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SPACES OF CDy-FUNCTIONS
AND CDy,-SECTIONS OF BANACH BUNDLES

A. E. GUTMAN, A. V. KOPTEV

ABsTRACT. We first briefly expose some crucial phases in studying
the space CDo(Q) = C(Q) + co(Q) whose elements are the sums of con-
tinuous and “discrete” functions defined on a compact Hausdorff space @
without isolated points. (In this part, special emphasis is on describing
the compact space @ representing the Banach lattice CDo(Q) as C(@))
The rest of the article is dedicated to the analogous frame related to
the space CDo(Q, X) of “continuous-discrete” sections of a Banach bun-

dle X and the space of CDg-homomorphisms of Banach bundles.
KEvywoRrDs. Banach lattice, AM -space, Alexandroff duplicate, contin-

uous Banach bundle, section of a Banach bundle, Banach C'(Q)-module,
homomorphism of Banach bundles, homomorphism of C(Q)-modules.

1. INTRODUCTION

1.1. A real Banach space X = (X, +, -, ||-||) endowed with a (partial) order <
is called a Banach lattice whenever

(1) the order < makes X a lattice, i.e., for all z,y € X, the supremum z V y
and infimum A y exist in X (hence, the modulus || := 2 V (—x) exists
for every z € X);

(2) the order < agrees with the linear operations, i.e., for all z,y,z € X and
0 < X € R, the inequality x < y implies z + z < y + z and Az < \y;

(3) the norm |[|+|| is monotonous with respect to the order <, i.e., for all x,y € X,
2| < |y| implies ||z|| < [ly|| (hence, ||z| = |||z||| for all z € X).
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A Banach lattice X is called an abstract M-space with unity, or an AM; -space for
short, if

(4) [z Vyll = max{[l], ly[[} for all 0 <,y € X;
(5) there is an element 1 € X such that |z| < 1 is equivalent to ||z| < 1 for
all z € X.

The classical Banach function spaces endowed with the uniform norm and pointwise
order serve as examples of AM;-spaces:

(@) (R™,[]*[lsc), n € N;

(b) the space £>° of bounded sequences;

(c) the space L>(Q) of (cosets) of essentially bounded measurable functions
defined on a measure space 2;

(d) the space C(Q) of continuous functions defined on a compact Hausdorff

space Q.

1.2. The theory of Banach lattices includes the following well-known fact:

Kreins—Kakutani Theorem. Every AM,-space is linearly isometric and order
isomorphic to the space C(Q) for a suitable compact Hausdorff space @ (moreover,
such a space @ is unique up to homeomorphism).

We can say that, in general, the space ) corresponding to a given AM;-space
according to the Kreins—Kakutani Theorem occurs “unobservable” (“implicit”, “non-
constructive”) if for no other reason than the fact that the available universal ap-
proaches to its “construction” essentially rely on the axiom of choice (or Zorn’s
Lemma) and employ such notions as ultrafilters, maximal ideals, etc.

Heading toward the desired compact space, some other rather bulky construc-
tions often occur which weaken the intuitive connection with the initial AM;-space.
For instance, one of the classical ways of constructing a space () representing a given
AM;-space X as C(Q) consists in the following: first, an order completion X of X
is considered; next, X is represented as the space C(Q) of continuous functions
defined on an extremally disconnected compact Hausdorff space @ (which occurs,
for instance, as the set of all ultrafilters of the base of X endowed with a special
topology); finally, the desired space @ is obtained by “gluing” together the points
of @ which are not separated by the functions corresponding to the initial space X.

Another common approach to constructing a representation compact space for
an AM;-space consists in considering the second dual and employing the corre-
sponding representation facts of the theory of commutative Banach algebras, which
use such “implicit” objects as, for instance, characters of an algebra.

Perhaps, the shortest universal way to a representation compact space @ is
paved in [4], where the points of @ occur as the maximal order ideals of the initial
AM; -space. (However, this construction can also hardly be called “observable” by
obvious reasons.)

At the same time, it is clear that the study of the properties of a concrete
AM -space can be considerably simplified if we manage to find an explicit and plain
description of the corresponding representation compact space. As an example, con-
sider the Banach lattice X which is the closure (with respect to the uniform norm)
of the space of all functions f: P — R that are defined on an infinite set P and
are constant on P except finitely many points. (Despite of its simplicity, the space
of such functions f plays an important role in some topics of the theory of regular
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operators in vector lattices; see, for instance, [1].) Every element of X can be de-
scribed as a function z: P — R for which there exist a number A and a sequence
of points p,, € P such that 2 = X outside {p,, : n € N} and z(p,) — X as n — oc.
Since X is an AM;-space, it is isomorphic to C(Q) for some compact Hausdorff
space . The structure of the space X becomes now absolutely clear on observing
that we can take as @) the Alexandroff one-point compactification P U {oo} of the
discrete topological space P. (In the compactification P U {oco}, the points p € P
are isolated, while the neighborhoods of oo are the complements of the finite sub-
sets of P.) An isomorphism of the AM;-space X onto C(P U {oo}) is obtained by
extending each function x € X to co with the value z(00) := A mentioned in the
above description of x.

1.3. Let now @) be an arbitrary nonempty compact Hausdorff space without
isolated points and let ¢p(Q) be the totality of all functions f: @ — R such that
the set {¢g € @ : |f(¢)| > £} is finite for every number & > 0. In [2] Y. A. Abramovich
and A. W. Wickstead introduced the space

CDo(Q) := C(Q) + c(Q)

of functions f: @ — R each of which is representable as the sum f = f. + fq of
a continuous f. € C(Q) and “discrete” fy € ¢o(Q) parts. First of all, it is worth
noting that, since @) has no isolated points, we have the direct sum decomposition
CDy(Q) = C(Q) ® co(Q) and the mappings f +— f. and f — fy are the correspond-
ing linear projections.

Y. A. Abramovich and A. W. Wickstead showed in [2] that, with respect to the
uniform norm and pointwise order, the space CDy(Q) is a Banach lattice pos-
sessing certain rather exotic order-topological properties. They also observed that,
despite of its “oddity,” this Banach lattice is an AM;-space and (according to the
Kreins—Kakutani Theorem) is isomorphic to the space C (@) for a suitable compact
Hausdorff compact space @ Having lefg aside the question of an explicit description
of the corresponding compact spaces @, the authors of [2] nevertheless noted that,
due to the unusual properties, such spaces are of interest for the general topology
as well.

1.4. The spaces CDy(Q) (and other analogous spaces of “continuous-discrete”
functions) became the subject of further investigations (see, for instance, [3,5,6])
which led to the first explicit description of the representation compact space @
for CDy(Q). Namely, in [8], Z. Ercan established that @ can be taken to be the set

Qx{0, 1} endowed with the following convergence:

(Gas7a) — (g,r) if and only if
fe(qa) +rafil(qa) = fo(q) +rfa(q) for every f € CDy(Q).

