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INTRODUCTION

WP: When are we so happy in a vector lattice that all band preserving linear
operators turn out to be order bounded? This question was raised by Wickstead
in [67]. The answer depends on the vector lattice in which the operator in ques-
tion acts. There are several results that guarantee automatic order boundedness for
a band preserving operator acting in concrete classes of vector lattices (cp. |2, The-
orem 2|, [3, Theorems 3.2 and 3.3|, and [57, Corollary 2.3]). However, in this article
we focus our attention on the case of universally complete vector lattices.

Abramovich, Veksler, and Koldunov were the first to announce an example of
an order unbounded band preserving operator in [2, Theorem 1]. Later these au-
thors |3, Theorem 2.1] as well as McPolin and Wickstead [57, Theorem 3.2| showed
that all band preserving operators in a universally complete vector lattice £ are
bounded automatically if and only if E is locally one-dimensional. The Wickstead
problem in the class of universally complete vector lattices was thus reduced to the
characterization of locally one-dimensional vector lattices.

This led to another problem posed by Wickstead [7]: Is the class of locally one-
dimensional vector lattices coincident with the class of discrete vector lattices? Gut-
man gave the negative answer in [40|: There is a continuous (purely nonatomic) lo-
cally one-dimensional universally complete vector lattice (cp. [39, 41]). Also, Gutman
described the bases of locally one-dimensional universally complete vector lattices:
these are exactly o-distributive complete Boolean algebras.

Furthermore, it is well known in Boolean valued analysis that the condition for
a universally complete vector lattice to be locally one-dimensional is related to the
structure of the reals % inside an appropriate Boolean valued model V(®. In more
detail the situation is as follows (cp. [52]): By the Gordon Theorem, each universally
complete vector lattice may be represented as the descent #| of the Boolean valued
reals #, while the image of the standard reals R (under the canonical embedding
of the standard universe V into the Boolean valued universe V(®)) is the subfield R"
of Z inside V(®). Tt is easy and well-known in other terms that 2| is locally one-
dimensional if and only if R* = Z. The same is true for Boolean valued complexes
% and the image C" of the standard reals C.

The Boolean approach to band preserving operators as developed by Kusraev
in [46] reveals new interconnections. For example, the construction of an order un-
bounded band preserving operator can be carried out inside an appropriate Boolean
valued universe by using a Hamel basis of the reals # considered as a vector space
over its subfield R (cp. [45, 53]). Of course, some important properties of Z| are
connected with the structure of the reals # as a vector space over R". In particu-
lar, using a Hamel basis, we can construct a discontinuous R*-linear function in %
which gives an order unbounded band preserving linear operator in the universally
complete vector lattice Z].

As was demonstrated by Kusraev in [49], similar constructions can be carried
out on using a transcendence basis instead of a Hamel basis. This approach yielded
the new characterizations of universally complete vector lattices with o-distributive
base in terms of narrower classes of band preserving linear operators, namely, of
derivations and automorphisms. In particular, working with a transcendence basis,
we can construct a discontinuous C"-derivation and C"-automorphism in 4 which
gives an order unbounded band preserving derivation or automorphism in % .
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Summarizing the results of 2, 40, 46, 49, 57| on the Wickstead problem, we can
state the following

Theorem WP. Assume that G is a universally complete vector lattice with
a fixed order unity 1, while G¢ is the complexification of G, and B := &(G) := €(1)
is the Boolean algebra of all components of 1. Assume further that #Z and € stand
for the reals and the complexes inside the Boolean valued universe V(®). Then the
following are equivalent:
WP(1) B is o-distributive;
WP(2) Z = R" inside V(®);
P(2') ¢ = C" inside V®);
P(3) G is locally one-dimensional;
P(3") G¢ is locally one-dimensional;
P(4) Every band preserving linear operator in G is order bounded;
P(4’) Every band preserving linear operator in G¢ is order bounded;
(
(

P(5) There is no nontrivial R-derivation in the f-algebra G;

= ====z=

P(5’) There is no nontrivial C-derivation in the complex f-algebra Gg;

WP(6) Each band preserving endomorphism of the complex f-algebra G¢
is a band projection;

WP(7) There is no band preserving automorphism of Gg¢ other than the
identity:.

The goal of this article is to examine the Wickstead problem for universally
complete vector lattices and to prove the above theorem. The reader can find the
necessary information on the theory of vector lattices in [10, 45, 71]; Boolean val-
ued analysis, in [13, 52, 53|; and field theory, in [24, 66, 72|. Some aspects of the
Wickstead problem are also presented in [45, Chapter 5|, [53, Section 10.7], and [50].

By a vector lattice throughout the sequel we will mean a real Archimedean vector
lattice, unless specified otherwise. We let := denote the assignment by definition,
while N, Z, Q, R, and C symbolize the naturals, the integers, the rationals, the reals,
and the complexes. We denote the Boolean algebras of bands and band projections
in a vector lattice £ by B(F) and B(F); and we let E(1) stand for the Boolean
algebra of all components of 1.
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PART 1. LOCALLY ONE-DIMENSIONAL VECTOR LATTICES

In this part we introduce locally one-dimensional vector lattices and o-distributive
Boolean algebras and prove that the following are equivalent for each universally
complete vector lattice G with base B := B((G), the complete Boolean algebra of
bands in G:

WP(1) B is o-distributive;
WP(3) G is locally one-dimensional;
WP(4) Every band preserving linear operator in G is order bounded.

1.1. BAND PRESERVING OPERATORS

In this section we introduce the class of band preserving operators and briefly
overview some properties of orthomorphisms.

1.1.1. Consider a vector lattice E and let D be a sublattice of E. A linear operator
T from D into F is band preserving provided that one (and hence all) of the following
holds:

(1) e L fimpliesTe L f (e€ D, f € E),

(2) Te € {e}*+ (e € D) (the disjoint complements are taken in E),

(3) T(KND)C K (K eB(E)).
If F is a vector lattice with the principal projection property and D C F is an order
dense ideal, then a linear operator T': D — FE is band preserving if and only if T’
commutes with band projections; i.e.,

(4) 7Tx =Trx (r € P(E), v € D).

1.1.2. A band preserving operator 7" in £ need not be order bounded (cp. Sections
1.2 and 1.3 below). However, the greatest order ideal Ar in E such that T is order
bounded on A is a band (cp. [61]). Now, if A is a projection band then A% does
not include any nonzero order ideal on which 7' is order bounded. Thus, if £ has
the projection property then to each band preserving operator 7" in E there is a
band projection 7 such that 77" is order bounded and 77 has no order bounded
components; i.e., pT is not order bounded for any nonzero p < 7.

1.1.3. An order bounded band preserving operator m : D — FE on an order
dense ideal D C E is an extended orthomorphism of E (cp. [56]). Since an extended
orthomorphism is disjointness preserving, it is also regular according to the Meyer
Theorem [58, 33|. Let Orth(D, E) signify the set of all extended orthomorphisms
of E that are defined on a fixed order dense ideal D. An extended orthomorphism
a € Orth(F, E) on the whole space E is an orthomorphism. The collection of all
orthomorphisms Orth(E) of E is a vector lattice under the pointwise algebraic and
lattice operations. Let 2°(FE) stand for the order ideal generated by the identity
operator I in Orth(E). The space Z(F) is often called the ideal center of E.

1.1.4. Every extended orthomorphism in a vector lattice is order continuous. All
extended orthomorphisms commute with one another.

1.1.5. The space of extended orthomorphisms Orth™ (E) is defined as follows:
Denote by 9t the collection of all pairs (D, 7), where D is an order dense ideal
in F and 7 € Orth(D, E). Elements (D, ) and (D', 7’) in 9 are announced equiv-
alent (in writing (D,7) ~ (D’,7')) provided that the orthomorphisms 7 and 7’
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coincide on D N D'. The factor set M/~ of M by ~ is denoted by Orth™(FE).
The set Orth®™(F) becomes a vector lattice under the pointwise addition, scalar
multiplication, and lattice operations. Moreover, Orth®™(FE) is an ordered algebra
under composition. We will identify each orthomorphism 7 € Orth(£) with the
corresponding coset in Orth™(E).

1.1.6. We now list some useful results on orthomorphisms that can be found
in [10, 55, 56, 71.
(1) The ordered algebra Orth™(FE) is a laterally complete semiprime f-algebra
with unity Ig. Moreover, Orth(E) is an f-subalgebra of Orth™(FE) and 2 (F) is an
f-subalgebra of Orth(E).

(2) Every Archimedean f-algebra FE with unity 1 is algebraically and latti-
cially isomorphic to the f-algebra of orthomorphisms of E. Moreover, the ideal in E
generated by 1 is mapped onto % (E).

(3) If E is an order complete vector lattice then Orth®™(F) is a universally
complete vector lattice and Orth(E) and Z(E) are order dense ideals.

(4) Let G be a universally complete vector lattice equipped with the f-algebra
multiplication uniquely determined by a choice of an order unity in G. Also, let E
and F be order dense ideals in G. Then, for every orthomorphism © € Orth(E, F)
there exists a unique g € GG such that mx = g - x for all x € F.

1.1.7. An order bounded band preserving operator 7 : D — FE is a weak ortho-
morphism of E provided that D is an order dense sublattice of . In general, the set
of all weak orthomorphisms of £ do not comprises a good algebraic structure, while
they do in the case of semiprime f-algebra. Denote by Orth"(A) the set of all weak
orthomorphism with maximal domain. The set Orth”(A) endowed with pointwise
operations and ordering is an f-algebra (cp. [69] for details).

Denote by Q(A) the mazimal (or complete) ring of quotients of an f-algebra A
(cp. [54] for the definition). As was shown in [62], Orth™(A) and Q(A)
are not isomorphic. Nevertheless, Orth®(A) can be embedded in Q(A) as an
f-subalgebra [62, 69]. The following description of the maximal ring of quotients
for an (Archimedean) semiprime f-algebra is due to Wickstead [69].

1.1.8. Theorem. Let A be a semiprime f-algebra. Then
(
(
(

If, in addition, A is relatively uniformly complete then
(4) Q(A) = Orth™(A) = Orth"(A).

1) Orth“(A) is a von Neumann regular f-algebra with unity I,;
2) Orth™(A) is an f-subalgebra of Orth"(A);
3) The maximal ring of quotients ()(A) coincides with Orth"(A).

1.2. A LocAL HAMEL BAsIs

Following [57], we show in this section that a universally complete vector lat-
tice is locally one-dimensional if and only if all band preserving operators in it are
automatically order bounded.

1.2.1. Let G be an arbitrary universally complete vector lattice with a fixed order
unity 1. We introduce some multiplication in G that makes G into a commutative
ordered algebra with unity 1. A subset & C G is said to be locally linearly indepen-
dent if whenever eq,...,e, € &, A,..., A\, € R, and 7 is a band projection in G
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with m(A\je; + - -+ + \ye,) = 0 and wey, ..., me, nonzero and pairwise distinct we
have A\, = 0 for all k£ :=1,...,n. In other words, & is locally linearly independent
if 7(&€) \ {0}, the set of all nonzero projections me of the elements e € &, is linearly
independent for each nonzero 7 € PB(G). A maximal locally linearly independent set
in G is a local Hamel basis for G.

There exists a local Hamel basis for each universally complete vector lattice.

<1 Apply the Kuratowski-Zorn Lemma to the inclusion-ordered set of all locally
linearly independent sets in G. >

1.2.2. A locally linearly independent set & in G is a local Hamel basis for G if
and only if for every x € G there exists a partition of unity (m¢)e¢ez in B(G) such
that mex is a finite linear combination of nonzero elements of ¢& for each § € =.
Such representation of mex is unique in the band m¢(G).

< «—: Assume that & C G is locally linearly independent but is not a Hamel
basis. Then we may find x € E such that & U {z} is locally linearly independent.
Therefore, there is no nonzero band projection 7 for which 7z is a linear combination
of nonzero elements from w&'. This contradicts the existence of a partition of unity
with the mentioned properties.

—: If & is a local Hamel basis for G then & U {z} is not locally linearly inde-
pendent for an arbitrary x € G. Thus, there exist a nonzero band projection ,
reals Ao, A\1,..., A\, € R, and elements eq,...,¢e, € & such that w(Agx + Aeg +

-+ Apen) = 0, while mey, ... me, are nonzero and pairwise distinct and not all
Ao, A1, ..., A, are equal to zero. Since the equality \g = 0 contradicts the local lin-
ear independence of &, it should be A\ # 0, so that mx is representable as a linear
combination of mweq, ..., me,. Now, the existence of the required partition of unity
follows from the exhaustion principle.

1.2.3. Proposition 1.2.2 admits the following reformulation: A locally linearly
independent set & in G is a local Hamel basis if and only if for every z € G there
exist a partition of unity (m¢)eez in P(G) and a family of reals (Aee)eezcee such

that
= O—Z (Z /\5767T56> ,

£eE \eecé&

where {e € & : A\¢. # 0} is finite for every { € Z. Moreover, the representation is
unique in the sense that if x admits one more representation

oy <z %w,epwe),

weN \ec&

then for all £ € =, w € Q, and e € & the relation mep, e # 0 implies A\e o = 52, .

1.2.4. An element e € G, is locally constant with respect to f € G, if
e = SuPgez A¢Te f for some numeric family (A¢)ecz and a family (7¢)¢e= of pairwise
disjoint band projections.

For each universally complete vector lattice G the following are equivalent:
(1) All elements of G are locally constant with respect to 1;

2) All elements of G are locally constant with respect to an arbitrary order
€ G;
) {]l} is a local Hamel basis for G;
) Every local Hamel basis for G consists of pairwise disjoint members.

unity

(
(3
(4
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<1 Obviously, (2) — (1). To prove the converse, note that, given z € G, we may
choose a partition of unity (m¢)ee= such that for each £ € = both mex and mee are
multiples of mc1. So, mex is a multiple of mge. A similar argument shows that {1}
is a local Hamel basis if and only if so is {f} for every order unity f € G. Thus, if
(4) holds and & is a local Hamel basis for G then f := sup{e : e € &} exists and
{f} is a local Hamel basis for G. It follows that (4) — (3). Clearly, (3) — (1) by
1.2.3. To complete the proof, we had to show (1) — (4). If (4) fails then we may
choose a nonzero band projection 7 and a local Hamel basis containing two members
e; and ey such that both me; and mey are nonzero multiples of 71. Consequently,
m(Are1 + Ageq) = 0 for some Aj, Ay € R and we arrive at the contradictory conclusion
that {e1, €2} is not locally linearly independent. >

A universally complete vector lattice G is locally one-dimensional if G satisfies
the equivalent conditions (1)—(4) of the above proposition.

1.2.5. Theorem. Let G be a universally complete vector lattice. Then the fol-
lowing are equivalent:
(1) G is locally one-dimensional;
(2) Every band preserving operator T : G — G is order bounded.

< (1) — (2): Recall that a linear operator 7' : G — G is band preserving if and
only if 71" = T'r for every band projection 7 in G (Cp. 1.1.1 (4)) Assume that T is
band preserving and put p := T'1. Since an arbitrary e € Gy can be expressed as
€ = Supgcz Aemel, we deduce

mele = T(mee) = T(Aemel) = AemeT'(1) = me(e)T (1) = meep,

whence T'e = pe. It follows that 7" is a multiplication operator in GG which is obviously
order bounded.

