@inbook { Gutman20050906, author = "Гутман А.Е. and Лосенков Г.А.", chapter = "2", title = "Функциональное представление булевозначного универсума", booktitle = "Нестандартный анализ и векторные решетки. 2-е изд., испр. и доп.", address = "Новосибирск", publisher = "Изд-во Ин-та математики", year = "2005", pages = "95--123", annote = "Современные методы булевозначного анализа в силу самой своей природы сопряжены с довольно громоздкой техникой логического характера. Можно сказать, что с прагматической точки зрения рядового пользователя-аналитика эта техника в значительной степени отвлекает от вполне конкретной цели --- воспользоваться достижениями булевозначного анализа для решения той или иной аналитической задачи. Поскольку в функциональном анализе наиболее привычным объектом исследования являются разнообразные пространства функций, возникает естественное желание иметь дело не с абстрактной булевозначной системой, а с ее функциональным аналогом --- моделью, элементы которой являются функциями, а основные логические операции вычисляются «поточечно». В настоящей работе предлагается решение поставленной выше задачи. С этой целью вводится и исследуется новое понятие непрерывного поливерсума, представляющего собой непрерывное расслоение моделей теории множеств. Показывается, что класс непрерывных сечений поливерсума является булевозначной алгебраической системой, удовлетворяющей всем основным принципам булевозначного анализа, а также устанавливается, что любая такая булевозначная алгебраическая система может быть представлена в виде класса сечений подходящего непрерывного поливерсума." }