Theorem [8]. The above convergence corresponds to a compact Hausdorff
topology on Qx{0,1}. The spaces CDy(Q) and C(Qx{0,1}) are linearly isometric
and order isomorphic under the mapping that takes each element f € CDy(Q) into
the function f: Qx{0,1} — R defined by the equality f(q,r) = fo(q) + rfa(q)-

The latter result has played a key role in the problem of describing the compact
space () which represents CD((Q) as C’(Q)
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The above approach to describing the representation compact space could be
subjected to criticism by noting that the definition of its topology explicitly uses
the space CDy(Q) itself, which does not allow us to reduce the study of CDy(Q)
to that of C (é) and takes the analysis of the properties of Q and C (Q) back
to considering the initial space CDy(Q). Nevertheless, [8] contains an alternative
description of the net convergence in @ which does not employ the space CDy(Q)
per se and only uses the convergence in (). Perhaps, the only remaining possible
subject for criticism is introduction of a topology by means of convergence, which
hinders its understanding from the traditional “neighborhood” point of view.

1.5. However that may be, the above-mentioned “demerit” was completely elim-
inated by V. G. Troitsky in [16]. For convenience, introduce the mappings

(')Cv (')d: Q — QX{O’ 1}

gc =1(¢,0), qa:=(g1).
In addition, for every subset P C @ put

P.:={p.:pe€ P} =Px{0}, Pj:={pg:pe€ P}=Px{1}.
In his “notes” [16] V.G. Troitsky described the Ercan’s topology on @x{0,1} =
Q.U Qg as follows: the points gq are isolated, while the base neighborhoods of each
point g. are the sets of the form V, U Vy\{q4}, where V is a neighborhood of ¢
in the initial topology of Q.

The topological space @ = Q.UQyq thus defined is usually called the Alexzandroff
duplicate of the compact space @) and denoted by A(Q). The space @ indeed pos-
sesses a number of exotic properties. As is known (see [7, 3.1.G]), it is Hausdorff
and compact (moreover, every subset of é containing Q. is compact), its “continu-
ous part” (). is homeomorphic to @, and the “discrete part” )4 is open and dense
in Q. The duplicate of a circle (the so-called “Alexandroff double circle”) serves as
a classical example of a hereditarily normal topological space which is not perfectly
normal; it is also first-countable, but not separable and thus not second-countable
(see [7, 3.1.26]).

Employing the new definition of the compact space @ = Qc U Qq, we can now

by putting

easily obtain a characterization of the net convergence in @ (analogous to that
presented in [8]): Since the points gq € Q4 are isolated, a net in Q converges to qq
if and only if it stabilizes at q4; as for the points ¢. € @., convergence of a net
(GasTa) tO gc is equivalent to the following: starting at some index, the points
(o, 7o) differ from gq and ¢, — ¢ in the initial topology of Q.

1.6. Besides a simple and explicit description of the topology of @ in terms of
neighborhoods, V. G. Troitsky suggested the following elegant characterization of
the elements of CDy(Q):

Theorem [16]. A function f: @ — R belongs to CDy(Q) if and only if f
has a limit at every point of (). Furthermore, the continuous part f. € C(Q) of
a function f € CDy(Q) is calculated by the formula

Jolg) = lim f(p) forall q€ Q.
p—q
This result became a very convenient tool which made it possible to consider-

ably simplify the study of the properties of CDy(Q) and, in particular, to obtain
elementary proofs of available facts on the space.



SPACES OF CDo-FUNCTIONS AND CDy-SECTIONS OF BANACH BUNDLES 223

1.7. The next stage in studying the properties of CD-spaces is characterized by
passing from real valued functions f: Q — R to vector valued functions f: Q — X,
where X is a Banach lattice. Isomorphy of the Banach lattices CDy(Q,X) and
C (é, X ) in the case of a compact metric space (Q without isolated points is men-
tioned already in [8]. In a more general case the connection between the spaces of
vector valued CDy-functions and continuous functions is treated in the paper [6]
by S. Alpay and Z. Ercan.

1.8. Further developments showed that the main facts on representation of
CDy-spaces as spaces of continuous functions remain valid after passing not on-
ly to vector valued functions, but also to sections of Banach bundles.

The space of CDy-sections of a continuous Banach bundle X over @) was first
considered by T.Ho6im and D. A. Robbins in [13], where, in particular, a linear isom-
etry is constructed of this space onto the Banach space C (Q X ) of all continuous
sections of a certain Banach bundle X over the duplicate Q of Q. (The structure of
the bundle X is discussed below.) Some interconnections are also established in [13]
between C(Q)-linear operators from C(Q, X) into C(Q) and C(@) -linear operators

from C’(é, 5() into C(@)

The present article is in essence a revised and extended compilation of [11,12].
After outlining the basic information on continuous Banach bundles we present
the main definitions and facts concerning CDg-sections of a Banach bundle and
suggest some further development of the theory, with special emphasis on the space
of CDy-homomorphisms of Banach bundles.

2. CONTINUOUS BANACH BUNDLES

2.1. Let @ be an arbitrary topological space. A Banach bundle (or, more pre-
cisely, a continuous Banach bundle) over @ is a formalization of an intuitive idea
of a “continuous” function X which is defined on @) and maps each point ¢ € @ into
a Banach space X(q) (called the stalk of X at ¢). One of the formal approaches
to defining the “continuity” of X (see [10, 2.1], [15, 2.4.3]) consists in indicating
a so-called continuous structure in X that is a vector subspace Cy of the space of
sections

8@, %) = {u: Q- U ¥(@ : ul@) € X(@) forall g € Q}
qe
(endowed with the pointwise operations, see [10, 1.7.3], [15, 2.4.3]) such that, first,
the pointwise norm

lell: @ = R, lell(q) = lle(@)lx(q) (¢ € Q)

of each section ¢ € Cx is continuous and, second, Cy is stalkwise dense in X,
i.e., the set {c(q) : ¢ € Cx} is dense in X (g) for all ¢ € Q. Given a continuous
structure Cy, we can define the totality C(Q, X) of continuous sections of X to be
the set of all sections u € S(Q, X) such that ||u — ¢|| € C(Q) for ¢ € Cx.
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2.2. The notion of a continuous section of a Banach bundle can be treated as
a generalization of the notion of a continuous vector valued function. Indeed, if X is
a Banach space, then C(Q, X) = C(Q, X), where X is the constant Banach bundle
whose stalks are X(¢) = X and the continuous structure is constituted by, for
instance, constant functions ¢: @ — X (see [10, 2.2.1]).

2.3. Note that there is an alternative, and in a sense equivalent, approach to
introducing a continuous structure, within which continuity of sections occurs to
be a purely topological notion. (An exposition of both approaches, as well as a jus-
tification of their equivalence, can be found in [9].) Denote by Q®X the union of
the pairwise disjoint copies {q}xX(¢) of the stalks X(g) of a Banach bundle X
over (Q:

QX ={(¢,2): ¢€Q, z€ X(q)}.

Given an arbitrary section u € S(Q, X), define the function Q®u: Q@ — Q®X by
putting (Q®u)(q) = (¢,u(q)) for all ¢ € Q. Then the set of all “tubes”

{(¢2) e QX : g€ U, |z —c(q)| <e},

which are defined by the sections ¢ € Cx, open subsets U C (), and numbers
e > 0, is a base of some open topology on Q®X (see [9, 5.3]). Furthermore, the
induced topology of the copy {g} xX(q) C Q®X of each stalk X'(g) coincides with
the initial topology of the stalk as a Banach space, and a section u € S(Q, X) occurs
continuous if and only if the function Q®u: Q — Q®X is continuous (in the usual
sense) with respect to the tubes topology (see [10, 2.1.7]).

2.4. Different continuous structures C; and Cs in X’ may induce the same topolo-
gy on @ ®X. In this case, the continuous structures C; and Cy are called equivalent
and the Banach bundles (X,C;) and (X,Cs3) are identified. The identification is
justified, in particular, by the following fact:

Theorem [10, 2.1.8]. Let C; and Cy be continuous structures in X and let
C(Q, X |Cy) and C(Q, X | C2) be the corresponding sets of continuous sections. Then
the following assertions are tantamount:

(1) Cy and Cy are equivalent;

(2) C(Q,X[C1) = C(Q, X[ Ca);

(3) C(Q,X[C1) C C(Q, X[Ca);

(4) C, C C(Q,X|Cz),

(5) the intersection C(Q, X |C1) N C(Q, X | Ca) is stalkwise dense in X.

2.5. It is worth taking account of the following basic properties of the set
C(Q, X) of continuous sections of a Banach bundle X over a compact Hausdorff
space Q:

(a) Ifu € C(Q, X) then Ju] € C(Q).

(b) Theset C(Q, X) is a closed vector subspace of the Banach space £>°(Q), X')
all bounded sections of X endowed with the uniform norm |ju|| = |H||u|||||
sup,cq [lu(@)].

(¢) Ifu e C(Q,X) and f € C(Q) then fu € C(Q,X). In particular, C(Q, X)
is a Banach C(Q)-module.

(d) The set C(Q, X) fills the stalks of X. Moreover, for all ¢ € @Q and x € X(q),
there exists a section u € C(Q, X) such that u(q) = = and |Jul| < ||z

f

Q
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Assertions (a)—(c) are proven, for instance, in [10, 2.3]. Assertion (d) is conven-
tionally called the Dupré Theorem (see [9, 2.10]). Note that the statement of this
theorem holds for Banach bundles over arbitrary topological spaces @ (see [14, 1.1]).

2.6. The tubes topology introduced in 2.3 makes it possible to interpret vari-
ous topological notions and facts related to sections u € S(Q, X)) in terms of the
corresponding functions Q ®u. For instance (see [10, 2.3.7]), a section u € S(Q, X)
has limit © € X(q) at a point ¢ € @ if and only if the limit of the function
QRRu: Q — QX at g equals (¢, x):

1. = <~ 1 s = s 1 X.
limu(p) =2 < lim (p,u(p)) = (¢,7) in Q&

According to [10, 2.3.8] and the Dupré Theorem, the last relation is equivalent to
existence of a section v € C(Q, X) such that v(¢) = = and lim |Ju(p) — v(p)|| = 0.
p—4q

3. THE SPACE OF CDg-SECTIONS

Throughout the sequel, @ is a nonempty compact Hausdorff space without iso-
lated points. All vector spaces considered in the article are assumed to be defined
over the field R of reals.

3.1. Recall that C'(Q) is the set of all real valued continuous functions de-
fined on Q; ¢o(Q) is the totality of all functions f: @ — R such that the set
{¢g € Q : |f(¢)] > €} is finite for every number ¢ > 0. Both C(Q) and co(Q)
are Banach lattices and Banach algebras with respect to the pointwise operations,
pointwise order, and uniform norm. Each of the two spaces is a Banach sublattice
and subalgebra of the lattice-ordered Banach algebra ¢>°(Q) of all bounded real
valued functions defined on Q. As is easily seen, c¢o(Q) is the closure in £*°(Q)
of the space of functions with finite support and is constituted exactly by those
functions f: @ — R for which there exists a sequence of pairwise distinct points
gn € Q (n € N) such that f(g,) — 0 as n — oo and f = 0 outside {¢,, : n € N}.
In particular, for all f € £°(Q) and g € ¢o(Q), the inequality |f| < |g| implies
f € ¢o(Q); therefore, ¢o(Q) is an order ideal of £*°(Q).

3.2. The symbol CDy(Q) denotes the space of all functions f: @ — R repre-
sentable as the sums f = g + h of elements g € C(Q) and h € ¢o(Q):
CDo(Q) = C(Q) + co(Q).
The following statement gathers some facts on the space CDy(Q) which are
established in [2,5,8,16]:
(1) Endowed with the pointwise operations, pointwise order, and uniform norm,
the space CDy(Q) is an AM;-space.

(2) The direct sum decomposition CDy(Q) = C(Q) @ ¢o(Q) holds. Therefore,
every function f € CDy(Q) is uniquely representable as f = f. + fq, with

fe € C(Q) and fa € co(Q).
(3) For each f € CDy(Q) we have || f.|| < | fl-
(4) A function f: @ — R belongs to CDy(Q) if and only if the limit lim f(p)
p—q
exists for every q € Q. Furthermore, lim f(p) = f.(q) for all ¢ € Q. In par-
p—q

ticular, f € ¢o(Q) if and only if lim f(p) =0 for all ¢ € Q.
p—q
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3.3. Asis easily seen, CDy(Q) is a Banach algebra (with respect to the pointwise
multiplication) which contains C(Q) as a subalgebra and ¢ (Q) as an algebraic ideal.
Furthermore, for all f,g € CDy(Q) we have (fg). = fege and (fg)a = fega+ faga +
fdgc~

3.4. In what follows, X is an arbitrary Banach bundle over Q. Denote by ¢, (Q, X)
the set of all sections of X whose pointwise norm belongs to ¢y (Q):

(@, X) = {ueS(Q,X): |lufl € co(Q)}-
Note that ¢o(Q,X) is a Banach subspace of the Banach space £>°(Q,X) of all
bounded sections of X' (with the uniform norm) and coincides with the closure in
£°(Q, X) of the space of sections with finite support.

The following assertion is a direct consequence of 3.2 (4):

A section u € S(Q, X) belongs to ¢o(Q, X) if and only if

lim u(p) =0 for all g € Q.
p—q

3.5. Define CDy(Q, X) to be the space of all sections u € S(Q, X) representable
as the sums u = v + w of elements v € C(Q, X) and w € ¢o(Q, X):
CDy(Q,X) == C(Q,X) +co(Q, X).
The following assertion is a restatement of [13, Lemma 1]:
We have the direct sum decomposition
CDo(Q, X) = C(Q, X) & co(Q, X).

< Indeed, if u € C(Q,X) Nco(Q, X) then |Jul € C(Q) N ¢p(Q), whence due
to 3.2(2) we have ||uf| =0 and thus u =0. ©>

The decomposition CDy(Q, X) = C(Q, X) ® co(Q, X) makes it possible to intro-
duce the linear projections (-). and (-)4 from CDy(Q, X) onto the corresponding
subspaces C(Q, X) and ¢ (Q, X). Therefore, each section u € CDy (@, X) is uniquely
representable as u = u. + ug, with u, € C(Q, X) and uq € ¢o(Q, X).

3.6. A sectionu € S(Q, X) belongs to CDy(Q, X) if and only if the limit lim u(p)
exists for each q € Q). Furthermore, P

lim u(p) = uc(q) for all ¢ € Q.

p—q
<4 Ifu e CDy(Q, X) then due to 3.4 we have
li — Ue =1 =0
tim [u(p) e (p) | = T )|
for each ¢ € Q, whence lim u(p) = u.(q) according to 2.6.
p—4q

Passing to the proof of sufficiency, assume that the limit v(g) := lim u(p) exists
for all ¢ € Q. Given w € C(Q, X) and g € @, we have pma

() —w(q)| = || lim u(p) — w(q)|| = lim fu(p) = w(p)l;

therefore, ||[v — w|| = ||u — w]. € C(Q) by 3.2(4). Since w € C(Q, X) is arbitrary,
we conclude that v € C(Q, X). On the other hand,

lim fJu(p) - v(p)| = | lim u(p) — lim v(p)|| = llv(g) —v(g)]| =0

for all ¢ € Q; consequently, u — v € ¢o(Q, X) according to 3.4. >
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3.7. If u € CDy(Q, X) then ||u] € CDy(Q). Furthermore,

lulle = luell,  [Nulla] < luall
< From 3.2 (4) and 3.6 it follows that [|u] € CDo(Q) and [|uf, = [|uc[. In ad-
dition,
eelly] = [lleell = Null| = [l = Nuell] < llu = well = fuall. >

(Observe that the inequality |[|ul|,| # [uqll is obviously possible. For instance,
if g € Q veCQ4X)vg #0, and u = v — 2x(qv, then [|uflg = 0, while
lluall = 2llv()lIx{q}-)

Therefore, the space CDy (@, X') endowed with the pointwise norm ||-|| is a lattice-

normed space over the Banach lattice CD((Q), as well as a space with mixed norm:
lul| = H|||u||| , u € CDo(Q, X) (see [15, 7.1.1]).

3.8. For each u € CDy(Q, X') we have

el < flull,  [luall < 2[lull.
< From 3.2(3) and 3.7 it follows that

letell = [luelll] = [l ]| < [[lall]] = [l

It remains to observe that ||ug|| = ||u — we|l < |Jull + ||uell < 2||ul]. >

3.9. The normed space CDy(Q, X') is a Banach space.

<4 Is (uy) is a Cauchy sequence in CDy(@Q), X') then, according to 3.8, (u). and
(un)q are also Cauchy sequences which, due to completeness of the normed spaces
C(Q,X) and ¢o(Q,X), have the corresponding uniform limits v € C(Q, X) and
w € ¢o(Q, X). Therefore, the sequence (u,,) uniformly converges to the sum v + w
that belongs to CDy(Q, X). >

3.10. The following assertion is straightforward:

The space CDy(Q, X) is a Banach CDy(Q)-module with respect to the pointwise
multiplication. Furthermore, for all f € CDy(Q) and u € CDy(Q, X) we have

(fu)e = fete, (fu)a = feuq + fauq + faue.

3.11. In what follows, we will use the notation of 1.5. Namely, we define the
mappings (+)e, (+)g: @ — @x{0,1} by the formulas

qc ‘= (q70)7 qd ‘= (q7 1)
and, for every subset P C @, put
P.:={p.:p€ P} =Px{0}, Pj:={pg:pe€ P}=Px{1}.

As in [16], introduce a topology on @x{0,1} = Q.U Q4 as follows: endow
the subset Q4 C @ with the discrete topology (i.e., declare all the points ¢, isolated)
and, for each ¢ € @, declare a subset U C Qx{0,1} to be a neighborhood of g.
whenever there exists a neighborhood V' C @ of ¢ such that V., U Vy\{qs} C U.
The topological space thus obtained is a compact Hausdorff space which is called
the Alezandroff duplicate of Q and denoted by @ (see 1.5 and the references therein).
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3.12. The following result is obtained in [8] (see also [16]):

The Banach lattices CDy(Q) and C (@) are linearly isometric and order isomor-
phic.
A linearly isometric order isomorphism between CDy(Q) and C' (Q) is performed

by the mapping f +— fwhich takes each f € CDy(Q) into the function f Q - R
defined by the rule

flae) = fela), flaa) = fa) forall q€Q.
Therefore, f(-,0) = f. and f(-,1) = f.

As is easily seen, according to 3.3, the mapping f — fpreserveg multiplication
and is thus an isomorphism between the algebras CDy(Q) and C (Q)

3.13. The criterion presented below is immediate from 3.12:

The following properties of a function g: @ — R are equivalent:
(1) g€ C(Q);
(2) 9(-,0) € C(Q), g(-,1) —g(-,0) € co(Q);
(3) 9(7 1) € CDO(Q)7 g(-70) = g(7 1)0

Observe also that the images of C'(Q) and ¢o(Q) under the isometry f — fare
described as follows:

{Ff:feCc@} = {geC(Q) : g(~0)=g(~1)}

= {9: Q=R : g(+.0)=g(-~1) €C@Q)},
{Ff:fea@} = {geC(Q) : g(~0)=0}

= {g: Q=R : g(-0)=0, g(-,1) €co(Q) }

_ 3.14. Following [13], consider the (temporarily discrete) Banach bundle X over
Q = Q.U Qq with stalks

X(qe) = X(qa) = X(q), q€Q.
Given a section u € CDy(Q, X), define the section u € S(@, /’?) by the rule
w(qe) = ue(q), w(qq) =u(q) forall g€ Q.

Therefore, u(+,0) = u. and u(-,1) = u. Note that, due to 3.7, we have ||uf| = m
for all u € CDy(Q, X).

Show that the set C5 := {u : v € CDy(Q,X)} is a continuous structure in X.
Indeed, since the mapping u + u is obviously linear, C3 is a vector subspace
of S’(@ /17) In addition, for each section u € CDy(Q,X) we have |u| = m €
C(Q) Finally, C3 contains the set {u : u € C(Q X)} which is a stalkwise dense
in X therefore, C5 is itself stalkwise dense in X.

In what follows, we keep the notation X for the continuous Banach bundle
(X,C;{) over Q.
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3.15. The following result is established in [13, Proposition 6]. (For completeness
of exposition, we will present the result together with our version of its proof.)

The mapping u +— U is a linear isometry of CDy(Q, X) onto C(@, /’?) Moreover,
fu = fu for all f € CDy(Q) and u € CDy(Q, X).
<4 If f € CDy(Q) and u € CDy(Q, X) then, due to 3.10, we have

ﬁ('vo) = (fu)c = fcuc = (f’ﬁ)(-,O), J?’l/j'(7 1) = fu = (fa)(71>

and thereby }?{L = fﬂ. Consequently, C5 is a C(@) -submodule of C(@, 2?) Taking
account of the fact that C3 is stalkwise dense in X and using the corollary [9, 4.3]
to the Stone-Weierstrass Theorem for bundles, we conclude that the submodule C3

is uniformly dense in C(@, .f) Next, 3.8 imply that, for all u € CDy(Q, X),

l[a]] = max{{|a(-, 0)[|, [u(-, DI} = max{[ucll, [lull} = llu]|.
Therefore, the mapping u — @ is a linear isometry of the Banach space CDy(Q, X)
onto a dense subspace Cy C C(Q, X); whence C3 = C(Q, X). >

3.16. The criterion presented below is immediate from 3.15:

The following properties of a section v € S(@, )?) are equivalent:

(1) ve C(@,AN,’);
(2) v(+,0) € C(Q, &), v(+,1) —v(:,0) € co(Q, X);
(3) v(+,1) € CDo(Q, X), v(+,0) = v(+, 1)e.
Observe also that the images of C(Q, X') and ¢o(Q, X') under the isometry u — @
are described as follows:

{u : uEC’QX)} = {’UEC(@, ) : oo

{ﬂ : uGcO(Q,X)} = {U€C(Q,X) : (s

4. EXAMPLES

In this section we present a series of examples which clarify the relation between
X and X in the case of constant bundles, as well as demonstrate that this rela-
tion meets the passage to a subbundle, a continuous change of variable, and the
restriction to a topological subspace.

4.1. Consider an arbitrary Banach space X and assume that X is the constant
Banach bundle over @ with stalk X. From the definition of X it is clear that all
its stalks coincide with X. Denote by const(@Q, X) and const (Q, X ) the sets of all

constant sections of X and X. As is easily seen,
const(é X) ={c:ceconst(Q,X)} C C’(@ 2?)

Consequently, const (Q X ) is a continuous structure in X' equivalent to Cz; hence,
X is a constant Banach bundle over Q with stalk X.
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Due to 2.2, the above observation allows us to translate (almost without changes)
all the facts of Section 3 to the case of the spaces of vector valued functions

CDo(Q, X) = C(Q, X) + ¢o(Q, X) and C(Q, X).

4.2. Let Xy be a subbundle of a Banach bundle X over ). The latter means
that Xy is a Banach bundle over @ such that Xy(q) is a Banach subspace of X (gq)
for each ¢ € @ and, in addition, C'(Q, X)) = C(Q, X)NS(Q, Xp) (see [10, 2.2.2], [15,
2.4.11]). Taking account of the obvious equality co(Q, Xp) = co(Q, X) N S(Q, Xp),
we conclude that

CDy(Q, Xo) C CDo(Q, X) N S(Q, Xp).

Below we will show that the sets CDy(Q, Xp) and CDy(Q, X)NS(Q, Xy) may differ
or coincide; moreover, both cases are possible for a nontrivial subbundle Xy (i.e.,
for a subbundle which is neither zero, nor equal to the whole X'). However, we will
first prove a simple auxiliary assertion.

4.3. Let Xy be a subbundle of X'. The following properties of an arbitrary section
u € CDo(Q,X) N S(Q, Xy) are equivalent:
(1) u € CDo(Q, Xo);
(2) uc € S(Q, X);
(3) Ug € S(Q3X0)7
where the decomposition u = u.+uq is taken in CDy(Q, X) = C(Q, X) B co(Q, X).
4 (1)=(2): Let u € CDy(Q, Xp). Consider the decomposition u = ud + ug
in CDy(Q, Xp). Then u? € C(Q, X)) C C(Q,X) and uf € ¢o(Q, X)) C ¢co(Q, X);
whence, due to the uniqueness of a decomposition © = u. + ug in CDy(Q, X),
we have u? = u, and thus u, € S(Q, Xp).
The implication (2)=-(3) is obvious, since ug = u — .
(3)=(1): Let ug € S(Q,Xp). Then u, = u —uqg € S(Q,AXp) and thus u, €
C(Q7 X) mS(Qa XO) = C(Qv XO) In addition, Ug € C()(Q, X) mS(Qa XO) = CO(Qv XO)
Consequently, u = u. + ug € C(Q, Xp) + co(Q, Xo) = CDy(Q, Xp). >

4.4. Every nonzero Banach bundle X over () contains nontrivial (i.e., neither
zero, nor equal to the whole X ) subbundles X; and X, such that

CDO(Qa'Xl) :CDO(QvX)OS(Qa'Xl)v (1)
CDo(Q, X2) # CDo(Q, X) N S(Q, Xz). (2)

<4 Let & be an arbitrary nonzero Banach bundle over Q.
First of all, note that for each closed subset V' C @ there exists a subbundle Xy
of X which has the following stalks:
{0}, qeV,
X(q), q€Q\V.
Indeed, according to [10, 2.2.2], it suffices to show that
{u(@): ueC(@Q,X), u=00nV} =X(q) forall g€ Q\V.

Let ¢ € Q\V and z € X(q). By the Dupré Theorem, there is a section v € C(Q, X)
such that v(q) = x. In addition, since @ is completely regular, there exists a function
f € C(Q) such that f =0 on V and f(q) = 1. Then fv € C(Q,X), fv=0o0n V,

and (fo)(q) = .

Xy (q) = {
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As is easily seen, there are distinct points ¢1,q2 € @ at which the bundle X
has nonzero stalks. Since ) is Hausdorff, there exists an open subset U C @ such
that ¢ € U and ¢2 € @Q \ clU. In this case, the subbundle &} := X,y of X is
nontrivial. Due to 4.3, for proving (1) it suffices to consider an arbitrary section
u € CDy(Q,X) N S(Q, X1) and show that u. € S(Q, X1). Indeed, according to 3.6,
for all g € clU we have

uc(q) = zlfirf; u(p) = ;133; uly(p) = 0;

hence, u. € S(Q, X1).

Now take an arbitrary point ¢ € @ at which X'(¢q) # {0} and put X5 := Xg.
By the Dupré Theorem, there exists a section v € C(Q, X) such that v(q) # 0.
Put v = v — x{gyv. Then u € CDy(Q,X) N S(Q, Az), but u, = v ¢ S(Q, X2);
whence, due to 4.3, it follows that v ¢ CDy(Q, X2) and thereby (2) holds. >

4.5. The following assertion shows that, despite the possible absence of the equal-
ity CDo(Q, Xy) = CDy(Q,X) N S(Q, Xp), the analogous equality always holds for
the “continuous versions” of the spaces under consideration:

If Xy is a subbundle of X then EKVO is a subbundle of X. In particular,
C(Q, %) = C(Q,X) N S(Q, %)

< From the definition of the bundle 5(\/0 it is clear that each of its stalks is
a Banach subspace of the corresponding stalk of X'. Moreover, by 3.16 we have

C(Q.%) = {ves(QX) : v(-0) e C(Q, X), v(-1) —v(-0) € 0o(Q, Xo) }
= {UES(@,:VVO) :

(-
v(+,0) € C(Q, X) N S(Q, X),
S D - ) €@ ) NSQ, )}
= {UES(Q’XO) : 0(70) C( ) U('71)_U('7 )ECO(Q7X)}

= {ves(Q,X) : vel(Q,X)}
= C(Q,X) NS (Q,X). v

Returning to the example in 4.4 of a section u € CDy(Q, X) N S(Q, X2) which
does not belong to CDO(Q AX>), note that the corresponding continuous section

ue C(Q X) goes out of Xy at some point; namely, u(qe) = uc(q) ¢ E(qc).

4.6. Let P and @ be nonempty compact Hausdorff spaces without isolated
points. Say that a function ¢: P — @ is locally unique if, for each point py € P,
there is a neighborhood U C P of pg such that ¢(p) # ¢(po) for all p € U\{po}.

As is easily seen, a function ¢: P — @ is continuous and locally unique if and
only if, for every point p € P and every neighborhood V' C @ of ¢(p), there is
a neighborhood U C P of p such that ¢(U\{p}) C V\{¢(p)}.

4.7. Recall that, given a Banach bundle X = (X,Cx) over @ and a continuous
function ¢: P — @, the symbol X oy denotes the Banach bundle over P with stalks
(X o ¢)(p) = X(¢(p)) and continuous structure {co ¢ : ¢ € Cx} (see [10, 2.2.6]).
As is easily seen, uo ¢ € C(P,X o) for all u € C(Q, X).
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Let P and @ be nonempty compact Hausdorff spaces without isolated points.
The following properties of a continuous function ¢ : P — @) are equivalent:

(1)  is locally unique;

(2) the preimage ¢~ 1(q) of every point q € Q is finite;

(3) if f € co(Q) then fop € co(P);

(4) if f € CDo(Q) then fop € CDo(P), (fop)e= feop, (fop)a= faoe;
(5) is X is a Banach bundle over @ and u € ¢y(Q, X) then uoyp € co(P, X 0 p);
(6) if X is a Banach bundle over Q and u € CDy(Q, X) then uop € CDy(P, Xoyp),

(uop)e=wucop, (Lop)a=uqgoqp.
<4 (6)=(5): If u € ¢o(Q, X) then uy = u, whence by (6) we have
uop=uqop=(uop)s€ co(P,Xop).

(5)=(4): If f € CDy(Q) then foyp = f.op+ f40p; furthermore, f.op € C(P)
due to continuity of ¢, and fj 0 ¢ € ¢o(P) by (5). It remains to use 3.2 (2).

(4)=-(3): This is established in the same way as (6)=(5).

(3)=>(2): Consider an arbitrary point ¢ € Q. Since x(; € co(Q), we have
Xe—1(q) = X{q} ©® € co(P) by (3). Consequently, by the definition of co(P), the set
o Hg)={p€P:xp1(9(p) > 3} is finite.

(2)=-(1): This is straightforward from the fact that P is Hausdorff.

(1)=(6): If u € CDy(Q, X) then wo ¢ = u; o ¢ + uq o p; furthermore, u. o ¢ €
C(P, X o). According to 3.5, it remains to show the inclusion ugop € co(P, X o).
From 3.4 and (1) we have

lim w, = lim wu =0
Jim wa(p(p)) = lim ua(q)

for all pg € P; hence, ugo ¢ € co(P, X o ) due to 3.4. >

4.8. Let P and @ be nonempty compact Hausdorff spaces without isolated
points. Given a function ¢: P — @, define the function ¢ : P— Q by putting

P(pe) = ¢(P)e; ¢(pa) = ¢(p)a forall pe P.

The function @ : P @ is continuous if and only if ¢ : P — @ is continuous and
locally unique.

< Since all the points of the subset P; C P are isolated, @ is continuous on P,
regardless of the properties of ¢. It remains to observe that, for every point p € P,
every neighborhood U C P of p, and every neighborhood V' C @ of ¢(p), the inclu-
sion p(U\{p}) C V\{x(p)} is equivalent to the inclusion

QU UUa\{pa}) C Ve UVa\{p(p)a}. >

4.9. Let P and (Q be nonempty compact Hausdorff spaces without isolated points
and let ¢: P — @ be a continuous locally unique function. Then

(1) uoapfuoga for all u € CDy(Q, X);
(2)Xog0 Xocp
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< (1): Due to 4.7 (6), for every section u € CDy(Q, X) we have

wop(+,0) = (uop)e =ucop=1u(-0)0p=(Tog)(-0),
wop (1) =uop=iu(,1)op=(uod)(,1).

(2): Obviously, Xop ¢ and X o & coincide as discrete Banach bundles (i.e., they
have the same stalks). According to 2.4, to prove the coincidence of X o ¢ and
X o ¢ as continuous Banach bundles, it suffices to show that the intersection
c(ﬁ, X0 @) NC(P, X o) is stalkwise dense in X o @. By 3.15, 4.7 (6), and 4.9 (1)
we have

C(P,Xop) = {7 : veCDy(PXop)} D {G8p : ueCDy(Q )}

= {Go@ : uelDy(Q,X)} = {wod : weC(Q,X)} C C(P,X03).

It remains to observe that {wo &: w € C(Q, X)} is stalkwise dense in X 0 3. >

4.10. Recall that, given a Banach bundle X = (X,Cx) over @ and a topological
subspace P C @, the symbol X|p denotes the Banach bundle over P with stalks
(X|p)(p) = X(p) and continuous structure {c|p : ¢ € Cx} (see [10, 2.2.5]). Note the
obvious equality C(P, X|p) = C(P, X), where C(P, X) is the set of all continuous
sections of X defined on P (see [10, 2.1.2]).

Let P be a nonempty compact Hausdorff space without isolated points which is

a topological subspace of Q. Then Pisa topological subspace of Q and the following
hold:

(1) ifu € CDo(Q, X) then ulp € CDo(P, X|p), (ulp)ec = uclp, (u|lp)d = ualp;
(2) u|p = 1~L|13 for all u € CDO(Q7 X);
(3) /ﬂ; = )?|13; in particular, C(ﬁ,zﬂ}) = C’(ﬁ,)?)
<4 Let ¢ be the identity embedding of P into Q. Then, as is easily seen, ¢ is
continuous and locally unique, ¢ is the identity embedding of P into Q, X|p = Xoyp,

??|15 =Xo@ ulp =uooy, ulg = uo@ for all u € CDy(Q,X). It remains to
employ 4.7 (6), 4.8, and 4.9. >

4.11. The definition of Q readily implies that the mapping (+).: ¢ — ¢ is
a homeomorphism of @ onto the closed subset Q). C Q. This observation allows
us to consider @ as a topological subspace of @) by taking (-). as the identification.
Under the above agreement, the following hold:
(1) o (+)e =ulg =u for allu € C(Q, X);
(2) Xo(.)C:X\Q =X.
4 (1):Ifuel(Q,X)thenuo(-). =u(-,0) = uc = u.
(2): Obviously, X and X o (+). coincide as discrete Banach bundles (i.e., they
have the same stalks). In addition, by (1) and 3.15 we have

C(Q,X) ={To(-)e : ueC(Q,X)}C{vo()e: veEC(Q,X)} CC(Q,Xo(-)).

According to 2.4, the inclusion C'(Q, X) C C(Q, /fo(-)c) implies that X’ and )?o(-)C
coincide as continuous Banach bundles. >
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5. THE SPACE OF CDy-HOMOMORPHISMS

In what follows, X’ and ) are arbitrary Banach bundles over a nonempty compact
Hausdorff space @Q without isolated points.

5.1. For simplicity, we will introduce some abbreviating notation.

Denote by S[X, Y] the vector space of all sections of the discrete Banach bundle
over () with stalks B(X(q),Y(q)). Therefore, S[X,)] consists of all functions H
which are defined on @ and map each point ¢ € Q into a bounded linear operator

H(q): X(q) = Y(q).
Let £*°[X, Y] be the Banach space of all bounded sections in S[X, Y] (endowed
with the uniform norm):

XY = {Hesx, Y« |lH|et=Q)}.

Given H € S[X,)] and u € S(Q, X), use the symbol Hu for denoting the section
of Y defined by the formula (Hu)(q) = H(q)u(q), ¢ € Q. (In [10], the symbol H @u
is used instead of Hu.)

Denote by C[X, V] the Banach subspace of £>°[X’; V] constituted by all homomor-
phisms from X into Y (see [10, 2.4.2, 2.4.11]). (In [10], the notation Homg (X, Y)
is used instead of C[X,))].)

5.2. According to [10, 2.4.7] we have
clx,y) = {H € S[X,Y] : Hue C(Q,Y) for all u € C(Q, X) }

(In the present article, the last equality can be considered as a definition of C[X, )],
cp. [15, 2.4.9].)
5.3. The following equality holds:
(°[x, Y] = {HeSX,Y] : Huel>*(Q,Y) forallu e C(Q,X) }.

< We only have to prove “D.” Let a section H € S[X,))] be such that Hu €
£°(Q,Y) for all u € C(Q,X). Given a point ¢ € @, define the linear operator
T,: C(Q, X) = Y(q) by the formula T,u = H(q)u(q). Employing the Dupré Theo-
rem, we obtain

1T, = sup {[[H(q)u(q)|| : UGC(Q X), HUH }
= sup { [H(g)z| : z € X(q), loll <1} =
In addition, sup,cq [|Tqull = sup,eq [[(Hu)(q)|| < oo for all u € C’(Q,X). Since

C(Q, X) is a Banach space, the Uniform Boundedness Principle makes it possible
to conclude that sup,cq [[H(q)|| = sup,eq | T4l < o0. >

5.4. Consider the set

colX, Y] = {H e SX,V] : Hue c(Q,Y) forallu € C(Q, X) }

and call its elements cg-homomorphisms from X into ).

Employing 5.3 and taking account of the fact that ¢o(Q,)) is complete, it is
easy to show that c¢g[X, )] is a closed vector subspace of ¢>°[X,))]. In particular,
co[X, Y] is a Banach space with respect to the uniform norm.
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5.5. A section H € S[X,))] is a co-homomorphism if and only if H is bounded
and there exists a subset U C C(Q,X) such that U is stalkwise dense in X and
Hu € ¢9(Q,Y) for allu € U.

< We only have to prove sufficiency. Let H and U satisfy the condition stated.
Omitting the trivial case H = 0, assume that C' := sup ¢ [|H(q)|| > 0. Consider
an arbitrary section v € C(Q, X) and show that Hv € ¢o(Q,Y). By 3.4 it suffices
to fix ¢ € @ and £ > 0 and find a neighborhood U of ¢ such that ||H(p)v(p)|| < e
for all p € U\{q}. Since U is stalkwise dense in X, there exists a section u € U for
which [|u(q) — v(q)|| < 55. Due to 3.4, we have ;i_rg H(p)u(p) = 0; hence, there is

a neighborhood U of ¢ such that [[u(p) — v(p)|| < 55 and ||H(p)u(p)|| < § for all
p € U\{q}. Then for all p € U\{q} we have
5 5
I (p)v(p)ll < 12 R)u@)]| + [H Pl lulp) —v@)ll < 5 +C55

2C:5. >

5.6. The following assertion shows that the boundedness of H in 5.5 is an es-
sential condition.

For every nonempty compact Hausdorff space () without isolated points, there
exist constant Banach bundles X and ) over @, a section H € S[X, )], and a subset
U C C(Q,X) such that U is stalkwise dense in X and Hu € ¢o(Q,Y) for allu € U,
but H is unbounded.

< If @ is a nonempty compact Hausdorff space without isolated points, then,
obviously, @ is infinite and thus contains a sequence of pairwise distinct points
gn € Q (n € N). Let ¢y be the Banach space of vanishing sequences, let sg, be the
dense subspace of ¢ constituted by the finitely-supported sequences, and let ¢f, be
the dual of ¢g. Define the mapping H : Q — ¢ as follows:

H(g,)x=n-z(n) for neN, x € ¢,
H(q)=0 forall g€ @\ {gn:neN}.

Put X = @x{co}, Y = @x{R} and denote by U the totality of all constant func-
tions u: @ — sfn. Then X, Y, H, and U possess the required properties. >

5.7. Every section H € S[X, )] whose pointwise norm || H|| belongs to ¢o(Q) is
an example of a co-homomorphism. However, in general, the set ¢o[X, V] is not ex-
hausted by the sections of the above form. Indeed, from the constructions of [13, Ex-
ample 9] it follows that, given a separable compact Hausdorff space @, there exists
a co-homomorphism whose pointwise norm equals unity an a dense subset of Q.
We can provide a stronger version of the above fact by stating that, regardless of
the properties of @, the pointwise norm of a cg-homomorphism can be an arbitrary
bounded positive function f: Q@ — R.

For every nonempty compact Hausdorff space (Q without isolated points, there
exist constant Banach bundles X and Y over () such that, given an arbitrary func-
tion 0 < f € £°°(Q), there is a co-homomorphism H € ¢o[X,Y] with pointwise
norm || H|| = f.

<4 Put X = Qx{c(Q)}, Y = @x{R}, and define the mapping H: Q — co(Q)’
by putting H(q)z = f(q)z(q) for all ¢ € Q and = € ¢o(Q). Then, as is easily seen,
H e S[xX, V], | H|| = f,and Hu € ¢o(Q,Y) for all constant functions u: Q@ — ¢o(Q);
whence, due to 5.5, we have H € ¢o[X,)]. >
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5.8. Consider the set
CDo[X,)] = {H € S[X,Y] : Hue CDy(Q,Y) for all u € C(Q, X) }

and call its elements CDg-homomorphisms from X into ).

From 5.3 and the completeness of CDy(Q, Y) (see 3.9) it is obvious that CDy[X, V]
is a closed vector subspace of £>°[X, )] and is thus a Banach space with respect to
the uniform norm.

5.9. The following equality holds:
CDo[X, Y] = {H € S[X,Y] : Hu € CDy(Q, D) for all u € CDy(Q, X) }.
<4 We only have to show “C.” If HeCDy[X, Y] and u€ CDy(Q, X) then || Hugq| <
1H |[lwall € co(Q) and, consequently,

Hu = Hu, + Huq € CDy(Q,Y) +co(Q,Y) C CDy(Q,Y). >

5.10. If H € (>*[X,))], u € C(Q,X), and Hu € CDy(Q,)Y) then
I (Hw)ell < IH[lwll, I (Hu)all < 2L H ] {|ul].
4 By 3.6, for all ¢ € @ we have

I(Hu)e()]l = lim [H(p)up)l| < sup [|H ()] lim [jup)]| = [H[[lu(a)]-
p—q peQ p—q
In addition, [[(Hu)al| = | Hu — (Hu)c|| < [[Hull + [[(Hu)c]| < 2| H| |ull. >

5.11. A section H € S[X,))] is a CDy-homomorphism if and only if H is bounded
and there exists a subset U C C(Q,X) such that U is stalkwise dense in X and
Hu € CDy(Q,Y) for all u € U.

<4 We only have to prove sufficiency. Let H and U satisfy the conditions stated.
Without loss of generality, we may assume that U is a vector subspace of C'(Q, X).

Given a point ¢ € @, denote by U(q) the dense subspace {u(q) : v € U} C X(q)
and define the mapping Go(q): U(q) — Y(q) by putting

Go(q)u(q) = (Hu)c(q) for all ueU.

The above definition is correct, since, due to 5.10, for all sections uy,us € U, the
equality u1(q) = ua(q) implies

|(Hui)e(q) — (Huz)e(q)|| < [[H||||lui(q) — ua(qg)| = 0.

The mapping Go(q) is obviously linear. In addition, according to 5.10, for all u € U
we have
1Go(@)u(@)]| = [(Hu)e(g) || < [1H][ lulg)l;

whence, ||Go(q)|| < |[H|| and thereby Go(q) € B(U(q),Y(q)). Since U(q) is dense
in X(q), and Y(q) is complete, Go(g) has an extension G(q) € B(X(q),y(q));
moreover, ||G(q)|| = |Go(@)|| < |H||- Therefore, G € £>°[X,)] and Gu = (Hu). €
C(Q,Y) for all uw € U. By [10, 2.4.9] we have G € C[X,)].

Since H — G € {*[X,)] and (H — G)u = Hu — (Hu). € ¢o(Q,Y) for all u € U;
therefore by 5.5 the section H—G is a ¢g-homomorphism. Hence, for all v € C(Q, X)

Hv=Gv+ (H—-Gw e C(Q,Y) +c(Q,Y) = CDy(Q, ),
ie, H € CDy[X,)]. b

Note that, due to 5.6, the boundedness of H in the above assertion cannot be
omitted.
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5.12. It is clear that the sum of a homomorphism and a c¢y-homomorphism
is a CDg-homomorphism. The following assertion shows that such sums exhaust
the whole set of CDy-homomorphisms.

The following direct sum decomposition holds:
CDo[X,Y] = C[X, V] D colX, V).

In particular, every CDg-homomorphism H € CDy[X, Y] is uniquely representable
as H=H.+ Hy, with H. € C|X,)] and Hy € ¢y X, ))].

< The only nontrivial part of the above statement is the inclusion CDy[X, Y] C
C[X, Y]+ colX, Y] whose justification can be easily extracted from the proof of 5.11
by taking C(Q,X) asU. >

5.13. For all H € CDy[X, Y] and u € CDy(Q, X), the following hold:

(Hu). = Houe, (Hu)g = Heug + Hqug + Hyue.
In particular, if u € C(Q,X) then
(Hu)c = Hou, (Hu)g = Hyu.
<4 Taking account of 3.5 and 5.12, it suffices to use the equalities
Hu= (H.+ Hg)(uc + ua) = Houe + (Heug + Hqug + Hque)
and note that H.u, € C(Q,Y) and Heug + Hqug + Hyue € ¢0(Q,Y). >

5.14. In a similar way, we can deduce the following assertion from 3.2 (2), 3.10,

and 5.12:

The space CDy[X, )] is a CDy(Q)-module with respect to the pointwise multi-
plication. Furthermore, for all f € CDy(Q) and H € CDy[X,Y] we have

(fH)c:chm (fH)d:chd+ded+dec-
In particular, if f € C(Q) then
(fH)e = fHe, (fH)a= fHa.
The obvious inequality || fH|| < ||fIIIH]| (f € CDo(Q), H € CDy[X,))]) allows
us to conclude that CDy[X, Y] is a Banach CD(Q)-module.
5.15. For every CDy-homomorphism H € CDy[X,Y] we have
[Hell < [|H|l,  |Hal < 2[|H].
a4 Let H € CDy[X,))]. Consider arbitrary elements ¢ € @ and « € X(q). By the

Dupré Theorem, there exists a section v € C(Q, X) such that u(q) = . According
to 5.10 and 5.13 we have

[He(q)z| = [[He(g)u(g)l] = |(Heu)(q)
whence ||H.|| < ||H||. Consequently,
[Hall = [|1H = He|| < [|H]| + [|He|l < 2[|H]. >

(Hu)e(@ll < [H[ Nul)]l = [1H | {|21];
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5.16. Let X and Y be Banach bundles over @ which are defined according to
the definition 3.14. Given a CDg-homomorphism H € CDy[X, