(2): It is obvious that the function f is the pointwise sum of the uniformly 
convergent series I:~=I cnfn; therefore, f is continuous. 

Assertions (3)-(5) may be proven in much the same way by using Proposition 
[8, 1.3.6] for (3) and [8, 1.4.11] for (4). 

(6): By (5) the funCtion H is weakly' continuous; therefore, H0u E C(Q) for 
all constant functions u : Q --+ X. It remains to observe that the pointwise norm 
of H is bounded by construction and to apply [8, Theorem 1.4.9] . f> 

3.2.6. Corollary. Let!!J: and ry be eBBs over a completely regular topolog
ical space Q. Suppose that a sequence (qn)nEN, qi # qj (i # j) converges to a point 
q and q # qk for all kEN. 

(1) Let Xn E !!J:(qn) (n EN), let x E !!J:(q), and let the conver
gence (qn, xn) --+ (q, x) as n --+ 00 hold in the topological space 
Q 0 !!J: (see [8, 1.1.4]). (For x = 0, this is equivalent to the equal
ity limn_oo Ilxnll = 0.) Then there exists a bounded section u E 

C(Q,!!J:) such that u(qn) = Xn for all n EN and u(q) = x. 
(2) Let Hn E Hom(!!J:, ry) (n E N) and let the sequence (1IIHnlll)nEN be 

uniformly vanishing. Then there exists a bounded homomorphism 
H E Hom(!!J:, ry) such that H(qn) = Hn(qn) for all n E Nand 
H(q) = O. 

(3) Let X be a topological vector space. Suppose that the sequence 
(xn) C X converges to an x E X . Then there is a continuous 
vector valued function u : Q --+ X such that u(qn) = Xn for all 
n E Nand u(q) = x . 

(4) Let X be a Banach space. Suppose that the sequence (x~) C X' is 
convergent weakly' to an x' E X'. Then there exists a homomor
phism H E Hom(XQ'a') such that H(qn) = x~ for all n E Nand 
H(q) = x'. 

<l We only need to explain assertion (1). If x = 0, this assertion follows directly 
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from Lemma 3.2.5 (3) and Dupre's Theorem (see [8, 1.3.5]). Dealing with the general 
case, use Dupre's Theorem again and consider a bounded section v E G(Q, &:) 
taking the value x at q. From [8, Proposition 1.3.8] it follows that IIxn -v(qn)11 --> 0 
as n --> 00. Since the assertion under proof is true for the case x = 0, there 
is a bounded section W E G(Q, &:) satisfying the equalities w(qn) = Xn - v(qn) 
(n E N) and w(q) = O. It remains to put u = v + w. I> 

3.2.7. Lemma. Let Xl C X 2 C .. . be Banach spaces, let Q be a completel'y 
regular topological space, and let (Un)nEN be a partition of Q such that the sets 
Ul U . .. U Un are closed for all n E N. Then there is a CBB &: over Q satisfying 
the following conditions: 

(a) &:\un == Xn for all n E N; 
(b) if the sequence of functionals x~ E X~ (n E N) is such that X~+l 

extends x~ and IIx~1I ::::; 1 for all n E N, then the mapping H 
satisfying the relations H\un == x~ (n E N) belongs to Hom(&:, 8i'). 

<l Consider a (discrete) Banach bundle &: satisfying condition (a) and define 
a continuity structure in &: as follows: Put 

Go = G(Q); 
Gn = {f E G(Q) : f == 0 on Ul U··· U Un}, n E N. 

It is clear that the set of sections 

'TI = {hXl + ... + fnxn : Ii E Gi , Xi E Xi, i = 1, ... ,n, n E N} 

of the bundle &: is a subspace of the space of all global sections of &: . Moreover , 
the set 'TI is stalkwise dense in &:. Indeed, let q E Q, x E &:(q), and let a number 
n E N be such that q E Un. Since the space Q is completely regular, there is 
a function f E Gn - l such that f(q) = 1. Therefore, fx belongs to 'TI and passes 
through x at q. Consequently, 'TI is a continuity structure in &: which makes &: 
a CBB. 

Let H satisfy condition (b). Verify that H E Hom(&:,8i') . By Theorem 
[8, 1.4.9]' it is sufficient to show that H Q9 U E G(Q) for all U E 'TI. If u = hXl + 
... + fnxn E 'TI, where Ii E Gi , Xi E Xi, i = 1, ... , n , then, for all q E Q, the equality 
(H Q9 u)(q) = (u(q)lx~) holds. Next, 

Therefore, the function H Q9 u is continuous. I> 
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3.2.8. DEFINITION. Let !£ be an arbitrary Banach bundle over a set Q. 
The function dim!£ which, with every point q E Q, associates the dimension 
dim !£ (q) of the stalk !£ (q) is the dimension of !£. 

We say that !£ has constant dimension n if dim !£(q) = n for all q E Q. 

Lemma. Let !£ be a CBB with finite-dimensional stalks over an arbitrary 
topological space. For every n = 0, 1,2, . .. , consider the following conditions: 

(a) the set {dim !£ = n} is open; 
(b) the set {dim !£ < n} is open; 
(c) the set {dim !£ ~ n} is open; 
(d) the set {dim!£ > n} is closed; 
(e) the set {dim !£ ?: n} is closed. 

If one of the conditions (a)-(e) holds for every n = 0,1,2, . .. , then each of 
the conditions holds for every n = 0,1,2, ... . In this case, all sets mentioned in 
(a)-(e) are c1open. 

<I It suffices to observe that, due to [7, 18.1 J, the sets of the form {dim!£ > n} 
and {dim!£ ?: n} are open and, therefore, the sets of the form {dim!£ < n} and 
{dim !£ ~ n} are closed. c> 

3.2.9. Proposition. The following hold: 
(1) Let Q be a Baire topological space. Then, for every CBB !£ over Q 

with finite-dimensional stalks, the union Un;;,O int {dim !£ = n} is everywhere dense 
in Q. 

(2) If the space Q is completely regular and, for every CBB !£ over Q with 
finite-dimensional stalks, the set Un;;,o int cl { dim !£ = n} is everywhere dense, then 
Q is a Baire space. 

<I (1): For proving that the union under consideration is everywhere dense, it 
is sufficient, given a nonempty open set U c Q, to find an open nonempty subset 
W c U such that the dimension of !£ is constant on W. 

Since Q is a Baire space, there is a number n ?: ° such that 

V:= intcl{dim!£=n} i= 0 . 

Consequently, from [7, 18.1] we easily infer that the set {dim!£ ~ n} is closed; 
therefore, V c cl {dim!£ = n} C {dim!£ ~ n}, i.e., dim!£ ~ non V . The relation 
V c cl {dim !£ = n} and the fact that the set V is open imply that there exists 
a point q E V n {dim !£ = n}. Since the set {dim!£ ?: n} is open, dim!£ ?: n on 
some open neighborhood W C V about q. Thus, the dimension of !£ is constant 
on the open nonempty set W eVe U. 
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(2): Let Q be a completely regular space that is not a Baire space. We will 
construct a CBB :!C over Q such that :!C has finite-dimensional stalks while the set 
Un>-O int cl { dim :!C = n} is not everywhere dense. 

r Since Q is not a Baire space, there exist an open nonempty set U C Q and 
a cover (Vn)nEN consisting of nowhere dense subsets Vn C U. Put Ul = Q\U and 
Un+! = cl Vn \ (Ul U ... U Un) for all n E N. It is clear that, for all n E N, the set 
Un is nowhere dense, the union Ul U ·· · U Un is closed, and UnEN Un = Q. 

Consider a sequence Xl C X 2 C ... of finite-dimensional Banach spaces with 
strictly increasing dimensions: dimXn < dimXn+! for all n E N. By Lemma 3.2.7, 
there exists a CBB :!C over Q such that :!C I Un == Xn for all n EN. It is easy to see 
that 

Uintcl{dim:!C=n}= U intclUm=intUl , 

n;;'O m;;'O 

where the latter set is not everywhere dense . c> 

Corollary. If:!C is a CBB with finite-dimensional stalks over a Baire space 
Q then, for every m = 0, 1,2, ... , the equality holds 

cl { dim :!C ~ m} = cl U int { dim :!C = n}. 
n;:::m 

<l Fix a number 0 ~ m E Z. The inclusion :> is obvious. Prove the reverse 
inclusion. Let q E Q and dim:!C (q) ~ m. The union Un;;,o int {dim :!C = n} is 
everywhere dense by Proposition 3.2.9 (1), 

U int {dim:!C =n} C {dim:!C < m}, 
n <m 

and the latter set is closed. 
Hence, the point q belongs to the closure of Un;;,m int { dim :!C = n}. Therefore, 

{ dim :!C ~ m} C cl U int { dim :!C = n}, 
n~m 

which implies the required inclusion. c> 

3.2.10. The following assertion differs from [8, Theorem 1.4.7] only in the con
ditions on Q. 

Theorem. Let :!C and CY be CBBs over a first-countable completely regular 
topological space Q. A mapping H : q E Q f-+ H(q) E B(:!C(q), CY(q)) is a homo
morphism from :!C into CY if and only if H @ u E C(Q, CY) for all u E C(Q, :!C). 
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<l Necessity follows from [8, Theorem 1.4.4]. Prove sufficiency. In view of 
[8, Theorem 1.4.4], it is enough to prove that H is locally bounded. Suppose that 
the function IIIHIII is not bounded in any neighborhood about a point q E Q. In this 
case, since Q is first-countable, there is a sequence (qn) C Q \ {q}, qi i= qj (i i= j), 
convergent to q such that IIIHIII(qn) > (1IIHIII(q) + n)2 for all n E N. For every n E N, 
we take an element Xn E ~(qn) so that IIH(qn)xnll = IIH(qn)1I and IIxnll ~ 2. 
By Corollary 3.2.6 (1) there exists a bounded section U E c(Q,~) taking values 
u(qn) = ~ Xn for all n E Nand u(q) = O. Then 

This contradicts continuity of H (8) u, since qn -> q and (H (8) u)(q) = O. [> 

REMARK. From the above proof and the proof of 3.2.5 (3), it is clear that, 
in the last theorem, the condition H (8) u E C(Q, 'io/) for all u E C(Q,~) can 
be replaced by a "weaker" condition: H (8) u E C(Q, 'io/) for all u in a stalkwise 
dense Cb(Q)-submodule of Cb(Q,~) closed with respect to the uniform norm. 
For instance, we may take as such a submodule Cb(Q, ~). 

3.2.11. Thus, Theorem 3.2.10 is stated for the case of a first-countable topo
logical space Q. In the literature, the class of Frechet-Urysohn spaces is usually 
the smallest class of topological spaces under consideration which includes the class 
of first-countable spaces (d. [5, 1.6.14]). (Recall that a topological space Q is said 
to be a Fn§chet-Urysohn space if, for every point q E Q and every P C Q, the con
dition p E cl P implies existence of a sequence in P convergent to q.) Show that 
Theorem 3.2.10 cannot be generalized to the class of Frechet-Urysohn spaces Q. 

EXAMPLE. We construct a topological space Q with the following properties: 

(a) Q is a Frechet-Urysohn space; 
(b) Q is a normal space; 
(c) Q is not first-countable; 
(d) Q is not locally pseudocompact; 
( e) Q is a Baire space; 
(f) there exist a CBB ~ over Q with finite-dimensional stalks and a mapping 

H: q E Q f-> H(q) E ~(q)' such that H(8)u E C(Q) for all U E C(Q, ~), 
but H rf. Hom(~,El); 

(g) for every infinite-dimensional Banach space X, there is a mapping H : 
Q -> X' such that H (8) u E C(Q) for all u E C(Q, ~), but H rf. 
Hom(XQ,El) . 

Consider the set Q = (N x N) U {oo}, where 00 rf. N x N, and endow Q with 
a topology in the following way. We regard all elements of N x N as isolated points 
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and all subsets U C Q, for which 00 E U and 

(Vm E N) C3nm E N) (Vn:;:: n m ) (m,n) E U, 

as neighborhoods of 00. It is clear that 

C(Q) = {f: Q ---.IR : lim f((m , n)) = f(oo) for all mEN}. (1) 
n-..oo 

Verify that the topological space Q possesses properties (a)-(g). 
(a) : It is sufficient to consider a subset P C Q that does not contain a sequence 

convergent to 00 and show that 00 fj. cl P . Obviously, for every mEN, there is 
a number nm such that {(m,n) E P: n E N} c {(m,l), ... ,(m,nm )}. Hence, 
the set P and the neighborhood {( m, n) : mEN, n > n m } U {oo} about 00 are 
disjoint; therefore, 00 fj. cl P. 

(b), (e): See Remark 3.1.9. 
Conditions (c) and (d) immediately follow from assertion (f) proven below and 

Theorems 3.2.10 and [8, 1.4.7] respectively. 
(f) : Consider a CBB :J: over Q such that :J: (q) = IR for all q E N x N, :J: (00) = 

{O}, and C(Q,:J:) = {u E C(Q) : u(oo) = O} . Define an H by the equalities 
H(oo) = 0 and H((m,n)) = m for all (m,n) EN x N. It is easy to verify that 
H 0 u E C(Q) for all u E C(Q , :J:) (see (1)). Nevertheless, the pointwise norm of 
H is not locally bounded; therefore, by [8, Theorem 1.4.4], H fj. Hom(:J:,8i') . 

(g): By the Josefson-Niessenzweig Theorem [4, XII], there is a weakly' null 
sequence (x~) of norm-one vectors in X' . Define H (00) = 0 E X' and H ((m, n)) = 
mx~ for all (m,n) E N x N. Then H 0 u E C(Q) for an arbitrary section u E 
C(Q, XQ) . Indeed, for every mEN, the relation limn-..oo(H 0 u) ((m , n)) = 0 holds, 
since (H((m,n)))nEN is a weakly' null sequence and lIu((m, n)) - u(oo) II ---.0 as 
n ---. 00. It remains to observe that the pointwise norm of H is not locally bounded 
and to apply [8, Theorem 1.4.4]. 

3.2.12. Theorem. Let a CBB :J: over a topological space Q have constant 
finite dimension, let 1Y be an arbitrary CBB over Q, and let %' be a subset of 
C (Q, :J:) stalk wise dense in :J:. If a mapping H : p E Q 1--+ H (p) E B ( :J: (p), 1Y (p) ) 
is such that H 0 u E C(Q,1Y) for every u E %', then H E Hom(:J:,1Y) and 
the pointwise norm III H III is continuous. 

<I Fix an arbitrary point q E Q and prove continuity of IIIHIII at this point. Due 
to the relation 

IIH(p)11 = sup {IIH(p) (max{II~(p)lI, I} u(p)) II : u E %'} 

= sup {( Illulll\ 1111H 0 ulll) (p) : u E %' } 
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valid for all P E Q, the function IIIHIII is lower-semicontinuous. It remains to prove 
that the function III Hili is upper-semicontinuous at q. Take an arbitrary c > 0 and 
prove that, in some neighborhood U about q, the inequality IIIHIII :,; IIIHIII(q) + c 
holds. 

Since the stalk &: (q) is finite-dimensional, there is a collection of sections 
u = (Ul, . .. ,Un) C lin%' such that the values Ul(q), ... ,un(q) lie on the unit 
sphere and constitute a basis for &:(q). Since the set 

A = {A E lRn : IIIAUIII(q) = I} 

is bounded in lRn, the number 

IIAlil := SUp{IAll + ... + IAnl: (AI, . .. ,An) E A} 

is finite. (Here and in the sequel, we denote by AU the sum Al Ul + ... + An Un .) 
Choose some number 6 E (0,1) such that l~S (6 + IIIHIII(q)) < IIIHIII(q) + c. 

By [16, Lemma 7], there exists a neighborhood Us about q, where 1 - 6 :,; 
III Aulll :,; 1 + 6 for all A E A. Without loss of generality, we may assume that the col
lection u(p) = (Ul (p), . .. , Un (p)) is linearly independent for every element P E Us 
(see [7, 18 .1]). In particular, an arbitrary vector x E &:(p) can be represented as 

with a suitable Ax E A. Since the sections H Q9 Ui, i = 1, . . . , n, are continuous, 
there exists a neighborhood U C Us about q such that 

IIAlh max {IIIIH Q9 uilll(p) - IIIH Q9 uilll(q) I : i = 1, ... , n} < 6 

for all p E U. At a point p E U, the value of the norm IIH(p)11 is attained at some 
vector x(p) E &:(p), Ilx(p)11 = 1. Hence, 

1 
IIIHIII(p) = IIH(p)x(p)1I = IIIAx(p)ulll(p) IIIH Q9 (Ax(p)u)lll(p) 

:,; 1 ~ 6 ( IIIIH Q9 (Ax(p) u) 111(p) - IIIH Q9 (Ax(p) u) 111(q) I 

+ IIIH Q9 (Ax(p) u) III (q)) 

:,; 1 ~ 6 (11Alil max {IIIIH Q9 uilll(p) - IIIH Q9 uilll(q) I : 

i = 1, ... ,n} + IIIHIII(q)) 

1 
:,; 1- 6 (6 + IIIHIII(q)) < IIIHIII(q) + c. 

The fact that H E Hom( &:, 'Y) now follows from continuity of IIIHIII and [8, Theo
rem 1.4.4]. I> 
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Corollary. Let:r and ry be CBBs over the same topological space. If:r has 
constant finite dimension then the pointwise norm of every homomorphism from 
:r into ry is continuous. 

3.2.13. As we see from the examples below, the constant dimension require
ment for a bundle :r in Corollary 3.2.12 is essential. 

Intending to emphasize diversity of situations in which a homomorphism H E 

Hom(:r,!Jf) with a discontinuous norm arises for a CBB :r with finite-dimensional 
stalks, we give three different examples. In the first case, the dimension of :r is 
equal to 0 at a unique discontinuity point of the function IIIHIII and the dimension 
of :r is equal to 1 at other points . In the second case, the dimension of :r takes 
two distinct (possibly, nonzero) values and, in the third case, the dimension of :r 
takes infinitely many distinct values and the function IIIHIll is discontinuous at every 
point. 

EXAMPLES. (1) Let Q = [0,1] . Define :r(q) = IR whenever 0 < q :( 1 and 
:r(0) = {O}. Consider the set {u E e[O, 1] : u(O) = O} as a continuity structure in 
:r. Then the pointwise norm of the homomorphism H identically equal to values 
idIII. on the half-open interval (0, 1] is not continuous at the point 0 E Q. It is easy 
to verify that, in this case, Hom(:r,!Jf) can be identified in a natural way with 
the space of real-valued continuous functions defined on the interval [0 , 1] bounded 
on the half-open interval (0,1] and vanishing at the point 0 E Q. However, such 
functions are far from being always continuous. 

(2) This time, consider a completely regular topological space Q and let q be 
a non isolated point of Q. Define UI = {q}, U2 = Q\UI , and U3 = U4 = ... = 0. 

Let X be a finite-dimensional Banach space, let Xl be a proper subspace of X, 
and let X 2 = X3 = ... = X. Fix a norm-one functional x' E X' vanishing on Xl 

and define x~ = 0, x~ = x~ = ... = x' . Consider the CBB :r of Lemma 3.2.7 
and a homomorphism H satisfying condition (b) of the lemma. It is clear that 
IIIHIII(q) = 0 and IIIHill == 1 outside {q}. Therefore, since the point q is nonisolated, 
the function IIIHIII is discontinuous. 

(3) Let Q = Ql be the set of rationals with the natural topology and let n 1-+ qn 
be an arbitrary bijection from N onto Q. Define Un = {qn} for all n E Nand 
consider an arbitrary sequence of Banach spaces Xl C X 2 C .. . and an arbitrary 
sequence of functionals x~ satisfying condition 3.2.7 (b). We additionally require 
that the dimensions of Xn and the norms of x~ be strictly monotone increasing. Let 
:r be the CBB of Lemma 3.2.7 and let H be a homomorphism satisfying condition 
3.2.7 (b). It is obvious that the stalks of :r have pairwise distinct dimensions and 
the pointwise norm of H is discontinuous at every point of Q . 

The authors are unaware of an answer to the following question: Given a bun
dle, is the requirement that the dimension be constant on some neighborhood about 
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q sufficient for continuity of the pointwise norms of all homomorphisms at q? The
orem 3.3.5 (2) in the next section gives a positive answer to this question in some 
particular case. 

3.3. An Operator Bundle 

In this section, we suggest a number of necessary and sufficient conditions for 
existence of a Banach bundle B(f£ , ~) whose continuous sections are homomor
phisms from a CBB f£ into a CBB ~ . Separately treated are the cases of arbitrary 
bundles f£ and ~, bundles with finite-dimensional stalks, and the case of trivial 
CBBs and CBBs with constant finite dimension. 

3.3.1. Let f£, ~, and 2' be CBBs over a topological space Q, with 2'(q) C 

B(f£(q), ~(q)) for all q E Q. 

Lemma. The following assertions are equivalent: 
(a) C(Q , 2') = Hom(f£, ~); 
(b) Hom(%,~) is a stalkwise dense subset ofC(Q, 2') in 2' (in other 

words, Hom( f£,~) is a continuity structure in 2'). 

<l Equivalence of (a) and (b) follows immediately from Corollary 3.2.4. [> 

Obviously, a bundle 2' satisfying condition (a) or (b) of the lemma is unique. 
This allows us to introduce the following notion. 

DEFINITION. The Banach bundle 2' satisfying condition (a) or (b) of the above 
lemma (if such a bundle exists) is called the operator bundle for the CBBs f£ and 
~ and denoted by the symbol B(f£ , ~). 

The above definition of operator bundle generalizes the analogous notion in
troduced in [8, 1.2.3] for the case of bundles over extremally disconnected compact 
Hausdorff spaces. 

3.3.2. The following result, repeatedly used throughout the article, provides 
the basic criterion for existence of an operator bundle. 

Theorem. Let f£ and ~ be CBBs over a topological space Q. For existence 
of the bundle B(f£, ~), it is necessary and sufficient that the pointwise norm of 
every homomorphism from f£ into ~ be continuous. 

<l Necessity for continuity of pointwise norms is evident. Sufficiency of this con
dition may be explained by using the equivalent definition 3.3.1 (b) of an operator 
bundle. The stalk B(f£, ~)(q) for each point q E Q is the closure of the subspace 
{H(q): H E Hom(f£ , ~)} in the Banach space B(f£(q),~(q)) . [> 

By [8, Corollary 2.2.2]' in the case of an ample CBB f£ over an ext rem ally 
disconnected compact Hausdorff space Q, the pointwise norm of every homomor
phism from f£ into an arbitrary CBB ~ over Q is continuous. Proven by using 
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this lemma, by [8 , 2.2.3J we see that, in the case indicated, the operator bundle 
B(!£, '31) exists. This allows us to regard criterion 3.3.2 as a generalization of 
[8, Theorem 2.2.3J to the case of an arbitrary CBB over an arbitrary topological 
space. 

3.3.3. Proposition. If a CBB !£ over a topological space Q has constant 
finite dimension then, for every CBB '31 over Q, the operator bundle B(!£, '31) 
exists. 

<l The claim follows from Corollary 3.2.12 and Theorem 3.3.2. I> 

Examples 3.2.13, with 3.3.2 taken into account, demonstrate that the constant 
dimension requirement for a bundle !£ in the last proposition is essential. 

3.3.4. Proposition. Suppose that a CBB !£ over a completely regular topo
logical space Q has constant finite dimension. Then, for every CBB '31 over Q, 
the equality B(!£, 'Y)(q) = B(!£(q), 'Y(q)) holds at every point q E Q. In par
ticular, if !£ and '31 have copstant finite dimension, then B(!£, '31) has the same 
property. 

<l Fix a point q E Q and a linear operator S E B ( !£ (q), '31 (q) ) . If we construct 
a homomorphism H E Hom(!£, '31) such that H(q) = S then the claim will be 
proven. 

First, observe that if W is a closed neighborhood about q, a section w over W 
is continuous (locally bounded), and a function f E C(Q) vanishes outside W, then 
the global section f * w, defined by the formula 

(j * w)(p) = {f(P)W(P), pEW, 
0, p~ W, 

is continuous (locally bounded). Hence, in view of [8, Theorem 1.4.4], given a ho
momorphism G E Homw(!£, '31), the mapping 

H = f * G: p E Q f-4 H(p) E B(!£(p) , '31 (p)) 

is a homomorphism from !£ into '31 because the pointwise norm of H is locally 
bounded and H Q$) u = f * (G Q$) u) E C(Q, '31) for all U E C(Q, !£). 

Recalling the fact that the space Q is completely regular, we can require f(q) = 
1. Then H(q) = G(q). Therefore, for proving the claim, it suffices to define 
a homomorphism G E Homw (!£, '31) on any closed neighborhood W about q taking 
value S at the point q. By [16, Lemma 7], there exists a linear operator T : !£(q) -; 
C(Q,!£) such that, for every x E !£(q), the inequality Ilxll ~ IllTxll1 holds on some 
neighborhood U about q. Since, for every point p E U, the operator 

Tp : x E !£(q) f-4 (Tx)(p) E !£(p) 



132 Chapter 3 

is invertible and the dimension of !r is constant, we conclude that the range of T 
is stalkwise dense in !r on U. By Dupre's Theorem (see [8, 1.3.5]), there exists 
a collection of sections 1/ c C(Q,gI) such that {v(q) : v E 1/} is a basis for 
the subspace ImS C gI(q) on the unit sphere. Therefore, by [16, Lemma 7], there 
is a linear operator R : ImS -t C(Q, gI) such that the range of R coincides with 
the linear span of 1/ and III Rylll ~ 211yll for every y E 1m S on some neighborhood 
V about q. By analogy to the definition of the operators Tp , we consider a linear 
operator R,. : 1m S -t gI (p) for every point rEV. It is obvious that the operator 
Rq is invertible and IIRrll ~ 2 for all rEV. At the same time, for all p E U, 
the estimate II Tp-l II ~ 1 holds. 

Finally, take a closed neighborhood W C un V about q and, with each element 
PEW, associate the linear operator 

By [8, Theorem 1.4.9]' the mapping G: pEW f-4 G(P)EB(!r(p),gI(p») thus 
obtained is a sought homomorphism, because G(q) = S, IIIGIll ~ 211Rq11111SIIIITqll, 
and G Q9 U E C(W, gI) for all U E ImT. C> 

3.3.5. Assertion (1) of the following theorem under the assumption gI = f.l 
presents a particular answer to G. Gierz's question [7, 19, Problem 1, p.231J. 

Theorem. Let !r be a CBB with finite-dimensional stalks over a completely 
regular Baire space Q and let gI be a CBB over Q. 

(1) Given a point q of the everywhere dense set Un~oint{ dim !r = n} 
(see Proposition 3.2.9) and an operator T E B(!r(q), gI(q»), there 
exists a homomorphism H E Hom(!r, gI) such that H(q) = T and 

IIIHIII~ IITII· 
(2) Suppose that there is a countable base at a point q E Q and the bun

dle gI has nonzero stalks on an everywhere dense set. The pointwise 
norms of all elements in Hom(!r, gI) are continuous at q if and only 
if the dimension of!r is constant on some neighborhood about q. 

<l (1): Let 0 ~ nEZ, q E int{ dim!r = n}, let U C int{dim!r = n} be a closed 
neighborhood about q, and let T E B(!r(q),gI(q») . From Proposition 3.3.4 and 
[8, Lemma 1.3.9J we easily infer that there is a homomorphism G E Homu(!r, gI) 
such that G(q) = T and IIIGIll ~ IITII. Since the space Q is completely regular, there 
exists a continuous function f : Q -t [O,lJ satisfying the equalities f(q) = 1 and 
f == 0 on Q\U. It remains to put H = f * G (see the proof of 3.3.4). 

(2): Theorem 3.2.12 implies the sufficiency part of the assertion. For proving 
necessity, suppose that, in every neighborhood about q, there are points at which 
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the dimension of &: is greater than dim &:(q) =: m, and construct a homomorphism 
HE Hom(&:,q?') with discontinuous pointwise norm at q. 

By Corollary 3.2.9, the point q belongs to the closure of the open set 

U int { dim &: = n}; 
n>m 

moreover, the hypotheses imply that the set {dim q?' > O} is open. Since at the point 
q there is a countable base, we may take a sequence (qn) C Un>m int { dim ,'1: = n} n 
{dim q?' > O}, qi i= qj (i i= j), convergent to q. 

According to Dupre's Theorem [8, 1.3.5]' there exist bounded sections Ul, ... , 
Um E C(Q, &:) with linearly independent values Ul(q), . .. , um(q). From [7, Propo
sition 18.1] it follows that the sections are pointwise linearly independent on an open 
neighborhood U about q. Without loss of generality, we may assume that qn E U 
for all n E N. 

For every n E N, the inequality dim &:(qn) > m and nondegeneracy of the stalk 
q?'(qn) allow us to find an operator Tn E B(&:(qn), q?'(qn)) such that Tn == 0 on 
lin{ul(qn), ... , um(qm)} and IITnl1 = 1. By (1), for every number n E N, there 
is a homomorphism Hn E Hom(&:,q?') satisfying the relations Hn(qn) = Tn and 

III Hn III ~ 1. 
Let &:0 be the CBB over U with continuity structure lin{ullu, ... ,umlu}, 

let ~ = q?'lu, and let n E N. By Theorem 3.2.12, the mapping p E U f-> 

Hn(p)llin{u,(p), ... ,um(p)} E B(&:o(p),~(p)) has continuous pointwise norm. There
fore, we can take an open neighborhood Vn C U about qn such that 

for all p E Vn . 

By Lemma 3.2.5 (1), there exists a sequence (Wn) of open subsets of Q satis
fying the conditions cl Wn n cl Uk#n W k = 0, qn E Wn, and 

We additionally require that Wn C Vn for all n E N. Moreover, consider a sequence 
of continuous functions fn : Q -> [0, 1] such that fn(qn) = 1 and fn == 0 in Q\Wn. 
Define 

H(p) = {fn(p)Hn(P) , p E W n , 

0, p ~ UnEN Wn 

for all p E Q. It is obvious that IIIHIII ~ 1. Since the space Q is completely regular, 
the set Nq = {u E C(Q, &:): u(q) = O} enlarges the linear span of lin{ul"" ,um} 
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to a subset of C(Q,.2") stalkwise dense in .2". By applying [8, Theorem 1.4.9] to 
this subset , we show that H is a homomorphism from .2" into <Y. 

If u E lin{ Ul, ... , urn} then the series L~=l fnHn @ U uniformly converges. 
Indeed, its terms have disjoint supports, the pointwise norm of U is bounded, and 
IllfnHn @ ulll !( ~lllulil for all n E N. Then, by [8, Theorem 1.3.6]' the section H @ u 
is continuous as the sum of the series. 

Now let u E N q . The section H @ u is continuous on every set cl Wn , n E N, 
since cl Wn is a subset of an open set Q \ cl Uk 7"'n W k , and H @ u = fnHn @ u on 
this subset . If 

P E ( cl U Wn) \ U cl Wn 
nEN nEN 

then p = q and the section H@u is continuous at p, since IIIHIII !( 1 and the function 
Illulil is continuous and vanishes at q. Finally, the set Q\ cl UnEN Wn is open and 
the equality IIIH @ ulll == ° holds on this set. 

Thus, H E Hom(X' , <Y) . Furthermore, IIIHIII(q) = 0, IIIHIII(qn) = 1 for all n E N, 
and qn ---> q; therefore, the function IIIHIII is discontinuous at q. [> 

3.3.6. Theorem. Let .2" and <Y be eBBs over a first-countable completely 
regular Baire space Q. Suppose that all stalks of .2" are finite-dimensional and 
the bundle <Y has nonzero stalks on an everywhere dense subset of Q. Then the op
erator bundle B (.2" ,<Y) exists if and only if the sets {dim.2" = n} are c10pen for 
all n = 0, 1,2, .... 

<l Sufficiency of the indicated condition for existence of the bundle B (.2", <Y) 
follows from Proposition 3.3.3. 

For proving necessity, observe that, by Theorem 3.3.2 and assertion (2) of 
Theorem 3.3.5, existence of the bundle B(.2", <Y) implies that the sets {dim .2" = n} 
are open for all n = 0,1,2, .... It remains to use Lemma 3.2.8. [> 

3.3.7. The following assertion follows immediately from Theorem 3.3.6. 

Corollary. Let.2" be a eBB with finite-dimensional stalks over a first-counta
ble connected completely regular Baire topological space Q and let <Y be a eBB 
over Q with nonzero stalks on an everywhere dense subset of Q. Then existence of 
the bundle B(.2", <Y) is equivalent to the fact that the dimension of.2" is constant. 

Observe that the space Q satisfying the hypotheses of the above corollary 
may fail to be metrizable. It is easy to verify that the Nemytskil plane is such 
a nonmetrizable space (see [5, 1.2.4, 1.4.5, 2.1.10]). 

3.3.8. In the rest of this section, we mainly deal with trivial eBBs. For these 
eBBs, the existence of the bundle B(XQ' YQ) is closely connected with the question 
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whether the inclusion 

C(Q , B(X, Y)) c Hom(XQ' YQ) 

is strict (considered in 3.2.3). 

Proposition. Given Banach spaces X and Y, the bundle B(&: , :o/) exists if 
and only if C(Q, B(X, Y)) = Hom(XQ,YQ). Moreover, if the bundle B(XQ , YQ) 
exists then it is equal to the trivial CBB with stalk B(X, Y) . 

<J We first prove the second assertion. Let B(XQ' YQ) exist. Since the rela
tions B(XQ' YQ)(q) c B(Xdq), YQ(q)) = B(X, Y) are true at each point q E Q 
and the relation C(Q, B(X, Y)) c Hom(XQ' YQ) = C(Q, B(XQ' YQ)) holds, every 
stalk of B(XQ' YQ) coincides with the space B(X, Y). In this case, C(Q, B(X, Y)) 
is a continuity structure for both B(X, Y)Q and B(XQ' YQ); therefore, these two 
CBBs coincide (see [8, 2.1.8, 2.1.9]). Whence it is immediate that the equality 
C(Q,B(X,Y)) = Hom(XQ , YQ ) is necessary for existence of B(XQ,YQ) ' Suffi
ciency is evident by Theorem 3.3.2. [> 

3.3.9. Corollary. Let X and Y be Banach spaces and let X be finite-dimensi
onal. Then the bundle B(XQ' YQ) exists and, moreover, B(XQ' YQ) = B(X, Y)Q 
and Hom(XQ' YQ) = C(Q,B(X, Y)) . 

<J The claim follows from 3.3.2 and 3.3.8. [> 

3.3.10. Theorem. Let X be an infinite-dimensional Banach space and let Q 
be a topological space. Suppose that, for some CBB :0/ with nonzero stalks, the bun
dle B(XQ':o/) exists. Then the space Q is functionally discrete. 

<J Assume that there exists a not locally constant function in C(Q) and con
struct a homomorphism H from XQ into :0/ with discontinuous pointwise norm. 
By the theorem of 3.3.2, the theorem will be thus proven. 

Due to Lemma 3.1.13, there exists a weakly* continuous vector valued func
tion w : Q -4 X' with bounded and discontinuous pointwise norm. Let q be 
a discontinuity point of Illwlll. Consider a section v E C(Q,:o/) with nonzero 
value v(q) and define a mapping H : q E Q f--+ H(q) E B(X, :o/(q)) by the rule 
H(q) : x E X f--+ (xlw(q))v(q) for all q E Q. Then, for every constant sec
tion U E C(Q, XQ), the equality H 0 U = (ulw)v E C(Q,:o/) holds. Moreover, 
IIIHIII = Illwllllllvlll· Boundedness of Illwlll implies local boundedness of IIIHIII. There
fore, H E Hom(XQ,:o/) by [8, Theorem 1.4.9]. Finally, since the function Illwlll is 
discontinuous at q, and the function Illvlll is continuous and nonzero at this point, 
III Hili = Illwllllllvlll tf. C(Q). [> 

Below (see 3.3.13) we show that, in the last theorem, the necessary condition 
for existence of the operator bundle B(XQ':o/) (namely, functional discreteness 
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of Q) is also sufficient in case the Banach space X is separable. In general, this 
condition is not sufficient (cf. Proposition 3.3.14 as applied to the Banach space X' 
and the bundle ?]I = 8l) . 

3.3.11. Proposition. Let X and Y be Banach spaces, Y -I {O}, and let Q be 
a topological space that is not functionally discrete. The following are equivalent: 

(a) the Banach bundle B(XQ ' YQ) exists; 
(b) B(X, Y)Q = B(XQ, YQ); 
(c) Hom(XQ ' YQ) = C(Q,B(X, Y»); 
(d) X is finite-dimensional. 

<l Equivalence of (a), (b), and (c) is proven in 3.3 .8, (d) follows from (a) by 
3.3.10, and (a) follows from (d) by 3.3.9. [> 

3.3.12. Proposition. Let &: be a CBB over a functionally discrete topological 
space Q. Suppose that C(Q, &:) includes a countable subset stalkwise dense in &:. 
Then , for every CBB ?]I over Q, the bundle B(&:,?]I) exists. 

<l Let %' c C(Q, &:) be a countable subset stalkwise dense in &:. Consider 
an arbitrary CBB ?]I over Q, a homomorphism H E Hom( &:, ?]I), and a point 
q E Q and prove continuity for the pointwise norm of H at q. Since the space Q 
is functionally discrete, there is a neighborhood U about q on which all functions 
III u III , IIIH 0 ulll, u E %', are constant. In view of stalkwise denseness of %' in &:, 
the equality IIIHIII(p) = sup{IIIH 0 ulll(p) : u E %', Illulll(p) ~ I} holds for every point 
p E Q; therefore, the function IIIHIII is constant on U and, in particular, IIIHIII is 
continuous at q. It remains to use Theorem 3.3.2. [> 

3.3.13. Corollary. Let Q be an arbitrary topological space and let X be 
a separable infinite-dimensional Banach space. The following are equivalent: 

(a) for every CBB ?]I over Q, the bundle B(XQ,?]I) exists; 
(b) the bundle B(XQ,81) exists; 
( c) the space Q is functionally discrete. 

<l The implication (a) ...... (b) is evident, (c) follows from (b) by 3.3.10, and (a) 
follows from (c) by 3.3.12. [> 

3.3.14. Proposition. Let X be a nonseparable Banach space. There exists 
a functionally discrete normal topological space Q such that, for every CBB ?]I over 
Q with nonzero stalks, the bundle B(XQ , ?]I) does not exist. 

<l Given a subset F c X, denote by the symbol Fi. the annihilator of F, i.e., 
Fi. = {x' EX' : (xix') = 0 for all x E F} . Consider the set 

N = {Fi. : F is a countable subset of X} 
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ordered by the rule 

It is easy to see that all countable subsets of N have upper bounds. Moreover, 
N has no greatest element. Indeed, since the space X is nonseparable, for every 
annihilator p1. E N, there exists a nonzero element x E X outside the closure of 
the linear span of P . On the other hand, there is a functional in p1. with nonzero 
value at x. Whence, p1. < (PU {x})1. . 

As is shown in 3.l.11, the space Q := N· is normal and functionally discrete. 
Let 1// be an arbitrary CBB over Q with nonzero stalks. Construct a ho

momorphism H E Hom(XQ , 1//) with discontinuous pointwise norm. To this end, 
consider a section v E C(Q,1//) taking nonzero value at the point 00 E Q. Since 
{O} ~ N, for every element 0: E N, we may take a norm-one functional x~ E 0:. 
Let H(o:) = v(o:) 0 x~ for all 0: E N and let H(oo) = O. Then, by [8, Theo
rem l.4.9]' the mapping H is a homomorphism, since, for every constant section 
U x == x, x EX, the section 'II 0 U x vanishes on the interval ({x} 1. , 001 j therefore, 
H 0 U x is continuous. At the same time, the pointwise norm of H is discontinuous 
at 00. Consequently, by Theorem 3.3.2 the bundle B(XQ , 1//) does not exist . [> 

3.3.15. Lemma. Let N be an upward-directed set without greatest element 
and let f£ be a CBB over N· (see 3.l.11). Suppose that in C(N·,f£) there is 
a stalkwise dense subset such that every subset of N of the same cardinality has 
an upper bound. Then, for every CBB 1// over N·, the bundle B( f£, 1//) exists. 

<J Let C2/ be a subset of C(W, f£) satisfying the hypotheses of the lemma. 
Consider an arbitrary CBB 1// over N· and verify continuity for the pointwise 

norm of an arbitrary homomorphism H E Hom(f£, 1//). Hence, by Theorem 3.3.2, 
the assertion will be proven. 

For every element u E C2/, take an O:u E N such that Illulll(o:) = Illulll(oo) and 
IIIH0ulll(0:) = IIIH 0 ulll(oo) for all 0: ~ O:u (see Remark 3.1.11 (1)). Then, for every 
u E C2/, the two latter equalities hold for 0: ~ /3, where /3 is an upper bound for 
the set {O:u : u E C2/} . Since C2/ is stalkwise dense in f£, the value of the norm 
III Hili can be calculated at every point 0: E N· by the formula IIIHIII(o:) = sup{IIIH 0 
ulll(o:) : u E ~, Illulll(o:) ~ I}. From this formula we readily see that, for 0: ~ /3, 
the pointwise norm of H takes the value IIIHIII(o:) = IIIHIII(oo) and, therefore, is 
continuous. [> 

Corollary. Given a Banach space X, there is a nondiscrete normal topological 
space Q such that, for every CBB 1// over Q, the bundle B(XQ, 1//) exists. 

<J It is sufficient to take Q = N· , where N is a cardinal greater than the cardi
nality of X , and use Lemma 3.3.15. [> 
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3.4. The Dual of a Banach Bundle 

In this section, we consider the problem of existence and the properties of 
the bundle &;' dual to a Banach bundle&; . 

In 3.4.2, we state various necessary and sufficient conditions for existence of 
a dual bundle. All assertions in the subsection are direct consequences of results 
of the preceding section. Proposition 3.4.3 asserts existence for a dual bundle of 
a GBB with Hilbert stalks. 

One of the natural steps in studying the notion of a dual bundle is establishing 
norming duality relations between the bundles&; and &;'. Item 3.4.5 is devoted to 
this subject . As a preliminary, in 3.4.4, we discuss the condition that the stalks of 
a GBB are stalkwise normed by the values of the corresponding homomorphisms. 
Unfortunately, we have to leave open the question whether this condition always 
holds, restricting ourselves to listing certain situations in which the condition is 
satisfied. 

In 3.4.6-3.4.9, the interrelation is considered between separability of a distin
guished stalk of a GBB and finiteness of the dimension of the stalks of the bundle 
or of the stalks of its dual. 

The rest of the section (3.4.10-3.4.15) is devoted to studying the second dual 
bundle, &;". Among the topics considered here, are existence of &;" , isometry 
between the bundles under study, and embedding of a Banach bundle into its second 
dual. 

3.4.1. DEFINITION . Let&; be a continuous Banach bundle. The bundle 
B(&;,fA?) (whenever the latter exists) is called the dual of &; and denoted by 
the symbol &;' . If the bundle &;' exists then we say that&; has the dual bundle. 

By Theorem 3.3.2, the dual &;' exists if and only if the pointwise norms of all 
homomorphisms from&; into fA? are continuous. 

3.4.2. Proposition. The following are true: 

(1) Every GBB &; with constant finite dimension over a topological 
space Q has the dual bundle. Moreover, if Q is completely regular 
then &;'(q) = &;(q)' for all q E Q. 

(2) A GBB &; with finite-dimensional stalks over a first-countable com
pletely regular Baire topological space has the dual bundle if and 
only if { dim&; = n} is a elopen set for every n = 0, 1, 2, . . .. 

(3) Suppose that a trivial GBB with stalk X has the dual bundle. Then 
the latter is the trivial GBB with stalk X'. 
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(4) If a trivial CBB with infinite-dimensional stalk over a topological 
space Q has the dual bundle then Q is functionally discrete (if, in 
addition, Q is completely regular then all of its countable subsets 
are closed). 

(5) For every nonseparable Banach space X, there exists a functionally 
discrete topological space Q such that the CBB XQ has no dual 
bundle. 

(6) A trivial CBB with infinite-dimensional separable stalk over a topo
logical space Q has the dual bundle if and only if Q is functionally 
discrete. 

(7) For every Banach space X, there exists a nondiscrete normal topo
logical space Q such that the CBB XQ has the dual bundle. 

(8) If a topological space Q is not functionally discrete then, for every 
Banach space.X , the following are equivalent: 

(a) the dual (XQ )' exists; 
(b) (X')Q = (XQ)'; 
(c) C(Q,X') = Hom(XQ ,.0i?); 
(d) X is finite-dimensional . 

<I Assertions (1)-(8) follow directly from 3.3.3 and 3.3.4, 3.3.6, 3.3.8, 3.3.10, 
3.3.14, 3.3.13, Corollary 3.3.15, and 3.3.11. [> 

REMARK. Examples 3.2.13 (1)-(3) , with 3.3.2 taken into account, imply that 
the constant dimension requirement in assertion (1) of the above proposition is 
essential for existence of a dual bundle. 

3.4.3. Lemma. Let Q be a topological space and let !!C be a CBB over Q with 
Hilbert stalks (i .e., all stalks of !!C are Hilbert spaces). For every global section u 
of !!C and every point q E Q put 

h(u)(q) = (. ,u(q)) E !!C(q)'. 

Then h[C(Q, !!C)] c Hom(!!C,.0i?). Moreover, h[C(Q, !!C)] is a continuity structure 
in the (discrete) Banach bundle with stalks !!C(q)' (q E Q). 

<I By [8,1.4.4]' the inclusion h[C(Q, !!C)] c Hom(!!C,.0i?) follows from the re
lations 

valid for all Ul , U2 E C(Q , !!C). The second assertion follows from the Riesz Theo
rem. [> 
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Proposition. Let :1: be a CBB with Hilbert stalks. If the dual :1:' exists 
then :1:' is isometric to :1: (see [8, 1.4.12]). 

<1 Let Q be a topological space and let :1: be a CBB over Q with Hilbert stalks. 
Consider a CBB '!Y with stalks '!Y(q) = :1: (q)' (q E Q) and continuity structure 
'7f/ = h[C(Q, :1:)] (see the previous lemma). By [8 , Theorem 1.4.12 (3)], the bundles 
:1: and '!Y are isometric. Stalkwise denseness of '7f/ in '!Y and the relations '7f/ C 

Hom(:1:,~) = C(Q, :1:') imply that, at every point q E Q, the stalks .'Z"'(q) and 
'!Y(q) coincide and '7f/ is a continuity structure in :1:', i.e., :1:' = '!Y . [> 

3.4.4. DEFINITION . Let :1: be a CBB over a topological space Q. Say that 
Hom(:1:,~) norms :1: on a subset D C Q if, for every point qED and every 
x E :1: (q), the equality Ilxll = sup {1(xIH(q))1 : H E Hom(:1:,~), III H III ~ I} 
holds. Say that Hom(:1:,~) norms:1: if Hom(:1:,~) norms :1: on Q. 

We are not aware of an example of a CBB :1: for which Hom(:1:,~) does not 
norm :1:. (Moreover, wr;; do not know if there exists a nonzero Banach bundle whose 
dual is zero.) At present , we can only indicate some classes of Banach bundles :1: 
for which Hom (:1:,~) does norm :1: . The following bundles fall in such a class: 

(1) a CBB :1: over a topological space Q such that, for every q E Q, the set 
{H(q) : H E Hom(:1:,~)} C :1:(q)' norms :1:(q) and, for every homo
morphism H E Hom(:1:,~), there is a homomorphism G E Hom(:1:,~) 

such that G(q) = H(q) and IIIGIll E C(Q) ; 
(2) a CBB :1: over a completely regular topological space Q satisfying the fol

lowing conditions: for every q E Q, the set {H(q) : H E Hom(:1:,~)} C 
:1:(q)' norms :1:(q) and, for every homomorphism H E Hom(:1:,~), 
there is a homomorphism G E Hom(:1: , ~) such that G(q) = H(q) and 
the pointwise norm of G is continuous at q; 

(3) a trivial CBB; 
(4) a CBB with constant finite dimension over a completely regular topolog

ical space; 
(5) a CBB over a compact topological space or a locally compact Hausdorff 

topological space which admits a countable stalkwise dense set of contin
uous sections; 

(6) a CBB with finite-dimensional stalks over a metrizable locally compact 
space; 

(7) a CBB with Hilbert stalks; 
(8) a CBB over a regular extremally disconnected topological space; 
(9) a CBB over N with separable stalk at 00; 

(10) a CBB :1: over a Hausdorff topological space with finitely many noniso
lated points such that the stalks of :1: at these points are separable; 
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(11) the dual of a CBB. 

<l A proof of the fact that Hom(&:,.%') norms &: in cases (1) and (2) can be 
easily obtained by multiplying the homomorphism G by a suitable element of C(Q). 

Cases (3), (4), and (7) are easily reduces to case (1) with the help of Corollary 
3.2.3, Proposition 3.4.2 (1), and Lemma 3.4.3 respectively. 

Case (5) for a compact topological space is considered in [7, 19.16], and the case 
of a locally compact Hausdorff (and, hence, completely regular) space is reduced to 
the case of a compact space by employing a compact neighborhood about an ar
bitrary point q and multiplying the homomorphism by a continuous real-valued 
function equal to unity at q and vanishing outside the neighborhood under consid
eration. By analogous reasoning, case (6) can be reduced to (5) with the help of 
assertion [7, 19.5 (iii)]. 

(8): Let &: be a CBB over a regular extremally disconnected topological 
space D . Consider an extremally disconnected compact space Q that includes 
D as an everywhere dense subset, and let (3&: be the Stone-Cech extension of &: 
onto Q (see [8, 1.1.4,2.5.10]). Denote by (3&: the ample hull of (3&: (see [8, 2.1.5]). 
With every homomorphism H E Hom «(3 &:,.%') associate the mapping H : q E Q f--> 

H(q)I,6.9;(q), q E Q. From [8, 1.4.4] it follows that H E Hom«(3&:,.%'). Applying 
[8, Theorem 2.3.3(1)] to the bundle (3&:, we conclude that Hom«(3&:,.%') norms 
(3&:. It remains to observe that {HID : H E Hom«(3&:,.%')} C HomD(&:'9t'). 

(10): If a Hausdorff topological space Q has finitely many nonisolated points 
then, as is easily seen, each of these points is separated from the other non isolated 
points by a clop en neighborhood. Consequently, without loss of generality, we may 
assume that Q has a single non isolated point q. 

Let &: be a CBB over Q with the stalk &:(q) separable. It is sufficient, given 
an x' E &:(q)', IIx'll < 1, to construct a homomorphism H E Hom(&:,.%') taking 
the value H(q) = x' and satisfying the inequality IIIHIII ~ 1. 

Consider a countable system {xn : n E N} of linearly independent elements 
in &:(q) whose linear span is everywhere dense in &:(q) and, employing Dupre's 
Theorem (see [8,1.3.5]), with each number n E N associate a section Un E C(Q, &:) 
passing through Xn at q. By [7, Proposition 18.1], for every n E N, there exists 
a neighborhood Un about q such that the sections Ul, . .. , Un are pointwise linearly 
independent over Un. For all n E Nand P E Un , define a functional Yn(P) : 
lin{ul(p)"" ,un(P)} -+ lR by the formula (ui(P)IYn(P)) = (ui(q)lx'), i = 1, ... ,n. 

Since IIx'll < 1, in view of [16, Lemma 7], each neighborhood Un about q can 
be replaced by a smaller neighborhood Vn so that the inequalities IIYn(P)1I ~ 1 be 
valid for all P E Vn. Without loss of generality, we may assume that Vn => Vn+1 for 
all n E N. 
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The fact that the set {Un: n E N} is pointwise linearly independent over 

allows us, for every point P E V 00, to define a functional Yoo (p) : lin { Un (p) : n E 

N} --+ IR as a common extension of the functionals Yn(P), n E N, i.e., to put 
(un(p)IYoo(p)) = (un(q)lx' ) for all n EN. Observe that IIYoo(P) II :;;; 1 for P E Voo· 

Define 

where Yn(P), 1 :;;; n :;;; 00, is an arbitrary extension of Yn(P) onto the entire stalk 
,2"(P) with norm prese.ved. It is clear that H(q) = x' and IIIHIII :;;; 1. 

Denote by %' the set lin{ Un : n E N} complemented by all sections with single
ton supports. Obviously, the set %' is stalkwise dense in ,2" and, for each U E %', 
the function (uIH) is constant on some neighborhood about q and, hence, continu
ous. Consequently, by Theorem [8, 1.4.4], the mapping H is a homomorphism. 

(9): This is a particular case of (10). 
(11): Let Q be a topological space and let ,2" be a CBB over Q which has 

the dual bundle. From [8, 1.3.9] it follows that, for every point q E Q and every 
functional x' E ,2"/(q), the relation 

Ilx'll = sup {(u(q)lx' ) : u E C(Q,,2")} 

holds. On the other hand, by [8, Theorem 1.4.4]' for each section u E C(Q, ,2"), 
the mapping 

u" : q E Q 1-+ u(q)lx'(q) 

belongs to Hom(,2"I,.%') and, moreover, Ilu"11 :;;; Iluli . Consequently, Hom(,2"I,.%') 
norms ,2" I. [> 

3.4.5. Assertion (3) of the following proposition gives a positive answer to 
G. Gierz's question [7, 19, Problem 2, p.231] for the bundles 3.4.4 (1)-(11) as well 
as for bundles with finite-dimensional stalks over completely regular Baire spaces 
(see Theorem 3.3.5 (1)) . 

Proposition. Let ,2" be a CBB over a topological space Q. 
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(1) Suppose that !£ has the dual bundle. Then, for every point q E Q 
and every element x' E !£I(q), the equality 

Ilx'll = sup {I (U(q)IX') I : u E C(Q, !£), Illulil ~ 1} 

holds. In particular, for every section u' E C(Q, !£I), the relation 

Illu'lll = sup {1(ulu')1 : u E C(Q, !£), Illulil ~ 1} 

holds in the vector lattice C(Q). 
Suppose that Hom(!£,.%') norms !£ on an everywhere dense subset ofQ. 

(2) For every section u E C(Q, !£), the relation 

Illulil = sup{l(uIH)I: H E Hom(!£,.%'), IIIHIll ~ l} 

holds in the v~ctor lattice C( Q). 

(3) The uniform norm of every section u E Cb(Q,!£) is calculated by 
the formula 

Ilull oo = sup {II (uIH) 1100 : H E Hom(!£, .%'), IIIHIll ~ l}. 

<J (1): Since x' E !£(q)' and the set C(Q,!£) is stalkwise dense in !£, there 
is a sequence of sections (un) C C(Q,!£) such that Illunlll(q) ~ 1 and Ilx'll - lin ~ 
(un(q)lx' ) ~ Ilx'll for all n E N. It remains to observe that, by [8, Lemma 1.3.9], 
for every n, there is a section Vn E C(Q,!£) satisfying the relations vn(q) = un(q) 
and Illvnlll ~ 1. 

(2): Let D be an everywhere dense subset of Q on which Hom(!£,.%') norms 
!£ and consider an arbitrary section u E C(Q,!£) and put 

St = {(uIH) : H E Hom(!£,.%'), IIIHIII ~ l}. 

It is clear that Illulil is an upper bound for St. If 9 E C(Q) is an arbitrary upper 
bound of St then it is easy to see that, for every point qED, 

hence, 9 ~ Illulll· 

g(q) ~ sup f(q) = Illulll(q); 
lEg; 

(3): Let u E Cb(Q, !£). It is clear that 

lIull oo ~ sup {11(uIH)lloo : H E Hom(!£,.%'), IIIHIII ~ 1} . 
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To prove the assertion, for an arbitrary c > 0, find a homomorphism H belonging 
to Hom(.2",.%') with IIIHIII ~ 1 and such that Ilull oo - c < II (uIH ) 1100' 

Consider a point q E Q satisfying the inequality Illulll(q) > Ilull oo - c and 
a neighborhood U about this point on which Illulil > Ilull oo - c. Since Hom(.2" , .%') 
norms .2" on an everywhere dense subset of Q, there is apE U such that 

Illulll(p) = Ilu(p)1I = sup {1(u(p)IH(p))1 : H E Hom(.2" , .%') , III Hili ~ 1}; 
therefore, Ilull oo - c < I (u(p)IH(p)) I for some homomorphism H E Hom(.2" , .%') , 
IIIHIII ~ 1. Consequently, lIuli oo - c < II(uIH)ll oo . [> 

3.4.6. Theorem. Let Q be a completely regular topological space and let 
q E Q be a nonisolated point at which there is a countable base. Suppose that 
a CBB .2" over Q has the dual bundle. Then separability of the stalk .2" (q) implies 
that the stalk .2"'(q) is finite-dimensional . 

<l Suppose that the stalk .2"(q) is separable and the stalk .2"'(q) is infinite
dimensional. We will construct a homomorphism H from .2" into.%' with discon
tinuous norm and thus, according to Theorem 3.3.2, obtain a contradiction with 
the hypotheses. 

Let a set {xn : n E N} be everywhere dense in .2"(q) and let (x~) be a weakly* 
null sequence of elements in .2"' (q) such that Ilx~1I = 1 for every n E N (see 3.1.3). 
We assume that I(Xilx~)1 < l/n for i = 1, . . . , n, since this can be fulfilled by 
passing to a subsequence. Making use of Dupre's Theorem (see [8, 1.3.5]) , for every 
n E N, consider sections Un E C(Q,.2") and Vn E C(Q, .2"') such that un(q) = Xn 
and vn(q) = x~ . 

Let (Un)nEN be a neighborhood base at q. Since Q is a Hausdorff space, by 
induction we can construct a new neighborhood base (Vn)nEN at q such that, for 
every n E N, the following conditions hold: Vn+1 C Vn n U1 n· .. n Un , the difference 
Vn \ Vn+1 contains a point qn together with an open neighborhood Wn about qn , 
and the estimates 1/2 < Illvnlll < 2 and I(Ui lvn)1 < l/n, i = 1, .. . , n , hold on Vn · 

Show that, for every continuous section u E C(Q,.2") and an arbitrary c > 0, for n 
large enough, the inequality l(ulvn)1 < c holds on Vn . Indeed, let Ilu(q) -xkll < c/4 
and l/l < c/2 for some k, lEN. Take an element Vm of the constructed neighbor
hood base about q on which Illu - ud < c/4. Then, for every n ;? max{k, l,m}, 
the following relations hold on Vn: 

l(ulvn)1 ~ I(u - Uk I vn)1 + I(Uklvn)1 
c c 

< Illu - udlllvnlil + l/n < 4 ·2+ "2 = c. 

Now define a mapping H : p E Q I-> H(p) E .2"' (p). Put H(p) = ° E .2"(p)' 
whenever p ~ UnEN Wn and, for every n E N, put Hlwn = (fnvn)lwn, where 
in: Q ---+ [0, 1] is a continuous function equal to 1 at qn and vanishing outside W n · 
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The function (ulv) : Q -> lR is continuous as the pointwise sum of the series 
L:~=l in (ulvn) that uniformly converges due to pairwise disjointness of the sets Wn 
(n E N) and the relations suppin C Wn and supwn l(ulvn)1 ~ sUPv" l(ulvn)1 -> 0 
as n -> 00. 

Thus, H is a homomorphism, since IIIHIII ~ 2 (see [8, 1.4.4]). At the same time, 
IIIHIII(qn) = lin(qn)llllvnlll(qn) = Illvnlll(qn) > 1/2 for every n E N. Moreover, qn -> q 
and IIIHIII(q) = O. Consequently, the homomorphism H has discontinuous pointwise 
norm. C> 

3 .4.7. Corollary. Let Q be a completely regular topological space and let 
q E Q be a nonisolated point at which there is a countable base. Suppose that 
a CBB !!C over Q with Hilbert stalks has the dual bundle. Then the stalk !!C(q) is 
separable if and only if it is finite-dimensional . 

Thus, if a CBB !!C with Hilbert stalks over a completely regular topologi
cal space has the dual bundle, then the stalk of !!C at a non isolated point with 
a countable base cannot be isometric to £2 . 

3.4.8. Proposition. Let Q = N be the one-point compactification of the set 
of naturals. A CBB !!C over Q with the stalk !!C (00) separable has the dual bundle 
if and only if the dimension of !!C is finite and constant on some neighborhood 
about 00. 

<l Sufficiency follows from Proposition 3.4.2 (2). Establish necessity. Sup
pose that the bundle !!C under consideration has dual bundle. Then, due to 3.4.6, 
the space !!C' (00) is finite-dimensional, whence, in view of 3.4.4 (lO), it follows that 
the stalk !!C (00) is finite-dimensional too. Put m = dim!!C (00) and consider sec
tions Ul, .. . ,Um E C(Q,!!C) with linearly independent values Ul(oo), ... ,um(oo) 
which exist by the Dupre Theorem (see [8, 1.3.5]). According to [7, 18.1], the sec
tions Ul , ... , Um are pointwise linearly independent over some neighborhood U 
about 00 and, hence, dim!!C ~ m on U. 

Assume that there is no neighborhood about 00 on which the dimension of !!C 
is constant. Then there exists a strictly increasing sequence of naturals nk such that 
dim !!C(nk) > m for all kEN. Given a kEN, choose a functional x~ E !!C(nk)' 
satisfying the equalities UXkl1 = 1 and (ul(nk)lxk) = ., . = (um(nk)lxk) = O. 
Introduce a mapping H : q E Q 1-+ H(q) E !!C(q)' as follows: 

() { x~, q = nk; 
Hq= 

0, q ~ {nk : kEN}. 

It is clear that IIIHIII ~ 1. Denote by 'Pi' the set lin{ Ul , . . . , um} supplemented 
by all sections with singleton supports. Obviously, 'Pi' is stalkwise dense in !!C 
and, for every u E 'Pi' , the function (uIH) vanishes on a neighborhood about 00 
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and, hence, continuous. Consequently, by [8 , Theorem 1.4.4], the mapping H is 
a homomorphism, which, with 3.3.2 taken into account, contradicts existence of 
:!£' in view of the fact that the pointwise norm of H is discontinuous. [> 

3.4.9. The one-point compactification Q of the set of naturals can be regarded 
as the simplest topological space which is, on the one hand, classical (completely 
regular, metrizable, compact , etc.) and, on the other hand, nontrivial (nondiscrete, 
not antidiscrete, etc.) . As Proposition 3.4.8 asserts, a CBB :!£ over Q with the stalk 
:!£(oo) separable has the dual bundle if and only if the dimension of :!£ is finite and 
constant on some neighborhood about 00 . Moreover, due to Proposition 3.4.2 (4), 
every trivial bundle over Q with infinite-dimensional stalk has no dual bundle. Show 
that, nevertheless, there exists a CBB over Q with infinite-dimensional stalk at 00 

which has the dual bundle. 

EXAMPLE. We construct a CBB :!£ over Q = N possessing the following prop-
erties: 

(a) all stalks of '!!.C on N are finite-dimensional and :!£(oo) is nonseparable; 
(b) :!£' exists; 
(c) the inclusion :!£' (00) c :!£ (00)' is strict ; 
(d) Hom(:!£,a?) = C(Q, :!£') norms :!£ . 

For every natural n, consider the element en = X{n} E £00 and the coordinate 
functionalbn E (£00)', (xlbn ) = x(n) for all x E £00. 

Denote by £1 the image of £1 under the natural isometric embedding of this 
space into (£00)'. It is clear that bn E £1 for all n E N. Put :!£(oo) = £00 and 
:!£(n) = lin{e1"'" en}, n E N. 

Given an element x E £00 , define a section U x of :!£ as follows: 

( ) _{ (x(l), ... ,x(q),O,O ... ) , qEN, 
U x q -

x, q = 00. 

It is easy to see that the totality 1ff' = {ux : x E £OO} is a continuity structure in :!£ 
which makes :!£ a CBB. 

By construction it is immediate that :!£ possesses property (a). 
(b), (c): For all n E Nand f E :!£(n)' , put 

(x I f) = (x(1), . . . ,x(n),O,O, ... ) I J), x E £00. 

It is clear that, for each n EN, the correspondence f f-+ I performs an isometric 
embedding of :!£ (n)' into £1 . 
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Let H be an arbitrary homomorphism from :!.e into ff£ . For every x E t'YO, 
the following relations hold: 

(x I H(n) ) = ((x(1), .. . , x(n), 0, 0, .. . ) I H(n) ) 

= (H I8l ux)(n) --., (H I8l ux)(oo) = (x I H(oo») 

as n --., 00. Therefore, (H(n») C ei is a weakly Cauchy sequence and, hence, con

verges in norm, since the space ei possesses the Schur property (see Lemma 3.1.2) . 
Whence it follows that H(oo) is the norm limit of the sequence (H(n»); in partic-

ular, H(oo) E e1 and IIIHIII E C(Q). Thus, the C~B :!.e has the dual bundle and 
:!.e'(oo) =I :!.e(oo)' due to the inclusion :!.e'(oo) eel. 

(d): According to 3.4.4(1), it is sufficient, given an arbitrary functional y Eel, 

to present a homomorphism Hy E Hom(:!.e,ff£) such that Hy(oo) = y . The sought 
homomorphism can be defined as follows: 

Hy(q) = {yl.~(q), q E N, 
y, q = 00. 

The containment Hy E Hom(:!.e, ff£) is justified by [8, Theorem 1.4. 9] (with 1/ = 1&') . 

3.4.10. The CBB :!.e" = (:!.e')' (if the latter exists) is called the second dual 
of a continuous Banach bundle :!.e. 

It is clear that, for every CBB over a discrete topological space, the second 
dual exists. Ample CBBs over extremally disconnected compact Hausdorff spaces 
(see [8, 1.3]) form an important available class of continuous Banach bundles for 
which the second dual bundles exist. 

First of all, we note that existence of :!.e' does not imply existence of :!.e" . 

Proposition. Let X be a separable Banach space with nonseparable dual (for 
instance, X = e1 ). Then there exists a topological space Q such that the trivial 
CBB XQ has the dual bundle and has no second dual bundle. 

<l By Proposition 3.4.2 (5), there exists a functionally discrete topological space 
Q such that the CBB (X')Q has no dual bundle. By 3.4.2 (6), the CBB XQ has 
the dual bundle. By assertion 3.4.2 (3) , the bundle (XQ)' coincides with (X')Q and, 
thereby, (XQ)' has no dual bundle, i.e., the bundle (XQ)" does not exist. I> 

REMARK . The CBB :!.e constructed in 3.4.9 is also an example of a Banach 
bundle which has the dual but not the second dual bundle. Indeed, with each 
element n E N associate the functional e~ E :!.e'(n)' related to the element en E 

:!.e(n) by the rule (x'ie~) = (enlx') for all x' E :!.e'(n) . Put G(n) = e~ for all 
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n E Nand G(oo) = 0 E &;'(00)'. It is clear that the set !fJ = {Hy : y E £1} is 
stalkwise dense in &;' . By applying [8, Theorem l.4.9] (with "f/ = !fJ), we obtain 
the containment G E Hom( &;', a'). Furthermore, IIIGIll ¢:. C( Q) and, hence, in view 
of 3.3.2, the CBB &;' has no dual bundle, i.e. , &;/1 does not exist. 

3.4.11. Proposition. The following are true: 

(1) Suppose that a trivial CBB with stalk X has the second dual bun
dle. Then the latter is the trivial CBB with stalk X/I. 

(2) If a trivial CBB over a topological space Q with infinite-dimensional 
stalk has the second dual bundle, then Q is functionally discrete. 

(3) Let X be an infinite-dimensional Banach space with separable dual. 
Then existence of the second dual for the bundle XQ is equivalent 
to functional discreteness of Q. 

( 4) For every Banach space X, there exists a nondiscrete normal topo
logical .space Q such that the CBB XQ has the second dual bundle. 

(5) If a topological space Q is not functionally discrete then, for every 
Banach space X, the following are equivalent: 

(a) (XQ)/I exists; 
(b) (X/I)Q = (XQ)/I; 
(c) (XQ), exists and C(Q,X/I) = Hom (XQ)',a'); 
(d) X is finite-dimensional. 

<1 Assertions (1), (2) , and (5) are simple consequences of Proposition 3.4.2. 
A proof of assertion (4) can be obtained by a simple modification of the proof 

of Corollary 3.3.15 with Q a nondiscrete normal topological space such that the con
stant CBBs XQ and (X')Q both have dual bundles. 

Prove assertion (3). Necessity holds due to (2). Proceeding with sufficiency, 
observe first that the space X is itself separable. From 3.4.2 (6) it follows that 
the dual (XQ)' exists and, in view of 3.4.2 (3), the latter coincides with (X')Q . 
Applying 3.4.2 (6) again, we complete the proof. [> 

3.4.12. In contrast to the situation described in Proposition 3.4.10, existence 
of &;' in the following case implies existence of &;/1 . 

Proposition. If a CBB with Hilbert stalks over a topological space Q has 
the dual bundle then it has the second dual bundle. Moreover, the bundles &;, 
&;', and &;/1 are pairwise isometric. 

<1 Obviously, if two CBBs are isometric and one of them has the dual bundle 
then the other has the dual bundle too and these duals are isometric. This fact and 
Proposition 3.4.3 imply the claim. [> 
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3.4.13. Let Q be a topological space and let !!C be a eBB over Q which has 
the dual bundle. The mapping z that associates with every point q E Q the operator 

z(q) : x E !!C(q) 1-+ x"l.z-'(q) 

is called the double prime mapping for !!C. (Here x 1-+ x" is the canonical embedding 
into the second dual.) 

Proposition. Let Q be a topological space and let !!C be a eBB over Q which 
has the dual bundle. Suppose that Hom(!!C, Pl!) norms !!C and let z be the double 
prime mapping for !!C . 

(1) For every point q E Q, the operator z(q) is an isometric embedding 
of !!C (q) into !!C' (q)'. 

(2) Assume that .!!C has the second dual bundle. Then the mapping z 
is an isometric embedding of!!C into !!C". 

<l (1): For q E Q and x E !!C(q), we have 

IIx"I.z-'(q) II = sup {(X'IX") : x' E !!C'(q), Ilx'll ~ I} 

= sup {(xix') : x' E !!C'(q), Ilx'll ~ I} 

= sup {(xlv(q)) : v E C(Q , !!C'), Ilv(q)11 ~ I} 

= sup {(xlv(q)) : v E C(Q, !!C'), Illvlll ~ I} 

= sup {(xIH) : H E Hom(!!C,Pl!), IIH(q)11 ~ I} 

= IIxll (cf. [8, 1.3.9]). 

(2): In view of (1) , the mapping u 1-+ z 0 u embeds the space C(Q,!!C) into 
Hom(!!C',Pl!) = C(Q, !!C") with pointwise norm preserved. It remains to employ 
[8, Theorem 1.4.4] . t> 

3.4.14. Proposition. Let !!C be a eBB with constant finite dimension over 
a completely regular topological space. Then the bundle !!C" exists, Hom(!!C, Pl!) 
norms !!C, and the double prime mapping for !!C performs an isometry of !!C 
onto !!C". 

<l By assertion 3.4.2 (1), in the situation under consideration, the dual bundle 
!!C' exists and dim!!C' = dim !!C. The same assertion implies that !!C" exists and 
the equality dim!!C" = dim!!C' holds . Hence, for every point q, the stalks !!C(q) and 
!!C"(q) have the same finite dimension. It remains to apply Proposition 3.4.13 (2) 
and [8 , Theorem 1.4.12] . t> 
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3.4.15. Let Q be a topological space and let 9: be a eBB over Q which has 
the second dual bundle. In the following cases, the double prime mapping for 9: 
is an isometry of 9: onto 9://: 

(1) 9: is a trivial eBB with reflexive stalk; 
(2) 9: has constant finite dimension and the topological space Q is 

completely regular; 
(3) 9: is a eBB with Hilbert stalks; 
(4) 9: is an ample eBB over an extremally disconnected compact 

Hausdorff space Q and all stalks of 9: at nonisolated points are 
reflexive. 

<J Assertions (1)-(4) are easy from 3.4.11 (1), 3.4.14, 3.4.12, and [8, 2.3.5 (1), 
2.3.7J. c> 

Observe that conditions (2) and (4) imply existence of 9:// without additional 
assumptions. 

3~5. Weakly Continuous Sections 

In this section, we introduce and study the notion of a weakly continuous 
section of a Banach bundle. 

Since weakly continuous sections are closely connected with homomorphisms 
of the dual bundle (which are known to have locally bounded pointwise norms), 
the problem is natural of finding conditions that guarantee local boundedness for 
weakly continuous sections. Subsections 3.5.3-3.5.5 are devoted to this subject. 

In 3.5.6-3.5.12, we study the question of continuity of weakly continuous sec
tions for various classes of Banach bundles. 

The remaining part of this section (3.5.13- 3.5.18) is devoted to finding condi
tions for coincidence of the space of weakly continuous sections of a trivial Banach 
bundle and the space of weakly continuous vector valued functions acting into 
the corresponding stalk. 

3.5.1. Let 9: be a eBB over a topological space Q and let D c Q. 

DEFINITION. A section u over D of a bundle 9: is called weakly continuous if 
(uIH) E C(D) for all HE Hom(9:,8i'). The totality of all these sections is denoted 
by Cw(D, 9:). 

If 9: has the dual bundle then Hom(9:,8i') = C(Q, 9:') and, in this case, 
weak continuity of a section u is equivalent to continuity of the functions (ulu') for 
all u' E C(Q, 9:'). 

It is clear that Cw(D, 9:) is a vector subspace of the space of all sections over 
D of the bundle 9: and includes C(D, 9:) as a vector subspace. 
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Note that a weakly continuous section need not be continuous. Indeed, consid
ering the eBB !f constructed in 3.4.9 and putting u(n) = en, n EN, and u(oo) = 0, 
we obtain a weakly continuous (see Remark 3.4.10) but, obviously, discontinuous 
section of !f. 

3.5.2. Lemma. Let X be a Banach space and let Q be a topological space. 
Suppose that D C Q and a sequence (qn) C D converges to a point qED. 

(1) If Q is completely regular and u E Cw(D, XQ) then the sequence 
(U(qn)) w-w*-converges to u(q) . 

(2) For every HE Hom(XQ' il), the sequence (H(qn)) is weakly* con
vergent to H(q). 

(3) If Q is a completely regular Fnkhet-Urysohn space and the points 
qn are pairwise distinct and distinct from q then, for every w-w*
vanishing sequence (xn) C X, there exists a section u E Cw(D, XQ) 
taking the values u(qn) = Xn for all n E Nand u(q) = 0. 

(4) If u E Cw(D,X) then the sequence (u(qn)) converges weakly to 
u(q). 

<1 (1): As is easily seen, we do not restrict generality by assuming that 
the points qn are pairwise distinct and distinct from q. From 3.2.6 (4) it follows 
that, for every sequence (x~) C X' convergent weakly* to an element x' E X', 
there exists a homomorphism H E Hom(XQ,il) taking the values H(qn) = x~ for 
all n E Nand H(q) = x'. Hence, (u(qn)lx~) = (uIH)(qn) -> (uIH)(q) = (u(q)lx /). 

Assertions (2) and (4) are evident. 
(3): Let (Wn) and Un) be sequences of open subsets of Q and of continuous 

functions from Q into [O,lJ presented in Lemma 3.2.5. Then the section u over D 
defined by the formula 

u(p) = {fn(p)xn, P E D n Wn, 
0, p E D\ UnEN Wn 

is weakly continuous. Indeed, consider an arbitrary H E Hom(XQ' il). The func
tion (uIH) is continuous on each set D n cl Wn, since cl Wn is included in 

the latter difference is open, and (uIH) and (xnIH)fn coincide on the intersection 
of D and the difference. 

Assume that the function (uIH) is discontinuous at some point 
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Then there exist an c > 0, a sequence (Pm) CD, and a strictly increasing sequence 
(nm) eN such that P belongs to c1{Pm : mEN}, Pm E Wnm , and l(uIH)(Pm)1 > c 
for all mEN. Since Q is a Frechet- Urysohn space, we can extract a subsequence 
(Pmk) convergent to p. It is easy to verify that the sequence (u(Pm)) is w-w*
vanishing; therefore, the subsequence U(Pmk) of (u(Pm)) is w-w*-vanishing too. 
At the same time, by (2), the sequence (H(Pmk)) converges weakly* to H(p). 
Consequently, c < l(uIH)(Pmk)1 -f l(uIH)(p)1 = O. The assumption that (uIH) 
is discontinuous at P yields a contradiction. It remains to observe that the function 
(uIH) vanishes on the set Q\ c1 UnEN Wn. [> 

3.5.3. EXAMPLE. There exist a Frechet-Urysohn space Q, a Banach space X, 
and a section u E Cw(Q, XQ) that is not locally bounded. 

<J Consider the space Q constructed in Example 3.2.11. 
As follows from Corollary 3.1.7 (2), the space Cco contains a sequence (xn) 

which is w-w*-vanishing and does not converge in norm. Without loss of generality, 
we may assume that Ilxnll ? 1 for all n E N (this may be fulfilled by extract
ing a subsequence and multiplying the latter by an appropriate constant element
wise). Put u((m,n)) := mXn for every (m,n) EN x N and put u(oo) := 0 E Cco . 
Obviously, the section u is not locally bounded. Show that H 181 u E C(Q) for 
an arbitrary homomorphism H E Hom ((CCO)Q, 9£') . By Lemma 3.5.2 (2) , for every 
m, the sequence (H( (m, n)) )nEN is weakly* convergent, whence (H 181 u) ((m, n)) = 
m(XnIH( (m, n))) -f 0 as n -f 00. The latter relation implies continuity of the func
tion H 181 u (see the description (1) of the elements of C(Q) in Example 3.2.11). [> 

3.5.4. Proposition. Let % be a CBB over a topological space Q. Suppose 
that Hom( %, 9£') norms % and the space Q satisfies one of the following conditions: 

(a) Q is first-countable and completely regular; 
(b) Q is locally pseudo compact. Then every weakly continuous global 

section of % is locally bounded. 

<J First suppose that Q satisfies condition (a). Assume that there is a weakly 
continuous and not locally bounded global section u of %. In this case, the point
wise norm Illull! is unbounded on every neighborhood about some point q E Q. 
By Dupre's Theorem (see [8, 1.3.5]), we may find a bounded continuous global sec
tion taking the value u(q) at q and, next , subtract this section from u; therefore, 
we may assume that Illulll(q) = O. 

Since Q is first-countable, there is a sequence (qn) C Q such that Illulll (qn) > n 2 , 

qi i= qj for i i= j, and qn -f q. Using the hypotheses, for every number n E N, take 
a homomorphism Hn E Hom(%, 9£') satisfying the relations (uIHn)(qn) = Ilu(qn)1I 
and IllHnll1 ~ 2. 
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Corollary 3.2.6 (2) implies existence of an H E Hom(~ ,.%') such that H(q) = 0 
and H(qn) = ~Hn(qn) for all n EN. On the other hand , 

which contradicts weak continuity of u, since qn ....... q and (uIH)(q) = O. 
Now suppose that Q satisfies condition (b) . Denote by Homb(~,.%') the space 

of all bounded homomorphisms from ~ into.%'. Fix an arbitrary weakly con
tinuous section u of ~ and, for every point q E Q, define a linear functional 
Tq : Homb(~,.%') ....... lR by the formula Tq(H) = (u(q)IH(q)). Endowing the space 
Homb(~,.%') with the uniform norm and considering an arbitrary pseudocompact 
subset U c Q, we conclude that IITqll ~ Ilu(q)ll; moreover, 

sup IITq(H) II = sup i(uIH)(q)i < 00 
qEU qEU 

for all H E Homb(~,.%') . By [8, 1.4.11]' Homb(~,.%') is a Banach space. There
fore, SUPqEU IITqll < 00 in view of the uniform bounded ness principle. It remains to 
employ the relations 

Ilu(q)1I = sup {i(u(q)IH(q))i : H E Hom(~,.%'), IIIHIII ~ I} = IITqll . I> 

Observe that, in the last proposition, conditions (a) and (b) are essential even 
if the CBB ~ is trivial (see 3.5.3). 

3.5.5. Corollary. Let X be a Banach space and let Q be a topological space 
satisfying (a) or (b) of 3.5.4. Then every weakly global continuous section of XQ 
is locally bounded. 

<J The claim follows immediately from 3.5.4 and 3.4.4 (3). I> 

3.5.6. REMARK. By the definition of continuity for sections (see [8, 1.1.2]), 
if all is a vector space of sections over D C Q of a CBB ~ over a topological 
space Q and all elements of all have continuous pointwise norms, then the inclusion 
C(D,~) c all implies the equality C(D,~) = all . 

Proposition. Let ~ be a CBB over a topological space Q. 

(1) Suppose that ~ has the dual bundle and let t be the double 
prime mapping for ~. For every subset D C Q, the mapping 
u 1-+ t 181 u performs a linear embedding of the space of locally 
bounded sections u E Cw(D , ~) into HomD(~/,.%'). If, in ad
dition, Hom( ~,.%') norms ~ then the embedding preserves the 
pointwise norm. 
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(2) Suppose that :!C has the second dual bundle and Hom(:!C,.%') 
norms :!C. If a section u E Cw (Q , :!C) is locally bounded then 
u E C(Q , :!C). 

<J (1): The containment t Q9 u E HomD (:!C',.%') holds in view of [8, Theo
rem 1.4.9]. Furthermore, if Hom(:!C,.%') norms :!C then the equality lilt Q9 ulll = Illulil 
follows from 3.4.13 (1) . 

(2): Let a section u E Cw(Q , :!C) be locally bounded. Then, in view of as
sertion (1), the containment t Q9 u E Hom(:!C',.%') holds which, together with 
the equality Hom(:!C',.%') = C(Q, :!C"), yields continuity of the pointwise norm 
of the homomorphism t Q9 u. Since, due to (1), the functions lilt Q9 ulll and Illulil 
coincide, the latter function is continuous too. Therefore, the vector space 'W of 
locally bounded sections u E Cw(Q,:!C) consists of sections with continuous point
wise norms and contains C(Q , :!C). The above Remark allows us to conclude that 
'W = C(Q, :!C). [> 

3.5.7. Corollary; Let :!C be a eBB with constant finite dimension over 
a completely regular topological space Q. For every subset D c Q, the equal
ity Cw(D , :!C) = C(D, :!C) holds. 

<J The claim may be derived from Theorem 3.2.12, Proposition 3.5.6 (1) , and 
Remark 3.5.6. [> 

3.5.8. Corollary. Suppose that a topological space Q and a eBB :!C over Q 
satisfy the conditions of Proposition 3.5.4. Then existence of :!C" implies continuity 
of all weakly continuous sections of :!C. 

<J This claims follows from Propositions 3.5.4 and 3.5.6 (2). [> 

3.5.9. Proposition. Let :!C be a eBB with Hilbert stalks over an arbitrary 
topological space. If a global section of:!C is locally bounded and weakly continuous 
then it is continuous. 

<J Let Q be a topological space and let :!C be a eBB with Hilbert stalks over Q. 
Fix a locally bounded section v E Cw(Q,:!C) and use the mapping h of Lemma 3.4.3 
which asserts that 

h[C(Q, :!C)] c Hom(:!C , .%'). 

Thus, the relations (clh(u)) = (ulh(c)) E C(Q) are valid for all c E C(Q, :!C) . 
By [8, 1.4.4] these relations imply h( u) E Hom(:!C,.%'). Therefore, 

IIIull1 2 = (ulh(u)) E C(Q). 

Finally, since 

Illu - cll1 2 = IIIull1 2 - 2(clh(u)) + IIIull1 2 E C(Q) 

for every c E C(Q, :!C), the section u is continuous. [> 
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3.5.10. Corollary. Let&: be a CBB with Hilbert stalks over a topological 
space Q satisfying (a) or (b) of 3.5.4. Then Cw(Q, &:) = C(Q , &:). 

<l The claim follows immediately from Propositions 3.5.4 and 3.5 .9, and Lemma 
3.4.3. I> 

3.5.11. Lemma. Suppose that a CBB &: over a topological space Q has 
the dual bundle. For arbitrary sections U E C(Q, &:) and v E Cw(Q, &:'), the real
valued function (ulv) is continuous. 

<l Let t be the double-prime mapping for &:. Then t 0 u is an element of 
Hom(&:',81) according to Proposition 3.5.6 (1). Consequently, (ulv) = (v I t0u) E 
C(Q). I> 

Proposition. Suppose that a CBB &: over a topological space Q has the dual 
bundle. 

(1) Ifv E Cw(Q, &:') is locally bounded then v E C(Q, &:'). 

(2) IfQ satisfies (a) or (b) of 3.5.4 then Cw(Q, &:') = C(Q, &:'). 

<l (1): Let v E Cw(Q, &:') be a locally bounded section. In view of the above 
lemma, (ulv) E C(Q) for all u E C(Q, &:). Consequently, v E Hom(&: ,81) 
due to [8, Theorem 1.4.9] and local boundedness of v. It remains to recall that 
Hom(&:,81) = C(Q, &:'). 

(2): It suffices to prove the inclusion Cw(Q, &:') c C(Q, &:'). Suppose that 
v E Cw(Q, &:'). In view of the above lemma, (ulv) E C(Q) for all u E C(Q, &:). 
If Q satisfies 3.5.4 (a) then v E Hom(&: ,81) due to Theorem 3.2.10; if Q satis
fies 3.5.4 (b) then v E Hom(&: ,81) due to [8, Theorem 1.4.7] . Therefore, in both 
cases, v E Hom(&:, 8l) = C(Q, &:') . I> 

3.5.12. Theorem. Let X be a Banach space and let Q be a completely regular 
Fnkhet-Urysolm space. 

(1) If X possesses the WS property then Cw(D,XQ) = C(D,XQ) for 
all subsets D c Q. 

(2) IfCw(D,XQ) = C(D , X Q) for some subset D C Q which contains 
one of its limit points (in particular, if D = Q and Q is nondiscrete), 
then X possesses the WS property. 

For instance, ifQ is nondiscrete then the equality Cw(Q , XQ) = C(Q,XQ) is 
equivalent to the fact that X possesses the WS property. 

<l (1): Suppose that the inclusion Cw(D, XQ) ::J C(D, XQ) is strict for a subset 
D C Q and show that X does not possess the WS property. Consider a section 
U E Cw(D, XQ) discontinuous at a point qED. We may assume that u(q) = 0, 
since, otherwise, we can subtract from u the constant section taking the value u(q). 
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Since Q is a Fn§chet-Urysohn space, we may find a sequence (qn) C D convergent 
to q such that Illulll(qn) > c > 0 for all n E N. By Lemma 3.5.2 (1), the sequence 
(U(qn») is w-w*-convergent to u(q) = o. Consequently, X does not possess the WS 
property. 

(2) : Suppose that X does not enjoy the WS property and establish the inequal
ity Cw(D,XQ) =I C(D,XQ) for every subset D C Q that contains one of its limit 
point. Let qED be a limit point of D . Since Q is a Frechet-Urysohn space, there 
is a sequence (qn) C D\{q} convergent to q. Without loss of generality, we may 
assume that qi =I qj whenever i =I j. Since X does not possess the WS property, 
we may take a sequence (xn) C X which is w-w*-vanishing and does not vanish 
in norm. By Lemma 3.5.2 (3), there is a section u E Cw(D, XQ) taking the values 
u(qn) = Xn for all n E Nand u(q) = O. It is clear that u ¢. C(D, XQ). [> 

3.5.13. Proposition. For every infinite-dimensional Banach space X, there 
exists a normal topological space Q such that the inclusion Cw (Q, X Q) C Cw (Q, X) 
is strict. 

<J Let (XaJ"'EN and (X~)"'EN be the nets existent by Lemma 3.1.4. Put Q = ~. 
(see 3.1.11) and consider vector valued functions u : Q -+ X and H : Q -+ X' 
satisfying the equalities u(a) = x"', H(a) = x~ for all a E ~, u(oo) = 0, and 
H(oo) = O. 

In view of Remark 3.1.11 (2), the function u is weakly continuous and, in 
addition, HE C(Q,X'). In particular, HE Hom (XQ,,g£). Furthermore, (uIH) == 
Ion Nand (uIH)(oo) = 0, whence u ¢. Cw(Q,XQ). [> 

3.5.14. Corollary. Let X be a Banach space and let Q be an arbitrary topo
logical space. The equality Cw(Q, XQ) = Cw(Q, X) holds for every topological 
space Q if and only if X is finite-dimensional. 

Observe that, in case X is finite-dimensional, we have 

3.5.15. Theorem. Let X be a Banach space and let Q be an arbitrary topo
logical space. 

(1) IfQ is a Fnkhet-Urysohn space and X possesses the DP* property, 
then Cw(D, XQ) = Cw(D, X) for every subset D C Q. 

(2) Let a subset D C Q be such that C(Q) contains a function which 
is not locally constant on D. If Cw(D, XQ) = Cw(D, X) then X 
possesses the DP* property. 

In particular, if Q is a nondiscrete completely regular Fnkhet- Urysohn space 
then the equality Cw(Q, XQ) = Cw(Q, X) is equivalent to the fact that X possesses 
the DP' property. 
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<J (1): Suppose Cw(D, XQ) =I Cw(D , X) for some subset D C Q. Show that X 
does not possess the DP* property. Take a vector valued function u E Cw(D , X) \ 
Cw(D, XQ) and consider a homomorphism HE Hom(XQ' 8e) such that the function 
(uIH) is discontinuous at some point qED. Then the function (u - uq I H - Hq) 
is discontinuous at q, where uq and Hq are constant functions with values u(q) and 
H(q). (This is so due to the fact that the functions (uIHq), (uqIH), and (uqIHq) are 
continuous.) Since Q is a Frechet-U rysohn space, there is a sequence (qn) C D \ {q} 
which converges to q and satisfies the condition I(u(qn) - u(q) I H(qn) - H(q))1 > c 
for some c > 0 and all n E N. Furthermore, in view of 3.5.2 (2) , (4), the sequence 
(u(qn) - u(q)) is weakly vanishing and the sequence (H(qn) - H(q)) is weakly* 
vanishing. Consequently, X does not possess the DP* property. 

(2): Suppose that X does not possess the Dp· property. Consider a weakly 
null sequence (xn) C X and a weakly* null sequence (x~) C X' such that (xnlx~) 
does not vanish. By passing to a subsequence and multiplying all elements of one 
of them by ±8 for a suitable 0 E IR, we may achieve validity of the inequalities 
(xnlx~) ? 1 for all n E N. We additionally require that (xn+1lx~) + (XnIX~+l) ? 0 
for all n E N, which in turn can be fulfilled by pairwise multiplication of the elements 
X2 and x~, X3 and x~, etc. by ±1. Let vector valued functions u : [0,1] --+ X and 
u' : [0 , 1] --+ X' satisfy the equalities u(O) = 0, u' (0) = 0, 

u(>"nll + (1 - >..)~) = >"Xn+l + (1- >")xn, 

u'(>"nll + (1 - >..)~) = >"X~+l + (1- >")x~ 

for all >.. E [0,1] and n E N. By Lemma 3.1.12, the function u is weakly continuous 
and u' is weakly· continuous. Consider the function (ulu') : [0,1] --+ R Given 
arbitrary n E Nand 0 ::;; >.. ::;; 1, we have 

(ulu') (>"nll + (1- >..)~) = (>"Xn+l + (1- >,,)xn I >"x~+1 + (1- >")x~) 

= >..2(Xn+llx~+1) + (1- >..)2(xnlx~) 

+ >..(1 - >..) ((xn+1lx~) + (XnIX~+l)) 
? >..2 + (1 _ >..)2 + 0 

= 2(>.. - 1/2)2 + 1/2 

? 1/2. 

Thus, (ulu')(O) = 0 and, in addition, (ulu') ? 1/2 on (0,1]. Next, take a continuous 
function 9 E C(Q) such that the restriction glD is not constant on any neighborhood 
about a point qED. Without loss of generality, we may assume that 9 : Q --+ [0,1] 
and g(q) = 0 (see the proof of 3.1.13). As is easily seen, u 0 glD E Cw(D,X) and 
u' 0 9 E Hom(XQ' 8e). It is clear that the function ((u 0 g)ID I U' 0 g) = (ulu') 0 glD 
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vanishes at q and, in addition , the image of the function on each neighborhood 
about q intersects the interval [1/2, (0). Consequently, (u 0 g)ID rt Cw(D, X Q ). 

The last assertion of the theorem follows from (1) and (2) and 3.1.10 (3). [> 

3.5.16. Corollary. Let X be a Banach space and let Q be a topological 
space that is not functionally discrete. In each of the following cases, the inclusion 
Cw(Q, XQ) C Cw(Q, X) is strict: 

(1) X is infinite-dimensional and reflexive; 
(2) X is separable and does not possess the Schur property; 
(3) X is a Banach space which does not possess the Schur property and 

satisfies one of the conditions 3.1.6 (3), (5), or (6). 

<J In view of assertion (2) of Theorem 3.5.15, it suffices to show that, in each 
of the cases under consideration, X does not possess the DP' property. In cases 
(2) and (3) the latter is provided by Lemma 3.1.7 (3) and, in case (1), we can 
employ the Josefson-Niessenzweig Theorem [4, XII] according to which there exists 
a weakly' null sequence of norm-one vectors in X" . [> 

3.5.17. Proposition. Let X be a Banach space and let Q be a functionally 
discrete topological space. If X' includes a countable total subspace then C(Q, X) = 
C(Q,XQ) = Cw(Q,XQ) = Cw(Q,X). 

<J The claim follows from Lemma 3.1.14, since the relations 

are always true. [> 

3.5.18. Corollary. Let Q be a topological space and let X be a separable 
Banach space that does not possess the Schur property. The equality Cw(Q, XQ) = 
Cw (Q, X) holds if and only if Q is functionally discrete. 

<J Necessity follows from 3.1.6 (2) , Lemma 3.1.7 (3), and Theorem 3.5.15 (2) ; 
sufficiency is justified by Proposition 3.5.17. [> 

References 

1. Aliprantis C. D. and Burkinshaw 0 ., Positive Operators, Academic Press, New 
York (1985) . 

2. Arkhangel'skil A. V. and Ponomarev V. I., Fundamentals of General Topology: 
Problems and Exercises, Reidel, Dordrecht etc. (1984). 

3. Burden C. W. and Mulvey C. J., "Banach spaces in categories of sheaves,"in: 
Applications of Sheaves, Springer-Verlag, Berlin, 1979, pp. 169-196 (Lecture 
Notes in Math.; 753). 



Dual Banach Bundles 159 

4. Diestel J., Sequences and Series in Banach Spaces, Springer-Verlag, Berlin etc. 
(1984) (Graduate Texts in Mathematics, 92). 

5. Engelking R., General Topology, Springer-Verlag, Berlin etc. (1985). 
6. Fourman M. P., Mulvey C. J., and Scott D. S. (eds.) , Applications of Sheaves, 

Springer-Verlag, Berlin (1979) (Lecture Notes in Math.; 753). 
7. Gierz G., Bundles of Topological Vector Spaces and Their Duality, Springer

Verlag, Berlin (1982) (Lecture Notes in Math.; 955). 
8. Gutman A. E., "Banach bundles in the theory of lattice normed spaces. 1. 

Continuous Banach bundles," Siberian Adv. Math., 3, No.3, 1-55 (1993) . 
9. Gutman A. E., "Banach bundles in the theory of lattice normed spaces. II. 

Measurable Banach bundles," Siberian Adv. Math., 3, No.4, 8-40 (1993). 
10. Gutman A. E., "Banach bundles in the theory of lattice normed spaces. III. 

Approximating sets and bounded operators," Siberian Adv. Math., 4, No.2, 
54-75 (1994). 

11. Gutman A. E., "Locally one-dimensional K-spaces and O"-distributive Boolean 
algebras," Siberian Adv. Math., 5, No.2, 99- 121 (1995). 

12. Gutman A. E., "Banach bundles in the theory of lattice normed spaces," in: 
Linear Operators Coordinated with Order [in Russian], Trudy Inst. Mat. (No
vosibirsk), Novosibirsk, 1995, 29, pp. 63-21l. 

13. Hofmann K. H., "Representations of algebras by continuous sections," Bull. 
Amer. Math. Soc., 78, 291-373 (1972). 

14. Hofmann K. H. and Keimel K., "Sheaf theoretical concepts in analysis: bundles 
and sheaves of Banach spaces, Banach C(X)-modules," in: Applications of 
Sheaves, Springer-Verlag, Berlin, 1979, pp. 414-44l. 

15. Kitchen J. W. and Robbins D. A., Gelfand Representation of Banach Modules, 
Polish Scientific Publishers, Warszawa (1982) (Dissertationes Mathematicae; 
203). 

16. Koptev A. V., "A reflexivity criterion for stalks of a Banach bundle," Siberian 
Math. J., 36, No.4, 735-739 (1995) (Translated from Russian: Sibirsk. Mat. 
Zh. 1995. 36, No.4, 851-857). 

17. Kusraev A. G., Vector Duality and Its Applications [in Russian], Nauka, No
vosibirsk (1985). 

18. Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic 
Publishers, Dordrecht (1996). 

19. Schochetman 1. E., "Kernels and integral operators for continuous sums of Ba
nach spaces," Mem. Amer. Math. Soc., 14, No. 202, 1- 120 (1978). 

20. Vulikh B. Z., Introduction to the Theory of Partially Ordered Spaces, Wolters
Noordhoff, Groningen, Netherlands (1967). 

21. Wnuk W., Banach Lattices with Properties of the Schur Type. A Survey, 
Dipartimento di Matematica dell'Universita di Bari, Bari (1993). 