(2) — (1): Assume that (1) is false. According to 1.2.4 (4) there is a local Hamel
basis & for GG containing two members e; and e; that are not disjoint. Then the band
projection 7 := [e1] A[ez] is nonzero. (Here and below [e] is the band projection onto
{e}++.) For an arbitrary x € G there exists a partition of unity (¢ )¢e= such that mex
is a finite linear combination of elements of &. Assume the elements of & have been
labelled so that mex = A\imeer + Agmees + -+ - Define T'x to be a unique element in
G with 71w := \i7wmees. It is easy to check that 7' is a well defined linear operator
from G into itself.

Take =,y € G with L y and let (7¢)ec= be a partition of unity such that both
mex and mey are finite linear combination of elements from &. Refining the partition
of unity if need be, we may also require that at least one of the elements mez and
mey equals zero for all £ € =. If mey # 0 then mex = 0, and so the corresponding
Ae; is equal to zero. If e # 0 then Ay = 0, and in any case 7.7z = 0. It follows
that Tx 1 y and T is band preserving. If 7" were order bounded then T would
be presentable as Tx = ax (x € G) for some a € G, see 1.1.6 (4). In particular,
Tey = aey and, since Teo = 0 by definition, we have 0 = [e3]|la] > =l|a|. Thus
ey = T'(me1) = ame; = 0, contradicting the definition of 7. >

1.3. o-DISTRIBUTIVE BOOLEAN ALGEBRAS

In this section we present the main result of [40|: A universally complete vector
lattice G is locally one-dimensional if and only if the base of G is o-distributive.
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1.3.1. A o-complete Boolean algebra B is said to be o-distributive if B satisfies
one of the following equivalent conditions (cp. [65, 19.1]):

(1) Anen Vinen U = Vonenn Anens Uy for all (0,)nmen in B;
(2) Vien Amen U = Npneon Vinen Uy for all (07, )nmen in B;
(3) Veeq—1p Anen (n)by, = 1 for all (by)nen in B,

(Here 1b,, := b, and (—1)b,, is the complement of bn.)

1.3.2. Let B be an arbitrary Boolean algebra. A subset of B with supremum unity
is called a cover of B. Partitions of unity in B are referred to as partitions of B for
brevity. Let C' be a cover of B. A subset Cj of B is said to be refined from C' if,
for each ¢y € Cy, there exists ¢ € C such that ¢y < ¢. An element b € B is refined
from C provided that {b} is refined from C; i.e., b < ¢ for some ¢ € C. If (C},)nen is
a sequence of covers of B and b € B is refined from each of the covers C,, (n € N),
then we say that b is refined from (C),),en. We also refer to a cover whose all elements
are refined from (C,),en as refined from the sequence.

1.3.3. Let B be a o-complete Boolean algebra. The following are equivalent:
(1) B is o-distributive;
(2) There is a (possibly, uncountable) cover refined from each sequence of
countable covers of B;
(3) There is a (possibly, infinite) cover refined from each sequence of finite
covers of B;
(4) There is a cover refined from each sequence of two-element partitions of B.

< A proof of (1)<>(2) can be found in [65, 19.3]). Item (4) is a paraphrase
of 1.3.1(3) in the definition of o-distributivity. The implications (2)—(3)—(4) are
obvious. >
1.3.4. Let B be a complete Boolean algebra. The following are equivalent:
(1) B is o-distributive;
(2) There is a (possibly, uncountable) partition refined from each sequence of
countable partitions of B;
(3) There is a (possibly, infinite) partition refined from each sequence of finite
partitions of B;

(4) There is a partition refined from each sequence of two-element partitions
of B.

< The claim follows from 1.3.3 in view of the exhaustion principle. >

1.3.5. Let @ stands for the Stone space of B and denote by Clop(Q) the Boolean
algebra of all clopen sets in (). We say that a function g € COO(Q) is refined from
a cover C' of the Boolean algebra Clop(Q) if, for every two points ¢, ¢" € @ satisfying
the equality ¢(¢') = g(q¢”), there exists an element U € C such that ¢,¢" € U.
If (Cy)new is a sequence of covers of Clop(Q)) and a function g is refined from each
of the covers C,, (n € N), then we say that g is refined from (C,)nen-

1.3.6. Lemma. There is a function of C(Q) refined from each sequence of finite
covers of Clop(Q).

< Let (Cp)nen be a sequence of finite covers of Clop(Q). By induction, it is easy
to construct a sequence of partitions P,, = {U{", Uy, ..., Uk} of Clop(Q) with
the following properties:

(1) for every n € N, there is m € N such that the partition P, is refined from C,,;

(2) Um = Ut v U for allm € Nand j € {1,2,...,2™}.
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Given m € N, define the two valued function x,, € C(Q) as follows:

2m—1

Xm ‘= Z X(U;Z)?

i=1

where x(U) is the characteristic function of U C Q. Since the series 7 | zkXm is
uniformly convergent, its sum g belongs to C'(Q)). We will show that g is refined from
(Cn)nen- By property (1) of the sequence (P,,;)men, it suffices to establish that g is
refined from (Pp,)men-

Assume the contrary and consider the least m € N such that g is not refined
from P,,. In this case, there are two points ¢/, ¢" € @Q satisfying the equality ¢g(¢') =
g(¢") and belonging to distinct elements of P,,. Since ¢ is refined from P,,_; (for
m > 1), from property (2) of the sequence (P,,)men it follows that ¢’ and ¢” belong
to some adjacent elements of F,; i.e., elements of the form U™ and U}, with
j € {1,...,2™ — 1}. For definiteness, suppose that ¢’ belongs to an element with
an even index and ¢”, to that with an odd index; i.e., x,n(¢") = 1 and x,,(¢") = 0.
Since x;(¢") = xi(q") for all i € {1,...,m — 1}; therefore, we have:

/ 1 1 - 1 / /! 1 - 1 1
(@) —a(d) =5+ D 5 lald) —xild") > o bR TR

i=m+1 i=m+

which contradicts the equality g(¢') = g(¢"). >

1.3.7. Theorem. A universally complete vector lattice G is locally one-
dimensional if and only if the base of G is o-distributive.

< Let Q be the Stone space of the base of . Suppose that G is locally
one-dimensional and consider an arbitrary sequence (P, )nen of finite partitions
of Clop(Q). By 1.3.4, to prove the o-distributivity of G, it suffices to refine a cover
of Clop(Q) from (P,),en. By Lemma 1.3.6, we may refine g € C(Q) from the se-
quence (P,)nen. Since G is locally one-dimensional, there exists a partition (Ug)eez
of Clop(Q) such that g is constant on each of the sets Ug. Show that (Ug)ecz is re-
fined from (P,)nen. To this end, fix arbitrary indices £ € = and n € N and establish
that Ug is refined from P,. We may assume that Us # &. Let gy be an element of Ug.
Finiteness of P, allows us to find an element U of P, such that gy € U. It remains
to observe that Us C U. Indeed, if ¢ € U then g(q) = g(qo) and, since g is refined
from P,, the points ¢ and ¢y belong to the same element of P,; ie., g € U.

Assume now that the base of G is o-distributive and consider an arbitrary
g € Co(Q). By the definition of a locally one-dimensional vector lattice, it suf-
fices to construct a partition (Ug)eez of Clop(Q) such that g is constant on each
of the sets Us. Given a natural n and integer m, denote by U] the interior of
the closure of the set of all points ¢ € @ for which ™ < g(q) < mTH and put
P, = {U,?L :m € Z}. By 1.3.4, from the sequence (P, ),en of countable partitions
of Clop(Q®), we may refine some partition (Ug)ecs. It is easy that this is a desired
partition. >

1.3.8. Theorem. There exists a purely nonatomic locally one-dimensional uni-
versally complete vector lattice.

< Theorem 1.3.7 reduces the problem to the existence of a purely nonatomic
o-distributive complete Boolean algebra. An algebra of this kind is constructed
below in 1.3.9-1.3.11. >
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1.3.9. A Boolean algebra B is o-inductive provided that each decreasing sequence
of nonzero elements of B has a nonzero lower bound. A subalgebra By of B is dense
if, for every nonzero element b € B, there exists a nonzero element by € By such that
by < 0.

Lemma. If a o-complete Boolean algebra B has a o-inductive dense subalgebra
then B is o-distributive.

< Let By be a o-inductive dense subalgebra of B. Consider an arbitrary sequence
(Cp)nen of countable covers of B, denote by C' the set of all elements in B that are
refined from (C),),ewn, and assume by way of contradiction that C'is not a cover of B.
Then there is a nonzero element b € B disjoint from all elements of C.

By induction, we construct the sequences (b, )nen and (¢, )nen as follows: Let ¢;
be an element of C; such that b A ¢; # 0. Since By is dense, there is an element
b1 € By such that 0 < b; < b A ¢;. Suppose that b, and ¢, are already constructed.
Let ¢,11 be an element of C),;; such that b, Ac,+1 # 0. As b, 1 we take an arbitrary
element of By such that 0 < b,,11 < b, A Cpyr.

Thus, we have constructed sequences (b, )nen and (c,)nen such that b, € By,
b, < ¢, € Cp, and 0 < b,y1 < b, < b for all n € N. Since By is o-inductive, By
contains a nonzero element by that satisfies by < b, for all n € N. By the inequalities
by < ¢,, we see that by is refined from (C),),en; i-€., by belongs to C. On the other
hand, by < b, which contradicts the disjointness of b from all elements of C. >

1.3.10. As is well known, to every Boolean algebra B there is a complete Boolean
algebra B including B as a dense subalgebra (cp. [65, Section 35]). This B is unique
to within an isomorphism and called a completion of B. Obviously, a completion of
a purely nonatomic Boolean algebra is purely nonatomic. Moreover, by Lemma 1.3.9,
a completion of a o-inductive algebra is o-distributive. Therefore, in order to prove
existence of a purely nonatomic o-distributive complete Boolean algebra, it suffices
to exhibit an arbitrary purely nonatomic o-inductive Boolean algebra. The examples
of these algebras are readily available. For the sake of completeness, we present here
one of the simplest constructions.

1.3.11. Let B be the boolean of N and let I be the ideal of B comprising all
finite subsets of N. Then the quotient algebra B/I (cp. [65, Section 10]) is purely
nonatomic and o-inductive.

< The pure nonatomicity of B/I is obvious. In order to prove that B/I is
o-inductive, it suffices to consider an arbitrary decreasing sequence (b, )nen of in-
finite subsets of N and construct an infinite subset & C N such that the difference
b\b,, is finite for each n € N. We can easily obtain the desired set b := {m,, : n € N}
by induction, letting m; := minb; and my, 1 := min{m € b,.1 : m > m,}. >

PART 2. BOOLEAN APPROACH

The purpose of the this part is to present the approach of Boolean valued analysis
to the Wickstead problem and prove that if G is a universally complete vector lattice
and B := P(G) is the base of G then the following are equivalent:

WP(1) B is o-distributive;
WP(2) Z = R”" inside V(®);
WP(3) G is locally one-dimensional;
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WP(4) Every band preserving linear operator in G is order bounded.

In Sections 2.1, 2.2, and 2.3 we will give purely Boolean valued proofs of the
equivalences WP(2) < WP(4), WP(2) « WP(3), and WP(1) < WP(2), respec-
tively. It turns out that all these equivalences reduce to some simple properties of
reals and cardinals in an appropriate Boolean valued model (cp. [46]).

Throughout this part # denotes the Boolean valued reals and R” is considered
as a dense subfield of Z. More precisely, Z € V& and [Z is a field of reals] = 1,
while [R” is a dense subfield of Z] = 1 (cp. A3.3 and A3.4). The Gordon Theorem
A3.6 says that if G is a universally complete vector lattice and B := B(G), then Z|
is a universally complete vector lattice isomorphic to G.

2.1. REPRESENTATION OF A BAND PRESERVING OPERATOR

In this section we show that the equivalence WP(2) < WP(4) is immediate from
the Boolean valued representation of band preserving operators.

2.1.1. In this section we let G stand for the universally complete vector lattice
Z|. Recall that G is a faithful f-ring with unity 1 := 1".

Let Endy(G) be the set of all band preserving endomorphisms of G. Clearly,
Endy(G) is a vector space. Moreover, Endy(G) becomes a faithful unitary module
over GG on letting ¢7T" be equal to g7 : © + g - Tx for all x € GG. This is immediate
since the multiplication by an element of GG is band preserving and the composite
of band preserving operators is band preserving too. By Endgs(#) we denote the
element of V() that represents the space of all R*-linear operators from Z into Z.
Then Endga(Z) is a vector space over Z inside V&) and Endga(Z)] is a faithful
unitary module over G.

2.1.2. A linear operator T on a universally complete vector lattice G is band
preserving if and only if T' is extensional.

< By the Gordon Theorem A3.6 and A2.4(7), T : G — G is extensional if and
only if, for all x € G and 7 € P(G), from 7 = 0 it follows that 77z = 0. By taking
x = my we conclude that 7T+ = 0 or, in other words, 71 = 77T'w. Substituting
7+ for 7, we see that T'm = 717, and so 7T = T'w. Hence, T is band preserving by
1.1.1(4). Conversely, for a band preserving T' we see that 7z = 0 implies 77z = 0
by definition. >

21.3.If 0 € V® and [0 : #Z — #] = 1, then there exists a unique map
S:H| — X#| such that

[S(z) =o(@)]=1 (zeZl)

This map S is called the descent of o and is denoted by o]. It is of importance that
the descent is extensional (cp. A2.5):

[v =yl <[S(x) =SWI (z,yeZl)

It is immediate from A3.6 that S is extensional if and only if bx = by implies
bS(x) =bS(y) for all z,y € Z| and b € B ="P(Z]).

Conversely, given an extensional map S : Z| — Z |, there exists a unique func-
tion o : # — Z inside V(®  such that S = o |. We say that o is the ascent of S and
write 0 = ST (cp. A2.4). Thus, the descent and ascent carry out a bijection between
the sets of all extensional mappings from Z| into %] and all elements o € V® with
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[o: % — Z] = 1 (cp. the Escher rules for arrow cancellations in A2.6). Denote
the latter set by F(Z)|.

2.1.4. Let Ext(Z]) be the set of all extensional mappings from Z| into Z|. The
pointwise operations make this set into a unital module over the ring #|. The set
F(Z)| can be endowed with a module structure over % | by analogy to A3.5.

The bijection in 2.1.3 is an isomorphism of the modules Ext(Z|) and F(Z%)|.

< This is immediate from the following identities:

S+ =S+T)ex=Sr+Te=STzedTle=(STeT)z (xe€R]);
(- S)z=(a-S)r=a-(S2)=a@ (STz) =(a©@ )z (a,x € Z]),

where @ and © stand for the operations in % and F(Z%), while + and - symbolize
the operations in Z| and Ext(Z]). >

2.1.5. The modules Endy(G) and Endgna(Z)| are isomorphic. The isomorphy
may be established by sending a band preserving operator to its ascent.

< Each T' € Endy(G) is extensional by 2.1.2, and so T has the ascent 7 := 11
presenting the unique mapping from # into # such that [r(z) = Tx] for all x € G
(cp. 2.1.3). Using this identity and the definition of the ring structure on Z|, we see

Tx@y)=Tx+y)=Te+Ty=71(x)d71(y) (x,y €qG),
TN oz)=TA-z)=X-Te=Xo71(x) (x€G, N€R).

Hence, [7 : #Z — % is an R"-linear function] = 1; i.e., [7 € Endgr(Z)] = 1.
If 7 € Endga (#£)] then the descent 7] : G — G is extensional (cp. 2.1.3). The same
arguments as above convince us that if 7 is R"-linear inside V(® then 7| is a linear
operator. By 2.1.2 7] is band preserving. The claim results now from 2.1.4. >

2.1.6. In 2.1.5 we encountered the following situation: There is some ordered
subfield P of the reals R that includes Q. Consequently, R is a vector space over
P and has a Hamel basis, say &. Denote the set of all P-linear functions in R by
Endp(R). For the sake of completeness, we recall the two well-known facts:

(1) Let P be a subfield of R. The general form of a P-linear function f : R — R
is given as

flz) = ergb(e) if = ere,
ecé ecs&
where ¢ : & — R is an arbitrary function and the second formula is the expansion of
x € R with respect to the Hamel basis & and the coefficients (x.).ce are such that

{e € &: x. # 0} is a finite set.
< This is immediate from the definition and properties of a Hamel basis. >

(2) An arbitrary P-linear function f : R — R admits the representation
f(z) = cx (z € R) with some ¢ € R if and only if f is bounded above or below on
some interval |a,b] C R, with a < b.

< Necessity is obvious. To prove sufficiency, assume that f is bounded above by
a real M on |a,b[. Then the open set {(s,t) € R* : a < s < b, M < t} is disjoint
from the graph of f, and so the graph of f cannot be dense in R?. However, if f
fails to admit the desired representation then the graph of f is dense in R?. This is
established in much the same way as in the case of the Cauchy functional equation
(cp. [8, Chapter 2, Theorem 3|). >
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2.1.7. We now exhibit the two corollaries for band preserving operators which
are the Boolean valued interpretations of 2.1.6 (1), (2).

(1) A band preserving operator T' € Endy(G) is order bounded if and only if
T may be presented as Tx = g - x (x € G) for some fixed g := gr € G.

< It suffices to observe that the ascent functor preserves the property of order
boundedness in 2.1.5 and apply 2.1.6 (2) inside V&), >

(2) For every band preserving endomorphism of G := %] to be order bounded
it is necessary and sufficient that V® = % = R".

< «: If R" coincides with the reals Z inside V(&) then Endgn(Z)] is the set of
all Z-linear functions in Z. However, each Z-linear function ¢ in % admits the
representation ¢(z) = cx for all x € #Z. Hence, Endx(G) consists of order bounded
operators by (1).

—: If R* # %, then each Hamel basis & for the vector space #Z over R" has at
least two distinct elements e; # ey. Defining some function ¢y : & — % so that
do(er)/er # poles)/ea, we may extend ¢g to an R"-linear function ¢ : Z — Z as in
2.1.6 (1) which cannot be bounded by 2.1.6 (2). Therefore, the descent of ¢ would
be a band preserving linear operator that fails to be order bounded (cp. (1)) >

2.2. REPRESENTATION OF
A LOCALLY ONE-DIMENSIONAL VECTOR LATTICE

A proper delineation of the notion of local Hamel basis is simply a Hamel
basis in an appropriate Boolean valued model. As an easy consequence we get
WP(2) < WP(3).

2.2.1. The universally complete vector lattice G := %] is locally one-dimensional
if and only if V&) = % = R".

< Clearly, [#Z = R"] = 1 amounts to Z| = R*| (cp. [52, 3.3.3]). Therefore, it
suffices to check that G is locally one-dimensional if and only if G = R"|. However,
by [52, 3.1.1] R*| consists of all mixings of the shape mix;cg(bit"), where (b;)er is
an arbitrary partition of unity in B. Considering the properties of the universally
complete vector lattice G (cp. [52, 5.2.2 and 5.2.3]), we see that G = R"| means
the possibility of presenting each z € G as 0-)_,  tx(b;)1 with a suitable partition
of unity (b;)er in B. The latter rephrases as G is locally one-dimensional, since we
may put m; := x(b;) and rewrite the above presentation as

Tr = O-Z t’/'ftﬂ—i— O—Z t’/rt]l: sup tf/-(tﬂ_ sup (—t)’/'('t]]_’
teR, t>0 teER, t<0 teR, >0 teR, t<0

moreover, xT = sup{tml: t € R, ¢t >0} and 2~ =sup{—tml: t € R, t <0}. >

2.2.2. Thus, the universally complete vector lattice G = Z] is locally one-
dimensional if and only if [# as a vector space over R* has dimension 1] = 1.
Consequently, it stands to reason to find out what construction in G = #| cor-
responds to a Hamel basis for the vector space Z over R*. We will presume that
G is furnished with the only multiplicative structure making G into an ordered
commutative algebra with ring unity 1 := 1.

We will say that =,y € G differ at # € P(G) provided that from pzr = py
it follows that mp = 0 for all p € P(G). This amounts clearly to the condition
m(G) C |z —y|*t.
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A subset & of G is locally linearly independent provided that, for an arbitrary

nonzero band projection 7 in GG, each collection of elements eq, ..., e, € & that differ
pairwise at m and reals Ay, ..., A\, € R, the condition 7w(Aje;+- -+ \,e,) = 0 implies
that Ay = 0 for all k£ :=1,...,n. An inclusion-maximal locally linearly independent

subset of G is a local Hamel basis for G.

Observe that this definition of a local Hamel basis differs from that given in
1.2.1. The concept of a local Hamel basis in 1.2.1 (cp. [57]) corresponds to the
interpretation of the set & U {0}, where [ & is a Hamel basis for the vector space %
over R" ] = 1.

There is a local Hamel basis for an arbitrary universally complete vector lattice.

< It suffices to apply the Kuratowski-Zorn Lemma to the inclusion ordered set
of all locally linearly independent subsets of G. >

2.2.3. Assume that G .= %), & € V® and[& C #] = 1. Then [ & is a linearly
independent subset of the vector space Z over R"| = 1 if and only if &| is a locally
linearly independent subset of G.

< «: Put & := & and assume that &” is locally linearly independent. Given
a natural n, let the formula p(n, 7,0) express the following: 7 and ¢ are maps from
n:={0,1...,n— 1} into R" and & respectively, o(k) # o(l) for different k and [
inn, and ), 7(k)o(k) = 0. Denote the formula

(VT)(VJ)(@(H,T, o) — Vken)r(k) = 0)
by 4(n). Then the linear independence of & inside V() amounts to the equality
1=[(YneN)pm]= Alv®)]
neN

Hence, we are left with proving that [«(n")] = 1 for all n € N. Calculate the truth
values, using the construction of the formula v and the rules of Boolean valued
analysis (cp. [52, 2.3.8]). The result is as follows:

A{L7ken)r(k) =0]: 7.0 € VE; [p(n,7,0)] =1},
Take some 7,0 € V&) and n € N such that [p(n",7,0)] = 1. Then [7 : n* — R"] =1

and [o : n* — &] = 1. Moreover, [o(k) # o(l) for distinct k and [ in n", and

D kenr T(K)o(k) = 0] = 1.
Let t : n — R"] and s : n — &’ stand for the modified descents of 7 and o
(cp. [52, 3.5.5]). Then

1=[(Vklen)(k#l—ok) #o)]= Nlo(k") # o] = N [sk) # s,
k,len k,len
k#l k+#l

and so s(k) and s(() differ at the identity projection for k and [ distinct. Furthermore,

[{:iét(k)S(k) - oﬂ = [[ > r(k)a(k) = Oﬂ _ 1

ken”
Hence, 27— t(k)s(k) = 0. Since t(k) € R"| for all k € n, there is a partition of
unity (be)eez in B and, to each k € n, there is a numerical family (\¢ x)eez such that

t(k) =03 Aeax(be)l (k:=0,1,....,n—1).

e



18 A. E. Gutman, A. G. Kusraev, and S. S. Kutateladze

Inserting these expressions into the equality S>3~ t(k)s(k) = 0, we obtain

=% (o—z Ag,kx(bg)]l)s(k) =0 x(be) Z_: Aers(k).

k=0 cex cex

Consequently, x(be) Sr—s Aexs(k) = 0 and, since s(k) and s(I) differ at y(b) for
distinct k,1 € n, by the definition of local linear independence we have ¢, = 0
(k=0,1,...,n—1). Thus t(k) =0 (k=0,1,...,n— 1), and so

1= ALt(k) = 0] = \[r() = 0] = [(vh € n) (k) = 0]

ken ken

which was required.

—: Assume that [& is an R"-linearly independent set in #] = 1. Consider
arbitrary 7 € B(G), n € N, t : n — R and s : n — & such that 7 # 0, s(k) and s({)
differ at 7 for distinct k,1 € n, and w3 p— t(k)s(k) = 0. Our goal is now to prove
that t(k) =0 (k=0,...,n—1).

Let 7,0 € V(® be the modified ascents of t and s (cp. [52, 3.5.5]). Then, inside V&),
we have 7 : n* - R", 0 : n" — &, and

((Vk,l en’)(k#1—a(k)#o(l))A Z (k"o (k") = 0) — (Vken®)7(k)=0.

kenn

Calculating the truth value of the latter formula, we obtain

b=\ [s(k) # s(D] A HZW@S(;@) = oﬂ < /\[[t(k)A =0].
kliln k=0 k=0

According to the initial properties of 7, s, and ¢, by virtue of A3.6 we have m < x(b)
implying that 7t(k)" = 0 for all k € n again by A3.6. Since m # 0, we have t(k) =0
(k=0,....n—1). >

2.2.4. If &, is a locally linearly independent subset of G and & := &,] then
[ & is R"-linearly independent in Z | = 1.

< By 2.2.3 it suffices to show that & := mix(&y) = &| = &1/ is locally linearly
independent. Take some nonzero band projection 7 in G, elements ey, ..., e, € &
that differ at 7, and reals Ay, ..., A, € Rsatisfying 7(A1e1+- - -+ A,e,) = 0. There are
a partition of unity (b¢) in B and families (g¢x) C & such that e = 0-3 . x(b¢) ge 1
Clearly, p := mx/(b,) # 0 for some index 7. The elements g, 1, ..., g, differ pairwise
at p and p(A1gy1 + - + Angyn) = 0. Since & is locally linearly independent, A\; =
=X, =0.>

2.2.5. Assume that G := %Z|, & € V® and [& C #] = 1. Then [ & is a Hamel
basis for the vector space # over R"]| = 1 if and only if & is a local Hamel basis

for GG.
< Immediate from 2.2.3 and 2.2.4. >

2.2.6. A universally complete vector lattice G is locally one-dimensional if and
only if {1} is a local Hamel basis for G.

< Immediate from 2.2.1 and 2.2.5. >
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2.3. DEDEKIND CUTS AND CONTINUED FRACTIONS
IN A BOOLEAN VALUED MODEL

The behavior of Dedekind cuts and continued fractions in a Boolean valued model
clarifies the equivalence WP(1) < WP(2).

2.3.1. For all a C Q and a C Q, the following holds:

(a,a) is a Dedekind cut < [(a",a") is a Dedekind cut] = 1.

< Indeed, the formula ¢(a,a,Q) stating that ¢ C Q and a C Q comprise
a Dedekind cut, is bounded. So we are done by restricted transfer (cp. A2.2). >

2.3.2. If B is o-distributive then V& =% C R".

< Note that the claim means precisely WP(1) — WP(2). Assume that B is
o-distributive. By A3.9 (3) Z(w") = Z(w)". Let 2 denote the rationals inside V®).
Since the set of rationals can be defined by a restricted set-theoretic formula, we
have VB = 2 = Q" (cp. A2.2). Thus, we also conclude that 2(Q") = 2(Q)".
To demonstrate the desired inclusion we are to show only that from [t € Z] = 1
it follows that [t € R"] = 1. Assume that [t € Z] = 1, i.e., t is a Dedekind cut
inside V(&) We then see inside V® that

(Bae 2(Q)(Fa e 2(Q")) p(a,a,Q") At = (a,a),

where ¢ is the same as in 2.3.1. Calculating the truth value of the above formula
and considering that Z(Q") = Z(Q)", we infer

Choose a partition of unity (b¢) C B and two families (a¢) and (a¢) in Z(Q) so that
b£ < [[90<a27 (_lg, QA)]] A [[t = (CL&, C_Lﬁ)/\]]

It follows that t = mixebe(ag, ae)", and be < [p(ag,a;,Q")]. If be # O then
[[go(ag,dg, Q)] = 1, since ¢(x1,x9,x3) is a bounded formula and the truth value
[o(xy, x5, 23)] of a bounded formula may be either 0 or 1 by the definitions and
rules of transformation of truth values (cp. [52, 2.2.3(2)]). By restricted transfer
(cp. A2.2 and [52, 2.2.9]) ¢(ae, a¢, Q); i.e., (ag,ae) is a Dedekind cut. It is evident
now that be < [t = (ag, a¢)” € R"]. Hence, [t € R'] =1. >

2.3.3. We now prove the implication WP(2) — WP(1). To this end we use
continued fractions. Put

l:={teR : 0<t<1, tisirrational},
S ={te#: 0<t<l1, tisirrational} (inside \/(B)).
It is well known that there is a bijection A : | — N sending a real ¢ to the sequence

A(t) = a: N — N of partial continued fractions of the continued fraction expansion
of t:
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Given sequences a : N — N and s : N — [, consider the bounded formula ¢(a, s, t,N)
stating that s(1) = ¢! and

a(n):{ 1 1

s(n) s(n)

for all n € N, where [a] is the integer part of 0 < a € R which is expressed by the
bounded formula ¥ (c, [, N):

} s(n+1) = — —a(n),

[a] eNAfa] <an(VneN)(n<a—n<]|a]).

The equality A(t) = a means the existence of a sequence s : N — [ such that
v(a, s, t,N). Call the bijection A the continued fraction erpansion. By transfer
(cp. A1.2), the continued fraction expansion A : .# — (Rg)¥ = (N")N" exists in-
side V(®),

2.3.4. Inside V®) | the restriction of )\ to 1" coincides with A e,

VE = (Ve 1) A(t) = M(b).

< The desired is true only if A(#") = A(t)" for all ¢ € I. By the above definition
of the bijection A we have to demonstrate the validity inside V& of the following
formula: (3s € IN)(A(t)", s,t",N"). By the definition of A there is a sequence
o : N — [ satisfying ¢(A(t),0,t,N). Since ¢ is bounded, 1 = [ (A(t)", 0", t", N")].
Note that 0" : N* — 1" C 7, ie., [0 € fw]] = 1. Summarizing the above, we
may write [ (s € IN) (M), s,t", N ] > [p(A1)", 0", ", NY)] = 1. >

2.3.5. If V® = % = R" then B is o-distributive.

< By hypothesis .# = 1" inside V(®. Hence, A and A\ are bijections, A ex-
tends A", and their images coincide. Clearly, the domains coincide in this event too
(and, moreover, A = A\"). Therefore, (N¥)* = (N*)N". By A3.9(2) we infer that B
is o-distributive. >

PART 3. AUTOMORPHISMS AND DERIVATIONS

The goal of this part is to prove that if G¢ is the complexification of a universally

complete vector lattice G then the following are equivalent:

WP(1) B is o-distributive;
2') ¢ = C" inside V(®);
4') Every band preserving linear operator in G¢ is order bounded;
5') There is no nontrivial C-derivation in the complex f-algebra G;
WP(6) Each band preserving endomorphism of the complex f-algebra G¢
is a band projection;

WP(7) There is no band preserving automorphism of G¢ other than the iden-

WP(
WP(
WP(

tity.

3.1. BAND PRESERVING OPERATORS ON COMPLEX VECTOR LATTICES

Consider some properties of band preserving operators in a complex vector lattice.

3.1.1. A vector lattice E is called square-mean closed if for all z,y € E the set
{(cos@)z+(sinf)y : 0 <6 < 27} has a supremum s(z,y) in E. Every Banach lattice
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as well as every relatively uniformly complete vector lattice is square-mean closed.
However, a square-mean closed Archimedean vector lattice need not be relatively
uniformly complete. If F is a square-mean closed f-algebra, then s(z,y)* = x? + y?
for all x,y € E. (It is worth mentioning that in [12, 23] the so-called geometric-mean
closed vector lattices were also considered: this class is defined by the property that
for all z,y € E, the set {(¢/2)x 4+ (1/2t)y : 0 < ¢t < 400} has an infimum g(x,y)
in E. More details on the theme see in [23, Section 3], [12, 28].)

Recall that a complex vector lattice is the complexification E¢ := E@®1E of a real
square-mean closed vector lattice E. Thus, each element z € E¢ in a complex vector
lattice has the absolute value |z| defined by the formula

2] :=s(z,y) (2:=w+iy € Ec).

As usual, the notion of disjointness of elements z := x + iy and 2’ := 2’ + i3/ in F¢
is defined by the formula z L 2’ < |z| A |2/| = 0 and is equivalent to the relation
{z,y} L {«',¥'}. An ideal J in E¢ is defined as the linear subspace which is solid:
|z| < |y| with z € E¢ and y € J implies € J. As in the real case, a band in F¢
can be defined as {z € E¢ : (Vv € V) z L v}, where V is a nonempty subset of E¢.
The ideals and bands of E¢ are precisely the complexifications of ideals and bands
of E (cp. |64, Chapter II, § 11| and [71, Section 91] for more detail).

3.1.2. Consider real vector lattices E and F. The space L(Eg¢, F¢) of C-linear
operators is isomorphic to the complexification of the real space L(FE, F') of R-linear
operators. An operator 7" € L(FEg, F¢) is uniquely representable as T' = T} + 15,
where T1,T; € L(E, F), and an arbitrary operator S € L(E, F') is identified with
the canonical extension S € L(Eg, F¢) of S defined by the formula Sz := Sz + iSy,
z = x +1y. In particular, if £ and F' are considered as real subspaces of E¢ and F¢
then the space L(F, F') can be considered as a real subspace of L(E¢, F¢).

An operator T' = T7 + I3 is positive provided that 77 > 0 and 75 = 0 and
order bounded provided that for every e € E, there is f € F satisfying |Tz| < f
whenever |z| < e. The space of all order bounded linear operators from E¢ into Fg
is the complexification of the space of all order bounded linear operators from F
into F'.

If Bc = J @ J* for some ideal J C F¢ then there is a projection P : Fe — Eg
with kernel J+ and range J. The restriction of P to E is a band projection in E;
in particular, P is a positive operator. More details can be found in [64, Chapter II]
and |71, Section 92].

3.1.3. Suppose that F' is a sublattice of a vector lattice E. As in the real case
[45, 3.3.2], a linear operator T" from F¢ to Eg is band preserving provided that

212 —->Tz17 (z€Fg, 2 €Ee),

where the disjointness relations are understood in F¢.

A linear operator T := T} + i1 from F¢ to Eg¢ is band preserving if and only if
such are the real linear operators 11, Ty : F — E.

<1 Assume that 77 and T are band preserving. If z := x + iy and w := u + v
are disjoint then {z,y} L {u,v}. Therefore, {z,y} L {T1u— Ty, Tiv+Tsru}. Hence,
z L Tw since Tw = (Tyu — Tyw) + i(Thv + Tou).

Conversely, if T is band preserving and * € E and u € F are disjoint then
x L Tu =Tiu+iTyu; hence, x L {Tyu, Tou}. >
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In particular, if E is a vector lattice enjoying the principal projection property
and F' is an order dense ideal of E then a linear operator T = T1 + 15 : Fc — E¢
is band preserving if and only if 77T}z = Tywz (2 € F¢, k = 1,2) for every band
projection m € P(F). An order bounded band preserving operator on Eg is called
an orthomorphism and the set of all orthomorphisms on E¢ is denoted by Orth(Eg).
Clearly, Orth(E¢) is the complexification of Orth(E).

3.1.4. Henceforth B is a complete Boolean algebra.

By the maximum principle (cp. A1.4 and [53, Theorem 4.3.9]), there is an element
¢ € V® for which [€ is the complexes] = 1. Since the equality C = R @ iR is
expressed by a bounded set-theoretic formula, from the restricted transfer principle
A2.2 (cp. |53, 4.2.9(2)]) we obtain [C* = R" @ ¢"R"] = 1. Moreover, R" is assumed
to be a dense subfield of Z; therefore, we can also assume that C” is a dense subfield
of €. If 1 is the unity of C then 1" is the unity of € inside V). We write i instead
of 7" and 1 instead of 1”.

The descent of € is the set €| = {x € V® : [z € €] = 1} endowed with
the structure of a commutative complex ordered ring by descending the operations
(cp. A2.4 and [53, Section 5.3]). Moreover, €| = Z| @ i%|; consequently, by the
Gordon Theorem (cp. A3.6 and [53, Theorem 10.3.4]), €| is a universally complete
complex vector lattice and a complex f-algebra simultaneously; moreover, 1 := 1"
is the order and ring unity in % |. The space €| depends only on B and C; therefore,
we will also use the notation B(C) := %|.

3.1.5. Let Endy(Ge) be the set of all band preserving linear operators in Gg,
where G := Z|. It is clear that Endy(G¢) is a complex vector space. Moreover,
Endy(G¢) becomes a faithful unitary module over G if the operator g7 is defined by
the formula g7 : x — g-Tx (x € Gg¢). This follows from the fact that multiplication
by an element of G¢ is a band preserving operator and the composition of band
preserving operators is a band preserving operator.

Denote by Enden (%) the element of V® that depicts the space of all C"-linear
mappings from ¢ into 4. Then Endga (%) is a vector space over C* inside V(®) and
Enden(%)] is a faithful unitary module over Ge.

3.1.6. As in 2.1.2, we can prove that a linear operator in a universally complete
vector lattice G¢ is band preserving if and only if it is extensional. Since extensional
mappings admit ascent, each operator T € Endy(G¢) has the ascent 7 := T
which is the unique function from ¢ into € (inside V(®)) satisfying the condition
[7(x) = Tx] = 1 for all = € G¢ (cp. [53, Theorem 5.5.6]).

The modules Endy(G¢) and Endea(%)| are put into isomorphy by sending
a band preserving operator to its ascent.

< Repeat the arguments of 2.1.2 with 3.1.3 and 3.1.4 taken into account. >

3.2. AUTOMORPHISMS AND DERIVATIONS ON THE COMPLEXES

We start with introducing notions and notation needed for the current and next
subsections.

3.2.1. Define a complex f-algebra to be the complexification A¢ of a real square-
mean closed f-algebra A (cp. Definition 3.1.1). The multiplication in A extends
naturally to A¢ by the formula

(z +iy) (" +1y) = (22" — yy') + iy’ + 2'y),
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and so Ag becomes a commutative complex algebra. Moreover, |z125] = |z1]|22]
(21,22 € Ag). In this situation Ag is called a complex f-algebra (cp. [17, 71]).
A complex f-algebra A¢ is semiprime whenever = 1 y is equivalent to xy = 0
for all z,y € Ac.

If G is a universally complete vector lattice with a fixed order unity 1 € G then
there is a unique multiplication in G which makes GG into an f-algebra and 1 into
the multiplicative unity. Thus, G¢ is an example of a complex f-algebra. We will
always keep this circumstance in mind while considering a universally complete
vector lattice an f-algebra.

3.2.2. Given an algebra A and a subalgebra Ay of A, we call a linear operator
D : Ay — A a derivation provided that

D(uv) = D(u)v +uD(v) (u,v € Ayp).

The kernel of a derivation is a subalgebra. A nonzero derivation is called nontrivial.

An endomorphism of an algebra is a linear multiplicative operator in it. A bijec-
tive endomorphism is an automorphism. The identical automorphism is commonly
referred to as the trivial automorphism.

If the above definitions of an automorphism and a derivation relate to an algebra
over a field P then we also speak of P-automorphisms and [P-derivations.

For completeness of exposition, we give some properties of the complexes which
we need below. In the next section we will give the Boolean valued interpretation of
these properties. As above, € is the complexes inside V(®). Recall that € includes
the subfield C" inside V(®). The following was obtained in [49)]:

3.2.3. Theorem. Inside V&), the field C" is algebraically closed in €. In partic-
ular, if V® = C* # € then V®) |= “¥ is a transcendental extension of C*.”

Thus, under the canonical embedding of the complexes into the Boolean valued
model, either C* = ¥ or the field of complexes is a transcendental extension of some
subfield of €. The same is true for the reals. To analyze this situation, we need the
notion of an algebraic or transcendence basis of a field over some subfield.

Let P be a subfield of C such that C is a transcendental extension of P. By
the Steinitz Theorem [24, Chapter 5, §5, Theorem 1], there is a transcendence
basis & C C. This means that the set & is algebraically independent over P and C is
an algebraic extension of the field P(&’) obtained by addition of the elements of &
to P. The field P(&) is a pure extension of P.

3.2.4. Let C be a transcendental extension of a field P. Then there is a nontrivial
P-automorphism of C.

< Let & be a transcendence basis for the extension C over P. Since C is an al-
gebraically closed extension of P(&), every P-automorphism ¢ of the field P(&)
extends to a P-automorphism & of the field C (cp. |24, Chapter 5, §4, the Corollary
to Theorem 1]). It is clear that if ¢ is nontrivial then so is ®.

To construct a nontrivial P-automorphism in P(&’), we firstly consider the case
when & contains only one element e; i.e., when C is an algebraic extension of a simple
transcendental extension P(e). Take a,b,¢,d € P such that ad — bc # 0. Then ¢ =
(ae+b)/(ce+d) is a generator of the field P(e) different from e. The field P(e) = P(¢’)
is isomorphic to the field of rational fractions in one variable t; consequently, the
linear-fractional substitution ¢ — (at + b)/(ct + d) defines a P-automorphism ¢ of
the field P(e) which takes e into €’ (cp. [66, Section 39]).
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Assume now that & contains at least two different elements e; and es and take
an arbitrary bijective mapping ¢o : & — & for which ¢g(e1) = e3. Again, using the
circumstance that C is an algebraically closed extension of P(&’), we can construct
a P-automorphism ¢ of C such that ¢g(e) = ¢(e) for all e € & (cp. |24, Chapter 5,
Section 6, Proposition 1]). Clearly, ¢ is nontrivial. >

3.2.5. Let C be a transcendental extension of a field P. Then there is a nontrivial
P-derivation on C.

<1 We again use a transcendence basis & for the extension C over P. It is well
known that every derivation of P extends onto a purely transcendental extension;
moreover, this extension is defined uniquely by prescribing arbitrary values at the
elements of a transcendence basis (cp. [24, Chapter V, Section 9, Proposition 4]).
Thus, for every mapping d : & — C, there is a unique derivation D : P(&) — C
such that D(e) = d(e) for all e € & and D(z) = 0 for x € P. Now, C is a separable
algebraic extension of P(&); consequently, D admits a unique extension to some
derivation D : C — C (cp. [24, Chapter V, Section 9, Proposition 5]). It is obvious
that the freedom in the choice of d guarantees that D is nontrivial. >

3.2.6. Using the same arguments as above, we can show that some analogs of 3.2.3
and 3.2.5 are valid for the reals. More precisely, the following is valid:
(1) [R” is algebraically closed in Z | = 1;
(2) If VB = R # Z, then V®) |= “ Z is a transcendental extension of R";”
(3) If R is a transcendental extension of a field P then there is a nontrivial
P-derivation on R.
However, 3.2.4 is not valid for the reals: there is no nontrivial automorphism on R.
This is connected with the fact that R is not an algebraically closed field.

3.2.7. Theorem. Let C be an extension of an algebraically closed subfield P.
Then the following are equivalent:
() P=C;
(2) Every P-linear function in C is order bounded;
(3) There are no nontrivial P-derivations on C;
(4) Each P-linear endomorphism of C is the zero or identity function;
(5) There is no P-linear automorphism of C other than the identity.

< The equivalence (1) < (2) is checked by using a Hamel basis of the vector
space C over P. The remaining equivalences follow on replacing a Hamel basis with
a transcendence basis from 3.2.4 and 3.2.5 (for details, cp. [49]). >

3.3. AUTOMORPHISMS AND DERIVATIONS ON COMPLEX f-ALGEBRAS

Consider the question of existence of nontrivial automorphisms and derivations on
a universally complete complex f-algebra. In this section G is a universally complete
vector lattice with a fixed multiplicative structure, F is a subring and a sublattice
in GG, while G¢ :== G @ 1G and Eg .= E®iF.

3.3.1. Let D € L(F¢,G¢) and D = Dy + iDy. The operator D is a complex
derivation if and only if Dy and D are real derivations from F into G.

<0 We only have to insert D := D; +iDs in the equality D(uv) = D(u)v+uD(v),
take u:= 2 € F and v := y € E, and then equate the real and imaginary parts of
the resulting relation. >
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3.3.2. If B+ = @ then each derivation from E¢ into G¢ is a band preserving
operator.

< By 3.1.3 and 3.3.1, we only have to establish that every real derivation is
a band preserving operator. Let D : E — G be a real derivation. Take disjoint
x,y € E. Since the relation x 1 y in an f-algebra implies xy = 0, we have 0 =
D(zy) = D(z)y +xD(y). But the elements D(z)y and zD(y) are disjoint as well by
the definition of an f-algebra; therefore, D(x)y = 0 and xD(y) = 0. Hence, since the
f-algebra F is faithful, we obtain D(x) L y and = L D(y). Now, consider disjoint
r € E and g € G. By condition, the order ideal I generated by {x}+ U {z} is order
dense in G; therefore, without loss of generality we may assume that g € I. At the
same time, |g| <y for some y € F,; consequently, D(z) L g by the above. >

3.3.3. Let (%) be the set of all derivations on the f-algebra €| and let
AN (€']) be the set of all band preserving automorphisms of € |. Let Z¢n (%) and
Mcn(€) be the elements of V& that depict the sets of all C*-derivations and all
C"-automorphisms in €. Clearly, Z(%|) is a module over €| and [ Z¢c~ (%) is a com-
plex vector space] = 1.

The descent and ascent produce isomorphisms between the modules Pen(€)|
and 9(%€|) as well as bijections between Mcr(€)| and Mn(E ).

< The proof follows from 3.1.6. We only have to note that 7' € Endy(%|)
is a derivation (automorphism) if and only if [7 := T7 is a derivation (auto-
morphism) | = 1. >

3.3.4. An order bounded derivation and an order bounded band preserving au-
tomorphism of a universally complete f-ring G¢ are trivial.

< We may assume that G¢ = €|. If T is a derivation (a band preserving auto-
morphism) of the f-ring G¢ then [7 := T'7 is a C"-derivation (C"-automorphism)
of €] = 1. Moreover, T is order bounded if and only if [7 is order bounded
in ] = 1. However, every order bounded C"-derivation on the field € is zero
and every order bounded C"-automorphism is the identity mapping. In the first case
we have T'= 0 and in the second, "= 1. >

3.3.5. If V®) |= C" # € then there exist a nontrivial derivation and a nontriv-
ial band preserving automorphism on the universally complete complex f-algebra
B(C)=%].

< It follows from the condition C" # ¥ that ¥ is a transcendental extension
of C" inside V® (cp. 3.2.3). By 3.2.4 and 3.2.5, there exist a nontrivial C*-derivation
0 : ¢ — € and a nontrivial C"-automorphism o : ¢ — €. If D := 46| and A := «]
then, according to 3.3.3, D is a nontrivial derivation and A is a nontrivial band
preserving automorphism of the f-algebra €. >

3.3.6. Theorem. For an arbitrary complete Boolean algebra B the following are

equivalent:

(1) B is o-distributive;

(2) V® =@ =C";

(3) All band preserving linear operators on the universally complete vector
lattice B(C) = €| are order bounded;

(4) There are no nonzero derivations on the complex f-algebra B(C) = ¥ |;

(5) Each band preserving endomorphism of the complex f-algebra B(C) = €|
is a band projection;
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(6) In the complex f-algebra B(C) = €| there are no nontrivial band pre-
serving automorphisms.

< (1) < (2): Asis known (cp. Section 2.3), a Boolean algebra B is o-distributive
if and only if V® = R* = Z. Hence, using the restricted transfer principle A2.2 ([53,
4.2.9(2)]), we conclude that V& = ¢ = Z @ iZ% = R* @ iR" = C". The converse is
proved similarly.

(2) — (3): If V® |= C" = € then, inside V(&) the set Endea (%) consists of the
functions 7 : ¥ — € of the form 7(2) = cz, where ¢ € €. But then the operator
T:=171] from ¢ | into €| has the form T'(u) = gu for some g € € |.

(3) — (2): It follows from (3) that all band preserving linear operators are or—
der bounded in the universally complete vector lattice % |. Thus, V® ): R =
(cp. 2.1.7(2)); and so V® |= ¢ = C".

(3) — (4): This follows from 3.3.2 and 3.3.4.

(3) — (5): A band preserving endomorphism 7' : ¢| — % | admits the repre-
sentation 1" = 17 + 15, where T7 and T, are band preserving linear operators in
the universally complete vector lattice Z| (cp. 3.1.3). By (3), T} and T3 are order
bounded; consequently, Tz = ¢z (x € #|) for some constants c1,cy € Z]. Hence,
Tz =cz(z € €|), where ¢ := ¢;+icy. Multiplicativity of T implies ¢ = ¢; therefore,
the equalities ¢ —c3 = ¢; and 2¢;cy = ¢y are valid. If 7 := [co] is the projection in Z|
onto the band {cy }++ then from the second equality we derive 7c; = (1/2)m(1), while
the first equality implies —m(c3) = (1/4)m(1). The last is possible only for 7 = 0;
hence, ¢, = 0 and 0 < ¢} = ¢;. But we also have 0 < (1 —¢;)? = 1 —¢;; consequently,
c¢1 < 1. Now, we see that the operator x — Tix = c¢yx is a band projection in %]
and, in view of T, = 0, its canonical extension to | coincides with T'.

(5) — (6): This is obvious.

The implications (4) — (2) and (6) — (2) follow from 3.3.5.

(4) — (2): If the equality ¥ = C" is violated inside V® then b := [¢ = C"] < 1.
But then b* = [¢ # C"] # 0. The inequality € # C" is valid in the Boolean valued
model V(B0 over the Boolean algebra B, := [0,b*]. By 3.3.5, there is a nonzero
derivation D on the band 0*%|. The unique extension D & 0 of the operator D
coinciding with zero on the band b% | is a nonzero derivation on % |, too.

(6) — (2): Similarly, using 3.3.5, for the same b € B we can find a nontrivial
automorphism A* of the band b*% |. If A is the identity mapping in the band 0% |
then A* @ A is a nontrivial automorphism of €'|. >

3.3.7. Corollary. For a universally complete real vector lattice G with a fixed
structure of an f-algebra, the following are equivalent:
(1) B :=P(G) is a o-distributive Boolean algebra;
(2) There are no nontrivial derivations on the complex f-algebra Gg;

(3) There are no nontrivial band preserving automorphisms of the complex
f-algebra G¢.

PART 4. VARIATIONS ON THE THEME

In this part we consider briefly the band preserving phenomenon in some natural
environments (the endomorphisms of lattice ordered modules, bilinear operators on
vector lattices, and derivations in AWW*-algebras) and state some problems that may
be viewed as versions of the Wickstead problem.
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4.1. THE WICKSTEAD PROBLEM IN LATTICE ORDERED MODULES

In this section we state a kind of the Wickstead problem for lattice ordered
modules.

4.1.1. Let K be a lattice ordered ring, and let X be a lattice ordered module
over K. The Wickstead problem for lattice ordered modules can be stated as follows:

WP(A): When are all band preserving K-linear endomorphisms of a lattice or-
dered K-module X order bounded?

Little is known about this problem. Boolean valued analysis provides a transfer
principle which might send WP to WP(A). Below we describe the class of lattice
ordered modules for which this transfer works perfectly.

4.1.2. A subset S of K is dense provided that St = {0}; i.e., the equality
k-S = {0} implies k = 0 for all k € K. A ring K is rationally complete whenever,
to each dense ideal J C K and each group homomorphism A : J — K such that
h(kz) = kh(z) for all k € K and = € J, there is an element r in K satisfying
h(z) = rz forall z € J. A ring K is rationally complete if and only if K is selfinjective
(cp. [53, Theorem 8.2.7 (3)]).

4.1.3. If % is an ordered field inside V(®) then ¢ | is a rationally complete
semiprime f-ring, and there is an isomorphism y of B onto the Boolean algebra
B(#|) of the annihilator ideals (coinciding in the case under consideration with
the Boolean algebra of all bands) of J#"| such that

b<[x=0] < xex() (x€K, beB)

(cp. [53, Theorem 8.3.1]). Conversely, assume that K is a rationally complete
semiprime f-ring and B stands for the Boolean algebra B(K) of all annihilator
ideals (bands) of K. Then there is an element .# € V(®) | called the Boolean valued
representation of K, such that [ # is an ordered field ] = 1 and the lattice ordered
rings K and .#°| are isomorphic (cp. [53, Theorem 8.3.2]).

4.1.4. A K-module X is separated provided that for every dense ideal J C K the
identity Jz = {0} implies x = 0. Recall that a K-module X is injective whenever,
given a K-module Y, a K-submodule Yy C Y, and a K-homomorphism hq : Yy — X,
there exists a K-homomorphism h : Y — X extending hg. The Baer criterion says
that a K-module X is injective if and only if for each ideal J C K and each
K-homomorphism h : J — X there exists © € X with h(a) = za for all a € J [54].

4.1.5. Let 2 be a vector lattice over an ordered field J# inside V® and let

X : B — B(A]) be a Boolean isomorphism from 4.1.3. Then £ | is a separated
unital injective lattice ordered module over #| satisfying

b<[r=0] < x(b)r={0} (reZ|, beB).

Conversely, let K be a rationally complete semiprime f-ring, B := B(K), and let
2 be the Boolean valued representation of K. Assume that X is a unital separated
injective lattice ordered K-module. Then there exists some 2 € V® such that
[ 2 is a vector lattice over the ordered field £ | = 1 and there are algebraic and
order isomorphisms j: K — J# | and »: X — Z| such that

1az) = g(a)(z) (a€ K, z € X)
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(cp. |53, Theorems 8.3.12 and 8.3.13|). Thus, the Boolean transfer principle is appli-
cable to unital separated injective lattice ordered modules over rationally complete
semiprime f-rings. Consider an example.

4.1.6. Let B be a complete Boolean algebra and let B be a complete subalgebra
of B. We say that B is B-o-distributive if for every sequence (b,)nen in B we have

\V A e, =1,

eeBN neN

where £(n)b, := (e(n)Aby,) V (e(n)*Ab}) and b* is the complement of b € B. Clearly,
the {0,1}-o-distributivity of B means that B is o-distributive (cp. 1.3.1(3)).

There exist % € V&) such that [ is a complete Boolean algebra] = 1 and %]
is a complete Boolean algebra isomorphic to B (cp. [53, Theorem 4.7.11]). Moreover,
B is B-o-distributive if and only if 4 is o-distributive inside V(). We now interpret
Theorem 1.3.7 inside V(®) to obtain:

4.1.7. Theorem. Let X be a universally complete vector lattice with a fixed
order unity 1 and let K be an order closed sublattice containing 1. Put B := €(X) :=
¢(1lx) and B := €(K) := €(1k). Then K is a rationally complete f-algebra, X is
an injective lattice ordered K-module, and the following are equivalent:

(1) B is B-o-distributive;

(2) Every element x € Xy is locally K-constant, i.e., x = supgcz agmel for
some family (ag)ecz of elements of K and a family (7¢)ecz of pairwise disjoint band
projections in X;

(3) Every band preserving K-linear endomorphism of X is order bounded.

4.2. THE WICKSTEAD PROBLEM FOR BILINEAR OPERATORS

In this section we present the main results of [51].

4.2.1. Let E be a vector lattice. A bilinear operator b: E x F — FE is separately
band preserving provided that the mappings b(-,e) : x +— b(x,e) and b(e,-) : z —
ble,x) (x € E) are band preserving for all e € F or, which is the same, provided
that b(L x F) C L and b(E x L) C L for every band L in E.

4.2.2. Assume that E is a vector lattice and b : Ex EE — E is a bilinear operator.
Then the following are equivalent:
(1) b is separately band preserving;
(2) b(z,y) € {z}tt N {y}*t for all z,y € E;
(3) b(x,y) L z for all z € E provided that x L z ory L z;
If E has the principal projection property, then (1)—(3) are equivalent to:
(4) wb(x,y) = b(mx, my) for every m € P(E) and all x,y € F;
(5) mb(x,y) = b(wz,y) = b(z, my) for every m € P(F) and all z,y € E.
<1 We omit the routine arguments which are similar to [10, Theorem 8.2|. >

4.2.3. Let E and F be vector lattices. A bilinear operator b : £ x £ — F
is orthosymmetric provided that || A |y| = 0 implies b(z,y) = 0 for arbitrary
x,y € E (cp. [29]). The difference of two positive orthosymmetric bilinear operators
is orthoregular (cp. |27, 48]). Recall also that a bilinear operator b is symmetric or
antisymmetric provided that b(z,y) = b(y, z) or b(x,y) = —b(y,x) for all z,y € E.

The following important property of orthosymmetric bilinear operators was es-
tablished in [29, Corollary 2|:
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Theorem. If £ and F' are vector lattices then every orthosymmetric positive
bilinear operator from E x E into F' is symmetric.

4.2.4. It is evident from 4.2.2 that a separately band preserving bilinear operator
is orthosymmetric. Hence, all orthoregular separately band preserving operators are
symmetric by 4.2.3. At the same time an order bounded separately band preserving
bilinear operator b is of the form b = 7® with 7 an orthomorphism on E® and ®
is the canonical bimorphism from E x E to E® (cp. [27, Section 2| and [30]). This
brings up the following question:

WP(B): Under what conditions are all separately band preserving bilinear oper-
ators in a vector lattice symmetric? Order bounded?

In the case of a universally complete vector lattice the answer is similar to the
linear case and is presented below in 4.2.5. The general case was not yet examined.

4.2.5. Theorem. Let G be a universally complete vector lattice and let B :=
B(G) denote the complete Boolean algebra of all bands in G. Then the following
are equivalent:

(1) B is o-distributive;

(2) There is no nonzero separately band preserving antisymmetric bilinear
operator in G;

(3) All separately band preserving bilinear operators in G are symmetric;

(4) All separately band preserving bilinear operators in G are order bounded.

< The only nontrivial implication is (2) — (1).

We may assume that G = Z|. Suppose that B is not o-distributive. Then
R* # % by WP(1) < WP(2) (cp. Section 2.3) and a separately band preserv-
ing antisymmetric bilinear operator can be constructed on using the bilinear ver-
sion of 2.1.6 (1). Indeed, inside V) a Hamel bases & for # over R" contains at
least two different elements e; # ey. Define a function Gy : & x & — Z so that
1 = Boler,ea) = —Po(ea, 1), and [(e],€,) = 0 for all other pairs (e},€}) € & X &
(in particular, 0 = fGy(eq, e1) = Go(ea, 62)). Then (3 can be extended to an R*-bilinear
function 8 : Z x #Z — %. The descent b of ( is a separately band preserving bilinear
operator in G by 4.2.6, the bilinear version of 2.1.5. Moreover, b is nonzero and anti-
symmetric, since (3 is nonzero and antisymmetric by construction. This contradiction
proves that R* = % and B is o-distributive. >

4.2.6. Let BLy(G) stand for the set of all separately band preserving bilinear
operators in G = #Z|. Clearly, BLy(G) becomes a faithful unitary module over G
provided that we define ¢gT" as g7 : © — ¢ - Tx for all x € G. Denote by BLgn (%)
the element of V(®) that depicts the space of all R*-bilinear mappings from % x %
into #Z. Then BLgn (%) is a vector space over R" inside V() and BLgr(%)] is
a faithful unitary module over G.

The modules BLy(G) and BLgr ()] are isomorphic by sending each band
preserving bilinear operator to its ascent.

< See 2.1.5. >

4.2.7. There exists a nonatomic universally complete vector lattice in which all
separately band preserving bilinear operators are symmetric and order bounded.

< It follows from 4.2.5 and 1.3.8. >
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4.3. THE NONCOMMUTATIVE WICKSTEAD PROBLEM

The relevant information on the theory of Baer x-algebras and AW *-algebras can
be found in [15, 31, 45].

4.3.1. A Baer x-algebra is a complex involutive algebra A provided that, for each
nonempty M C A, there is a projection, i.e., a hermitian idempotent, p satisfying
M+ = pA where M+ := {y € A: (Vo € M)zy = 0} is the right annihilator
of M. Clearly, this amounts to the condition that each left annihilator has the form
LM = Agq for an appropriate projection q. To each left annihilator L in a Baer
x-algebra there is a unique projection q; € A such that x = zq; for all x € L and
qry = 0 whenever y € L*. The mapping L — g¢;, is an isomorphism between the
poset of left annihilators and the poset of all projections. Thus, the poset P(A) of
all projections in a Baer *-algebra is an order complete lattice. (Clearly, the formula
q < p < q=qp= pq, sometimes pronounced as “p contains ¢,” specifies some order
on the set of projections JB(A).)

An element z in A is central provided that z commutes with every member of A;
i.e., (Vo € A)xz = zx. The center of a Baer x-algebra A is the set Z°(A) comprising
central elements. Clearly, Z(A) is a commutative Baer -subalgebra of A, with
Al € Z(A) for all X € C. A central projection of A is a projection belonging to
Z(A). Put P.(A) :=P(A) N Z(A).

4.3.2. A derivation on a Baer x-algebra A is a linear operator d : A — A
satisfying d(zy) = d(x)y + zd(y) for all z,y € A. A derivation d is inner provided
that d(z) = ax — xa (z € A) for some a € A. Clearly, an inner derivation vanishes
on Z(A) and is Z(A)-linear, i.e., d(ex) = ed(z) for all z € A and e € Z(A).

Consider a derivation d : A — A on a Baer x-algebra A. If p € A is a central
projection then d(p) = d(p?) = 2pd(p). Multiplying this identity by p we have
pd(p) = 2pd(p) so that d(p) = pd(p) = 0. Consequently, every derivation vanishes
on the linear span of B.(A), the set of all central projections. In particular, d(ex) =
ed(z) whenever x € A and e is a linear combination of central projections. Even if
the linear span of central projections is dense in a sense in Z'(A), the derivation d
may fail to be Z(A)-linear.

This brings up the natural question: Under what conditions is every derivation
Z-linear on a Baer x-algebra A provided that Z is a Baer x-subalgebra of % (A)?

4.3.3. An AW*-algebra is a C*-algebra with unity 1 which is also a Baer
x-algebra. More explicitly, an AW *-algebra is a C*-algebra whose every right an-
nihilator has the form pA, with p a projection. Clearly, Z°(A) is a commutative
AW*-subalgebra of A. If Z(A) = {A\L : A € C} then the AW*-algebra A is
an AW*-factor.

A C*-algebra A is an AW*-algebra if and only if the following hold:
(1) Each orthogonal family in B(A) has a supremum;
(2) Each maximal commutative x-subalgebra of Ay C A is a Dedekind com-
plete f-algebra (or, equivalently, coincides with the least norm closed x-subalgebra
containing all projections of Ayp).

4.3.4. Given an AW*-algebra A, define the two sets C'(A) and S(A) of measur-
able and locally measurable operators, respectively. Both are Baer x-algebras, cp.
[31]. Suppose that A is an AW*-subalgebra in Z(A), and @ is a A valued trace on
A, . Then we may define another Baer *-algebra, L(A, ®), of ®-measurable opera-
tors. The center Z(A) is a vector lattice with a strong unity, while the centers of
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C(A), S(A), and L(A, ®) coincide with the universal completion of Z'(A). If d is
a derivation on C(A), S(A), or L(A, ®) then d(pz) = pd(z) (p € P.(A)) so that d
can be considered as band preserving in a sense (cp. 1.1.(4) and 3.1.3).

WP(C): When are all derivations on C(A), S(A), or L(A, ®) inner?

4.3.5. The classification of AW *-algebras into types is determined from the struc-
ture of their lattices of projections PB(A) |45, 63]. We recall only the definition of
type I AW*-algebra. A projection m € A is abelian if T Am is a commutative alge-
bra. An algebra A has type I provided that each nonzero projection in A contains
a nonzero abelian projection.

A C*-algebra A is B-embeddable provided that there is a type I AW *-algebra N
and a sx-monomorphism 2 : A — N such that B = B.(N) and 2(A) = +(A)", where
1(A)" is the bicommutant of 2(A) in N. Note that in this event A is an AW *-algebra
and B is a complete subalgebra of JB.(A).

4.3.6. Theorem. Let A be a type I AW *-algebra, let A be an AW*-subalgebra
of Z(A), and let ® be a A valued faithful normal semifinite trace on A. If the
complete Boolean algebra B := B(A) is o-distributive and A is B-embeddable, then
every derivation on L(A, ®) is inner.

< We briefly sketch the proof. Let o/ € V() be the Boolean valued represen-
tation of A. Then </ is a von Neumann algebra inside V(®. Since the Boolean
valued interpretation preserves classification into types, o7 is of type 1. Let ¢ stand
for the Boolean valued representation of ®. Then ¢ is a ¢ valued faithful normal
semifinite trace on &/ and the descent of L(<7,¢) is *-A-isomorphic to L(A, ®),
cp. |44]. Suppose that d is a derivation on L(A, ®) and ¢ is the Boolean valued rep-
resentation of d. Then § is a € valued C’-linear derivation on L(<7, ¢). Since B is
o-distributive, € = C" inside V(® and § is €-linear. But it is well known that any
derivation on a type I von Neumann algebra is inner, cp. [9]. Therefore, d is also
mner. >

PART 5. COMMENTS

5.1. COMMENTS ON PART 1

5.1.1. The theory of orthomorphisms stems from Nakano [59]. Orthomorphisms have been stud-
ied by many authors under various names (cp. [10] ): dilatators (Nakano [59]), essentially positive
operators (Birkhoft [20]), polar preserving endomorphisms (Conrad and Diem [32]), multiplication
operators (Buck [25] and Wickstead [67]), and stabilisateurs (Meyer [58]). The main stages of this
development as well as the various aspects of the theory of orthomorphisms are reflected in the
books by Bigard, Keimel, and Wolfenstein [19], Aliprantis and Burkinshaw [10], Zaanen [71, Chap-
ter 20] etc.; also see the survey papers by Bukhvalov [26, Section 2.2] and Gutman [39, Chapter
6].

5.1.2. Order continuity of an extended orthomorphism (cp. 1.1.4) was established independently
by Bigard and Keimel [18] and Conrad and Diem [32] using functional representation. A direct
proof was found by Luxemburg and Schep [56]. Commutativity of every Archimedean f-algebra
was proved by Birkhoff and Pierce [21]; this paper also introduced the concept of f-algebra. The
lattice ordered algebras were surveyed by Boulabiar, Buskes, and Triki [22, 23]. The fact that
Orth(D, F) is a vector lattice under the pointwise algebraic and latticial operations was also ob-
tained in [18] and [32]. Extensive is the bibliography on the theory of orthomorphisms; and so we
indicate a portion of it: [2, 7, 16, 18, 33, 40, 41, 42, 43, 55, 56, 57, 61, 62, 67, 68, 70).

5.1.3. The terms “local linear independence” and “local Hamel basis” (coined in [57]) appeared
in [2] as d-independence and d-basis. Using these concepts Abramovich and Kitover [4] gave com-
plete description for a band preserving projection P on a Dedekind complete vector lattice E.
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The order bounded part 7P of P (cp. 1.1.2) is a band projection, whereas the unbounded part
Py := P|g,, with Ey := 71 (E), is uniquely determined from the following conditions: (1) every
principal band in Ej is laterally complete; (2) P; *(0) is componentwise closed; i.e., (u) C P, *(0)
for all 0 < u € Py '(0); (3) LN Py *(0) is laterally complete for each principal band L in Ey. Cp. [5]
for applications of this concept.

5.1.4. The notions of d-independence and d-basis can be introduced in an arbitrary vector
lattice (cp. [6]). A collection (z)~er of elements in a vector lattice E is d-independent provided
that for each band B in E, each finite subset {71,...,7,} of ', and each family of nonzero scalars
c1,...,Cy the condition Z?zl cixy, L B implies that z,, L B for i = 1,...,n. A d-independent
system (z)~er is a d-basis provided that for each « € E there is a full system (B )aeca of pairwise
disjoint bands in E and a system of elements (y4)aeca in E such that each y,, is a linear combination
of elements in (2),er and (z — yo) L Bq for all o € A.

5.1.5. Theorem 1.3.7 can be considered as an exhaustive answer to the Wickstead problem
about the order boundedness of all band preserving operators. However, a new notion of locally
one-dimensional vector lattice crept into the answer. The novelty of this notion led to the conjec-
ture that it coincides with that of discrete (= atomic) vector lattice. In 1981, Abramovich, Veksler,
and Koldunov [3, Theorem 2.1] gave a proof for existence of an order unbounded band preserving
operator in every nondiscrete universally complete vector lattice, thus seemingly corroborating
the conjecture that a locally one-dimensional vector lattice is discrete (also cp. [1, Section 5]).
However, the proof was erroneous. Later in 1985, McPolin and Wickstead [57, Section 3] gave
an example of a nondiscrete locally one-dimensional vector lattice, confuting the conjecture. How-
ever, there was an error in the example. Finally, Wickstead [7] stated the conjecture as an open
question in 1993.

5.1.6. In the case of a universally complete vector lattice, a band preserving order unbounded
operator can be constructed on using V(®). Moreover, inside an appropriate V(&) this problem
reduces to existence of a discontinuous solution ¢ : Z — % to the Cauchy functional equation
p(s+1t) = o(s) + p(t) (s,t € #) with an additional property p(As) = Ap(s) (A € R*, s € Z).
Let E be a universally complete vector lattice such that V(&) = R* # % (cp. Section 2.3) with
B := B(E). Then Z is an infinite-dimensional vector space over R" inside V(®). By the Kuratowski—
Zorn Lemma, there exist an R*-linear but not Z-linear function ¢ : Z — % inside V(®). The oper-
ator g := | : Z| — Z| is linear, band preserving, but order unbounded. If ¢ is an isomorphism
of F onto #| then ® := 17! o ®; 0+ is an order unbounded band preserving operator in E.

5.2. COMMENTS ON PART 2

We see that the claim of Theorem WP reduces to simple properties of reals and cardinals. How-
ever, even the reader who mastered the technique (of ascending and descending) of Boolean valued
analysis might find the above demonstration bulky as compared with the standard proof in the
articles by Abramovich, Veksler, and Koldunov [3], McPolin and Wickstead [57], and Gutman [40].
However, the aim of the exposition in Part 2 was not to simplify the available proof but rather
demonstrate that the Boolean approach to the problem reveals many new interconnections. A few
clarifications are now in order.

5.2.1. Since the space of R”-linear functions in % admits a complete description that uses
a Hamel basis (cp. 2.1.7(2)); therefore, Endy(#|) may be described completely by means of
a (strict) local Hamel basis. However, this approach will evoke some problems of unicity.

5.2.2. The dimension §(2) of the vector space Z over R" is a cardinal inside V(®). The object
§(Z#) carries important information on the interconnection of the Boolean algebra B and the reals R.
By the properties of Boolean valued ordinals, we obtain the representation 6(%) = mixg be g, where
(be) is a partition of unity in B and (c) is a family of standard cardinals. This representation is an
instance of a “decomposition series” of B such that the principal ideals [0, b¢] are “a¢-homogeneous”
in a sense.

5.2.3. If we replace the class of band preserving linear operators with the class of band pre-
serving additive operators then the equivalence WP(1) < WP(4) fails to hold in Theorem WP.
Moreover, in each nonzero universally complete vector lattice there exist order unbounded band
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preserving additive operators. This reflects the fact that there is no Boolean valued model satisfying
VB =% = Q.

5.2.4. The property of A in 2.3.4 is usually referred to as absolute definability. Gordon [38] called
a continuous function absolutely definable if it possesses an analogous property. For instance, the
functions e®, logx, sinx, and cosx are absolutely definable. In particular, these functions reside
in every Boolean valued universe, presenting the mappings from # to & that are continuations of
the corresponding functions exp”(+), log”(+), sin"(-), and cos"(:) from R" into R*. Practically all
functions admitting a constructive definition are absolutely definable.

5.2.5. Consider a band preserving operator S : Z| — %/ satisfying the Cauchy exponential
equation: S(x+y) = S(x)S(y) for all z,y € #|. If, moreover, S enjoys the condition S(\z) = S(z)*
for all 0 < A € R and = € Z; then we call S an exponential operator. Say that S is order bounded
if S takes order bounded sets into order bounded sets. If o is the ascent of S then o is exponential
inside V(B), Therefore, in the class of functions bounded above on some nondegenerate interval we
see that 0 = 0 or o(x) = e for all x € # and some ¢ € #Z. This implies that WP(1)-WP(7) of
Theorem WP amount to the following:

WP(8) Each band preserving exponential operator S on B(R) := %] is order bounded (and
thus, S may be presented as S(x) = e* for all x € #| and some ¢ € Z| or S is identically zero).

5.2.6. An analogous situation takes place if S satisfies the Cauchy logarithmic equation S(zy) =
S(z)+S(y) for all 0 < x,y € #Z| and enjoys the condition S(z*) = AS(z) for all A € R and = >> 0.
(The record 0 < z means that 0 < z and 2+t = Z|.) We call an S of this sort a logarithmic
operator. We may now formulate another equivalent claim as follows:

WP(9) Every band preserving logarithmic operator S on {x € B(R) := #Z] : © > 0} is
order bounded (and, consequently, S may presented as S(x) = clogx for all 0 <« = € Z#]| with
some ¢ € #|).

5.2.7. Instead of using continued fraction expansions in Section 2.3 we may involve binary
expansions. In this event we have to construct a bijection of &?(w) onto some set of reals and apply
A3.9(3) in place of A3.9(2).

5.3. COMMENTS ON PART 3

Part 3 may be considered as an evidence of the productivity of combining algebraic and logical
methods in operator theory.

5.3.1. Using the same arguments as in 3.3.5 and 3.3.6, from 3.2.6, we can infer that if R" # #
then there are nontrivial derivations on the real f-algebra Z|. Thus, in the class of universally
complete real vector lattices with a fixed structure of an f-algebra we have WP (1) — WP(5); i.e.,
the absence of nontrivial derivations is equivalent to the o-distributivity of the base of the algebra
under consideration. At the same time there are no nontrivial band preserving automorphisms of
the f-algebra Z|, regardless of the properties of its base.

5.3.2. It is well known that if @) is a compact space then there are no nontrivial derivations on
the algebra C(Q, C) of complex valued continuous functions on @Q; for example, see [8, Chapter 19,
Theorem 21|. At the same time, we see from 3.3.6 (1), (4) that if @ is an extremally disconnected
compact space and the Boolean algebra of the clopen sets of @) is not o-distributive then there is
a nontrivial derivation on Coo(Q, C).

5.3.3. Let (2, X, 1) be a measure space with the direct sum property (cp. [45, 1.1.7 and 1.1.8]).
The Boolean algebra B := B(f2, X, 1) of measurable sets modulo negligible sets is o-distributive if
and only if B is atomic (and thus isomorphic to the boolean &?(A) of a nonempty set A). Indeed,
suppose that B is not atomic. By choosing a nonzero atomless coset by € B of finite measure,
taking an instance By € by, and replacing (2,3, u) with (Bo, Xo, tt|s,), where 3¢9 = {B N By :
B € ¥}, we may assume that p is finite and B is atomless. Define a strictly positive countably
additive function v : B — R by v(b) = u(B) where b € B is the coset of B € X. Since any
finite atomless measure admits halving, by induction it is easy to construct a sequence of finite

partitions Py, := {b]", b",..., b5} of 1 € B with 1 = b} Vb5, v(bt) = v(b3), and b7 = b5\ F] Vb H,
V(b;’;fll) = V(bg;H), for all m € N and j € {1,2,...,2™}. Since v(b]") — 0 as m — oo for each j,

there is no partition refined from (P, )men- It remains to refer to 1.3.4 (1, 3).
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5.3.4. Let L2(£, %, 1) be the space of all (cosets of) measurable complex valued functions,
and let L (2,3, u) be the space of essentially bounded measurable complex valued functions.
Then the space L (£, X, 1) is isomorphic to some C(Q, C); consequently, there are no nontrivial
derivations on it. If the Boolean algebra B(£2, 3, 1) of measurable sets modulo sets of measure zero
is not atomic (and therefore is not o-distributive, cp. 5.3.3); then, by 3.3.6 (4), there exist nontrivial
derivations on L(92,%, i) (cp. [14, 47, 49]). The same is true about the spaces L*>°(£, ¥, u) and
L°(2, %, i) of real valued measurable functions. Moreover:

5.3.5. A derivation (an automorphism) S on G is essentially nontrivial provided that 7.5 =0
(w8 = 7lg) imply m = 0 for every band projection m € P(G). If (2,3, ) is an atomless measure
space with the direct sum property then (cp. [47]):

(1) There is an essentially nontrivial derivation on L3(Q2, %, n);

(2) There is an essentially nontrivial derivation on L2(€2, 3, u);

(3) The identity operator is the unique automorphism of L% (€2, ¥, p1);

(4) There is an essentially nontrivial band preserving automorphism of L2(Q, %, p).

Also there exists an essentially nontrivial separately band preserving antisymmetric bilinear
operator in L%(2, 3, u), cp. [50].

5.3.6. Two arbitrary transcendence bases for a field over a subfield have the same cardinality
called the transcendence degree (cp. [72, Chapter II, Theorem 25]). Let 7(%) be the transcendence
degree of € over C” inside V(B). The Boolean valued cardinal 7(%) carries some information on
the connection between the Boolean algebra B and the complexes %. Each Boolean valued cardinal
is a mixing of standard cardinals; i.e., the representation 7(%’) = mix¢ beaf holds, where (b¢) is
a partition of unity of B and (ay) is some family of cardinals (cp. A36 (3) and A3.8(1)). Moreover,
for B¢ := [0,b¢] we have V&) = 7(%) = a;. In this connection, it would be interesting to
characterize the complete Boolean algebras B such that 7(%) = o inside V(®) for some cardinal a.

5.3.7. Given & C G, denote by (&) the set of elements of the form e} - ... - e}*, where
e1,...,ex € & and k,ny,...,np € N. A set & C G is locally algebraically independent provided
that (&) is locally linearly independent in the sense of 2.2.2. This notion, presenting the external
interpretation of the internal notion of algebraic independence (or transcendence), seems to turn
out useful in studying the descents of fields [53, Section 8.3] or general regular rings [34].

5.3.8. Consider a band preserving operator S : €] — % satisfying the Cauchy functional
equation S(u +v) = S(u)S(v) for all u,v € €|. If, in addition, S satisfies the condition S(Au) =
S(u)* for arbitrary A € C and u € %'| then we say that S is exponential. Say that S is order bounded
if S takes order bounded sets into order bounded sets. If o is the ascent of S then o is exponential
inside V(®); therefore, in the class of functions bounded from above on a nonzero interval, we have
either 0 = 0 or o(z) = e (z € ¥) for some ¢ € € [8, Chapter 5, Theorem 5|. Hence, we conclude
that conditions WP(1)-WP(7) of Theorem WP are also equivalent to the following: every band
preserving exponential operator in B(C) := €| is order bounded (and consequently has the form
S=0orS(x)=e" €€, for somececE|).

APPENDIX. BOOLEAN VALUED ANALYSIS

A1l. BOOLEAN VALUED UNIVERSES

We start with recalling some auxiliary facts about the construction and treatment of Boolean
valued models.

A1.1. Let B be a complete Boolean algebra. Given an ordinal «, put
VB - {z : zisafunction A (33)(8 <o A dom(z)C W(ﬁB) A im(z) C B)}.

After this recursive definition the Boolean valued universe V(® or, in other words, the class of
B-sets is introduced by
vE = | ] v,

a€On

with On standing for the class of all ordinals.
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In case of the two element Boolean algebra 2 := {0,1} this procedure yields a version of the
classical von Neumann universe V (cp. [53, Theorem 4.2.8]).

Let ¢ be an arbitrary formula of ZFC, Zermelo—Fraenkel set theory with choice. The Boolean
truth value [¢] € B is introduced by induction on the complexity of ¢ by naturally interpreting
the propositional connectives and quantifiers in the Boolean algebra B (for instance, 1 V 2] =
[¢1] V [¢2]) and taking into consideration the way in which a formula is built up from atomic
formulas. The Boolean truth values of the atomic formulas v € y and z =y (with x,y assumed to
be elements of V(B)) are defined by means of the following recursion schema:

[eyl= \/ () Aft=al),

tedom(y)
[x=vy] = \/ (z(t) = [teyl) A \/ (y(t) = [t € =]).
tedom(x) tedom(y)
The sign = symbolizes the implication in B; i.e., (a = b) := (a* V b), where a* is as usual the

complement of a. The universe V(®) with the Boolean truth value of a formula is a model of set
theory in the sense that the following statement is fulfilled:

A1.2. Transfer Principle. For every theorem ¢ of ZFC, we have [¢] = 1 (also in ZFC); i.e.,
o is true inside the Boolean valued universe V().

We enter into the next agreement: If ¢(x) is a formula of ZFC then, on assuming x to be an
element of V(B), the phrase “x satisfies ¢ inside V(B)” or, briefly, “o(x) is true inside V(EB)” means
that [¢(x)] = 1. This is sometimes written as V() |= ().

Given z € V(® and b € B, define the function bz : 2z + bAz(z) (2 € dom(z)). Here we presume
that bo := @ for all b € B.

There is a natural equivalence relation x ~ y « [z = y] = 1 in the class V(). Choosing
a representative of the smallest rank in each equivalence class or, more exactly, using the so-
called “Frege Russell-Scott trick,” we obtain a separated Boolean valued universe V(®) for which
r=yofr=y]=1

It is easily to see that the Boolean truth value of a formula remains unaltered if we replace in it
each element of V(®) by one of its equivalents. In this connection from now on we take V(&) := V(B)
without further specification.

Observe that in V(®) the element bz is defined correctly for 2 € V(®) and b € B, since
[x1 = z2] = 1 implies [bzy = bxs] = 1.

A1.3. Mixing Principle. Let (b¢)ec= be a partition of unity in B, i.e., Supgez be = 1 and
£ # 1 — be Nby, = 0. To each family (x¢)¢c= in V(B) there exists a unique element x in the separated
universe such that [z = x¢] > be for all € € E.

This element x is called the mizing of (z¢)¢cz by (be)eez= and is denoted by mixees bewe.

A1l.4. Maximum Principle. Let ¢(z) be a formula of ZFC. Then (in ZFC) there is a B valued
set xq satistying [(3z)p(z)] = [p(z0)]-

A2. ESCHER RULES

Boolean valued analysis consists primarily in comparison of the instances of a mathematical
object or idea in two Boolean valued models. This is impossible to achieve without some dialog be-
tween the universes V and V(®). In other words, we need a smooth mathematical toolkit for revealing
interplay between the interpretations of one and the same fact in the two models V and V(). The
relevant ascending-and-descending technique rests on the functors of canonical embedding, descent,
and ascent.

A2.1. We start with the canonical embedding of the von Neumann universe V.

Given z € V, we denote by z" the standard name of z in V(®); i.e.. the element defined by the
following recursion schema: @* := @, dom(z") := {y* : y € z}, im(z") := {1}. Observe some
properties of the mapping x — z”" we need in the sequel.
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(1) For an arbitrary formula ¢(y) of ZFC we have (in ZFC) for each z € V

[Gy €2 ew)] =\ l[e(z")],

zZET

[(Vy€a) o] = \le(z")]-

zEX

(2) If 2,y € V then, by transfinite induction, we establish z € y « VB | 20 € ¢,
=y« VB =2/ = 9" In other words, the standard name can be considered as an embedding
of V into V(B Moreover, it is beyond a doubt that the standard name sends V onto V) which
fact is demonstrated by the next proposition:

(3) The following holds: (Vu € V@) (3z € V) VB =y = 27,

A formula is bounded or restricted provided that each bound variable in it is restricted by
a bounded quantifier; i.e., a quantifier ranging over a particular set. The latter means that each
bound variable z is restricted by a quantifier of the form (Vx € y) or (3z € y).

A2.2. Restricted Transfer Principle. Let ¢(z1,...,2,) be a bounded formula of ZFC. Then
(in ZFC) for every collection x1,...,x, €V we have @(x1,...,2,) « VB =z, ... x}).

Henceforth, working in the separated universe V(B) we agree to preserve the symbol z” for the
distinguished element of the class corresponding to x.

Observe for example that the restricted transfer principle yields:

“® is a correspondence from zx into y” <
v(B) E “®" is a correspondence from z" into y"”;

“f:x—>y” PN V(B)':qu:wA_)yma

(moreover, f(a)" = f*(a") for all a € x). Thus, the standard name can be considered as a covariant
functor from the category of sets (or correspondences) inside V to an appropriate subcategory of V(%)
in the separated universe V(B).

A2.3. A set X is finite provided that X coincides with the image of a function on a finite
ordinal. In symbols, this is expressed as fin(X); hence,

fin(X):=(3n)3f)(n €w A fisafunction A dom(f)=n A im(f)=X)

(as usual w := {0,1,2,...}). Obviously, the above formula is not bounded. Nevertheless there is
a simple transformation rule for the class of finite sets under the canonical embedding. Denote by
Phin(X) the class of all finite subsets of X;i.e., P, (X) :={Y € Z(X) : fin(Y)}. For an arbitrary
set X the following holds: V(®) = 2, (X)" = P, (X7).
A2.4. Given an arbitrary element 2 of the (separated) Boolean valued universe V(®), we define
the descent x| of x as x| := {y € V®) : [y € 2] = 1}. We list the simplest properties of descending:
(1) The class x| is a set, i.e., x| € V for all z € VB If [z # @] = 1 then 2| is nonempty.
(2) Let ¢(x) be a formula of ZFC. Then (in ZFC) for every z € V(®) such that [z # @] =1

we have
[(Vaez)p@)]= A lp@)],
Tr€z]
[Gzez)p@)] =\ lp@)].
Tr€z]

Moreover, there exists zg € z| such that [(Fz € 2) p(z)] = [¢(z0)].

(3) Let ® be a correspondence from X into Y in V). Thus, ®, X, and Y are elements
of V(®) and, moreover, [® C X x Y] = 1. There is a unique correspondence ®| from X | into Y|
such that ®|(A|) = ®(A)] for every nonempty subset A of X inside V(®). The correspondence ®|
is called the descent of ®.

(4) The descent of the composite of correspondences inside V(B) is the composite of their
descents: (Po®)| =T|od].

(5) If @ is a correspondence inside V(®) then (1) = (®])~".
(6) Let Idx be the identity mapping inside V(&) of a set X € V(). Then (Idx)] = Idx.
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(7) Suppose that X, Y, f € V() are such that [f : X — Y] = 1, i.e., f is a mapping from X
into Y inside V(®), Then f| is a unique mapping from X | into Y| satisfying [f|(z) = f(z)] = 1
for all € X|. The descent of a mapping is extensional: [x; = x2] < [fl(x1) = fl(x2)] for all
r1,T9 € X| (Cp. A25 (4))
By virtue of (1)—(7), we can consider the descent operation as a functor from the category
of B valued sets and mappings (correspondences) to the category of the standard sets and mappings
(correspondences) (i.e., those in the sense of V).

(8) Given z1,...,z, € V(® denote by (z1,...,z,)® the corresponding ordered n-tuple
inside V(B), Assume that P is an n-ary relation on X inside V®): je., X,P € V& and
[P € X"] = 1. Then there exists an n-ary relation P’ on X | such that (z1,...,2,) € P’ <
[(x1,...,2,)B € P] = 1. Slightly abusing notation, we denote P’ by the occupied symbol P| and
call P| the descent of P.

A2.5. Let z € Vand z € V(B ie. let = be some set composed of B valued sets or, in other
words, 2 € Z(V®). Put @1 := @ and dom(z1) := =, im(z7) := {1} if 2 # @. The clement x]
(of the separated universe V(B i.e., the distinguished representative of the class {y € VE) .
[y = 1] = 1}) is the ascent of x.

(1) Let ¢(y) be a formula of ZFC. Then (in ZFC) for all z € Z22(V(®)) we have

[(Vy € 2N o) = AL,

yex

[Gyean)ew)] =\ leW]

yex

Introducing the ascent of a correspondence ® C X x Y, we have to bear in mind a possible
distinction between the domain of departure, X, and the domain, dom(®) := {z € X : ®(x) # o}.
This circumstance is immaterial for the sequel; therefore, speaking of ascents, we always imply
total correspondences; i.e., dom(®) = X.

(2) Let X,Y,® € V(B) and let ® be a correspondence from X into Y. There exists a (unique)
correspondence ®1 from X1 into Y7 inside V(®), such that ®7(A1) = ®(A)] is valid for every
subset A of dom(®), if and only if ® is extensional; i.e., satisfies the condition y; € ®(x;) —
[z1 = 2] < V,,ca0lyr = v2] for 21,22 € dom(®). In this event, T = @'T, where @’ :=
{(z,y)B : (z,y) € ®}. The element ®7 is the ascent of the initial correspondence ®.

(3) The composite of extensional correspondences is extensional. Moreover, the ascent of
a composite is equal to the composite of the ascents inside V(®): On assuming that dom(¥) > im(®)
we have V(B) £ (W 0 ®)1 = ¥ o &1,

Note that if ® and ®~! are extensional then (®7)~! = (®~!)T. However, in general, the
extensionality of ® in no way guarantees the extensionality of ®~!.

(4) Tt is worth mentioning that if an extensional correspondence f is a function from X
into Y then the ascent f1 of f is a function from X7 into Y'T. Moreover, the extensionality property
can be stated as follows: 21 = x2] < [f(x1) = f(x2)] for all 21,22 € X.

A2.6. Given a set X C V() we denote by mix(X) the set of all mixings of the form mix bee,
where (z¢) C X and (b¢) is an arbitrary partition of unity. The following propositions are referred
to as the arrow cancellation rules or ascending-and-descending rules. There are many good reasons
to call them simply the Escher rules.

(1) Let X and X' be subsets of V(B) and let f : X — X’ be an extensional mapping. Suppose
also that Y,Y’, g € V®) are such that [V # @] = [g: Y — Y] = 1. Then X1| = mix(X),
Y=Y, fTl=fonX, and g|] =g.

(2) If X is a subset of V() then V(®) = 274 (X1) = {071 : 0 € P, (X)}].

Suppose that X € V, X # &;i.e., X is a nonempty set. Let the letter « denote the standard name
embedding z — 2" (z € X). Then «(X)] = X" and X = /~1(X"]). Using the above relations, we
may extend the descent and ascent operations to the case in which ® is a correspondence from X
into Y| and [V is a correspondence from X" into Y] = 1, where Y € V(B Namely, we put
@] := (Por 1T and V] := ¥] o In this case, ] is the modified ascent of ® and V] is the
modified descent of W. (If the context excludes ambiguity then we briefly speak of ascents and
descents using simple arrows.) It is easy to see that ®] is a unique correspondence inside V(B)
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satisfying the relation [®](z") = ®(x)1] = 1 (z € X). Similarly, ¥] is a unique correspondence
from X into Y| satisfying the equality ¥[(z) = ¥(z")] (z € X). If & := f and ¥ := g are
functions then these relations take the form [f](2") = f(z)] =1 and g](z) = g(z") for all z € X.

A2.7. Various function spaces reside in functional analysis, and so the problem is natural of re-
placing an abstract Boolean valued system by some function-space analog, a model whose elements
are functions and in which the basic logical operations are calculated “pointwise.” An example of
such a model is given by the class V& of all functions defined on a fixed nonempty set @ and
acting into V. The truth values on V¥ are various subsets of Q: The truth value [p(z1,...,2,)] of
a formula p(z1,...,2,) (at functions z1,...,z, € V9) is calculated as follows:

[o(z1,...zn)] = {a € Q: ¢(21(a),- .., 2alq)) }.

Gutman and Losenkov solved the above problem by the concept of continuous polyverse which
is a continuous bundle of models of set theory. It is shown that the class of continuous sections of
a continuous polyverse is a Boolean valued system satisfying all basic principles of Boolean valued
analysis and, conversely, each Boolean valued algebraic system can be represented as the class of
sections of a suitable continuous polyverse. More details reside in [53, Chapter 6].

A2.8. Every Boolean valued universe has the collection of mathematical objects in full supply:
available in plenty are all sets with extra structure: groups, rings, algebras, normed spaces, etc.
Applying the descent functor to such internal algebraic systems of a Boolean valued model, we
distinguish some bizarre entities or recognize old acquaintances, which leads to revealing the new
facts of their life and structure.

This technique of research, known as direct Boolean valued interpretation, allows us to produce
new theorems or, to be more exact, to extend the semantical content of the available theorems
by means of slavish translation. The information we so acquire might fail to be vital, valuable, or
intriguing, in which case the direct Boolean valued interpretation turns out into a leisurely game.

It thus stands to reason to raise the following questions: What structures significant for mathe-
matical practice are obtainable by the Boolean valued interpretation of the most typical algebraic
systems? What transfer principles hold true in this process? Clearly, the answers should imply spe-
cific objects whose particular features enable us to deal with their Boolean valued representation
which, if understood duly, is impossible to implement for arbitrary algebraic systems.

An abstract Boolean set or set with B-structure is a pair (X, d), where X € V, X # &, and d
is a mapping from X x X into B such that d(z,y) =0 < =z = y; d(z,y) = d(y,z); d(z,y) <
d(z,z) Vd(z,y) for all x,y,z € X.

To obtain an easy example of an abstract B-set, given @ # X C V() put

d(z,y) =z #y] =[x =y]" forz, yeX.

Another easy example is a nonempty X with the discrete B-metric d; i.e., d(z,y) =1if z £y
and d(z,y) =0 if z = y.

Let (X,d) be some abstract B-set. There exist an element 2" € V(® and an injection ¢ :
X — X' := 2| such that d(z,y) = e # w] for all z,y € X and each 2’ € X’ admits the
representation =’ = mixeez berwe, where (z¢)ecz C X and (be)eez is a partition of unity in B.
We see that an abstract B-set X embeds in the Boolean valued universe V(®) so that the Boolean
distance between the members of X becomes the Boolean truth value of the negation of their
equality. The corresponding element 2~ € V(B) is, by definition, the Boolean valued representation
of X.

If X is a discrete abstract B-set then 2" = X" and 1z = 2" for all z € X. If X C V(B) then (]
is an injection of X1 into 2" (inside V(B)). A mapping f from a B-set (X,d) into a B-set (X', d’)
is said to be contractive if d(z,y) > d'(f(z), f(y)) for all z,y € X.

In case a B-set X has some a priori structure we may try to furnish the Boolean valued represen-
tation of X with an analogous structure, so as to apply the technique of ascending and descending
to the study of the original structure of X. Consequently, the above questions may be treated
as instances of the unique problem of searching a well-qualified Boolean valued representation of
a B-set with some additional structure.

We call these objects algebraic B-systems. Located at the epicenter of Boolean valued analysis,
the notion of an algebraic B-system refers to a nonempty B-set endowed with a few contractive
operations and B-predicates, the latter meaning B valued contractive mappings.
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The Boolean valued representation of an algebraic B-system appears to be a standard two
valued algebraic system of the same type. This means that an appropriate completion of each
algebraic B-system coincides with the descent of some two valued algebraic system inside V(®).

On the other hand, each two valued algebraic system may be transformed into an algebraic
B-system on distinguishing a complete Boolean algebra of congruences of the original system. In
this event, the task is in order of finding the formulas holding true in direct or reverse transition
from a B-system to a two valued system. In other words, we have to seek and reveal here some
versions of transfer in the form of identity preservation, a principle of long standing in vector lattice
theory.

A3. BOOLEAN VALUED NUMBERS, ORDINALS, AND CARDINALS

Boolean valued analysis stems from the fact that each internal field of reals of a Boolean valued
model descends into a universally complete vector lattice. Thus, a remarkable opportunity opens
up to expand and enrich the treasure-trove of mathematical knowledge by translating information
about the reals to the language of other noble families of functional analysis. We will elaborate
upon the matter in this section.

A3.1. Recall a few definitions. Two elements x and y of a vector lattice E are disjoint (in sym-
bols L y) provided that |z| A |y| = 0. A band of E is defined as the disjoint complement
Mt :={ze€FE: (Vye M)z Ly} of a nonempty set M C E.

The inclusion-ordered set B(F) of all bands in F is a complete Boolean algebra with the
Boolean operations:

LANK=LNK, LVK=(LUK)**, L*=L* (L Kec®B([E).

The Boolean algebra B(FE) is often referred as to the base of E.

A band projection in FE is a linear idempotent operator in 7 : ' — E satisfying the inequalities
0 <7z <zforall 0 <z e E. The set P(F) of all band projections ordered by 1 < p«>mop=m
is a Boolean algebra with the Boolean operations:

TAp=mop, wNp=m+p—mop, w =Ig—n (mpe(E)).

Let u € Ef and e A (u—e) = 0 for some 0 < e € E. Then e is a fragment or component of w.
The set €(u) of all fragments of u with the order induced by F is a Boolean algebra where the
lattice operations are taken from F and the Boolean complement has the form e* := u — e.

A3.2. A Dedekind complete vector lattice is also called a Kantorovich space or K-space, for
short. A Dedekind complete vector lattice E is universally complete if every family of pairwise
disjoint elements of E is order bounded.

(1) Let E be an arbitrary K-space. Then the correspondence m — 7(E) determines an iso-
morphism of the Boolean algebras B(E) and B(E). If there is an order unity 1 in E then the
mappings m +— w1 from P(E) into &(1) and e — {e}11 from &(1) into B(FE) are isomorphisms of
Boolean algebras too.

(2) Each universally complete vector lattice E with order unity 1 can be uniquely endowed
with multiplication so as to make F into a faithful f-algebra and 1 into a ring unity. In this
f-algebra each band projection m € B(E) is the operator of multiplication by 7 (1).

A3.3. By a field of reals we mean every algebraic system that satisfies the axioms of
an Archimedean ordered field (with distinct zero and unity) and enjoys the axiom of completeness.
The same object can be defined as a one-dimensional K-space.

Recall the well-known assertion of ZFC: There exists a field of reals R that is unique up to
isomorphism.

Successively applying the transfer and maximum principles, we find an element %Z € V() for
which [ is a field of reals | = 1. Moreover, if an arbitrary 2’ € V(B) satisfies the condition [ %2 is
a field of reals] = 1 then [ the ordered fields #Z and %’ are isomorphic | = 1. In other words, there
exists an internal field of reals % € V(B) which is unique up to isomorphism.

By the same reasons there exists an internal field of complex numbers € € V() which is unique
up to isomorphism. Moreover, V&) = ¢ = Z@©i%. We call Z and € the internal reals and internal
complezes in V(B),
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A3.4. Consider another well-known assertion of ZFC: If P is an Archimedean ordered field then
there is an isomorphic embedding h of the field P into R such that the image h(P) is a subfield
of R containing the subfield of rational numbers. In particular, h(P) is dense in R.

Note also that ¢(x), presenting the conjunction of the axioms of an Archimedean ordered field z,
is bounded; therefore, [ p(R")] = 1, i.e., [R" is an Archimedean ordered field] = 1. “Pulling” the
above assertion through the transfer principle, we conclude that [R" is isomorphic to a dense
subfield of Z ] = 1. We further assume that R" is a dense subfield of Z and C” is a dense subfield
of €. It is easy to see that the elements 0" and 1" are the zero and unity of Z.

Observe that the equalities Z = R* and ¥ = C” are not valid in general. Indeed, the ax-
iom of completeness for R is not a bounded formula and so it may fail for R* inside V(B). (The
corresponding example is given in Section 1.3 of this paper.)

A3.5. Look now at the descent #Z| of the algebraic system Z. In other words, consider the
descent of the underlying set of the system & together with the descended operations and order.
For simplicity, we denote the operations and order in Z and &Z| by the same symbols +, -, and <.
In more detail, we introduce addition, multiplication, and order in &Z| by the formulas

z=x+4+y < [z=z+y] =1,
r=zy o [s=a-y]=1,
c<y < [z<y]=1 (2,y,2€Z)).

Also, we may introduce multiplication by the usual reals in Z| by the rule
y=x < [y=Xz]=1 (AeR, z,yeZ|).

The fundamental result of Boolean valued analysis is the Gordon Theorem which reads as
follows: Each universally complete vector lattice is an interpretation of the reals in an appropriate
Boolean valued model. Formally:

A3.6. Gordon Theorem. Let % be the reals inside V®®) . Then %], with the descended
operations and order, is a universally complete vector lattice with order unit 1*. Moreover, there
exists an isomorphism x of B onto P(Z|) such that

x(b)z=x(by < b<[z=y], x(bz<xby < b<[z<y]

for all z,y € #| and b € B.

The converse is also true: Fach Archimedean vector lattice embeds in a Boolean valued model,
becoming a vector sublattice of the reals (viewed as such over some dense subfield of the reals).

A3.7. Theorem. Let E be an Archimedean vector lattice, let % be the reals inside V®) | and

let 7 be an isomorphism of B onto B(F). Then there is & € V(B) satisfying the following:

(1) & is a vector sublattice of Z over R" inside V(®);

(2) E' := &| is a vector sublattice of #Z| invariant under every band projection x(b) (b € B)
and such that each set of pairwise disjoint elements in E’ has a supremum;

(3) There is an order continuous lattice isomorphism v : E — E’ such that «(E) is a coinitial
sublattice of % |;

(4) For every b € B the band projection in | onto {1(3(b))}*+ coincides with x(b).

Note also that & and Z# coincide if and only if E is Dedekind complete. Thus, each theo-
rem about the reals within Zermelo—Fraenkel set theory has an analog in an arbitrary Dedekind
complete vector lattice. Translation of theorems is carried out by appropriate general functors of
Boolean valued analysis. In particular, the most important structural properties of vector lattices
such as the functional representation, spectral theorem, etc. are the ghosts of some properties of
the reals in an appropriate Boolean valued model.

A3.6. Let us dwell for a while on the properties of ordinals inside V(®).
(1) Clearly, Ord(x) is a bounded formula. Since lim(a)) < « for every ordinal «, the formula
Ord(z) A x = lim(xz) may be rewritten as Ord(x) A (Vt € z)(Ts € x)(t € s). Hence, Ord(z) A
2 = lim(z) is a bounded formula as well. Finally, the record

Ord(z) Az =lim(zx) A (Vt € z)(t = lim(t) — ¢t =0)
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convinces us that the “least limit ordinal” is a bounded formula too. Hence « is the least limit
ordinal if and only if V(E) “a” is the least limit ordinal.” Since w is the least limit ordinal,
V(B) L= “u” is the least limit ordinal.”

(2) Tt can be demonstrated that V(®) = “On” is the unique ordinal class that is not an
ordinal” (with On”" defined in an appropriate way). Given x € V(B we thus have

[Ord(x)] = \/ [z = a”].

a€On

(3) Each ordinal inside V(®) is a mixing of some set of standard ordinals. In other words,
given x € V() we have V(B) |= Ord(z) if and only if there are an ordinal 3 € On and a partition
of unity (ba)acp C B such that = mixaep bat”.

(4) This yields the convenient formulas for quantification over ordinals:

[(V2)(Ord(z) — ¥(2))] = /\ [¥(a)],

aeOn

[B)(0rd(2) Ap(@))] = \/ [(a")].

acOn

A3.7. By transfer every Boolean valued model enjoys the classical principle of cardinal com-
parability. In other words, there is a V(®)-class Cn whose elements are only cardinals. Let Card(a)
denote the formula that declares v a cardinal. Inside V(&) we then see that o € Cn « Card(a).
Clearly, the class of ordinals On” is similar to the class of infinite cardinals, and we denote the
similarity from On” into Cn by « — X,. In particular, to each standard ordinal o € On there is a
unique infinite cardinal R, inside V(®), Indeed, [Ord(a”)] = 1.

Recall that it is customary to refer to the standard names of ordinals and cardinals as standard
ordinals and standard cardinals inside V().

(1) The standard name of the least infinite cardinal is the least infinite cardinal:
V([B) ): ((4)0)A = No.

Inside V(®) there is a mapping || from the universal class Ug into the class Cn such that 2 and
|z| are equipollent for all x.
(2) The standard names of equipollent sets are of the same cardinality:

(VzeV)(VyeV) (ol =yl - ["] = [y"[] = 1).
A3.8. (1) If the standard name of an ordinal « is a cardinal then « is a cardinal too:

(Va € On) (V([B) = Card(a”)) — Card(a).
(2) The standard name of a finite cardinal is a finite cardinal too:

(VaeOn) (a<w — V®) = Card(a’) Ao’ € No).

A3.9. Given v € V®  we have V(®) = Card(z) if and only if there are nonempty set of
cardinals T' and a partition of unity (by)acr C B such that V®) |= Card(y") for all v € T' and
x = mixyer byy". In other words, each Boolean valued cardinal is a mixing of some set of standard
cardinals.

If B is a complete Boolean algebras then the following are equivalent:
(1) B is o-distributive;
(2) VE) | (%) = ()7
(3) V) |= 2(Ro) = P(w)".

More details and references are collected in [53].
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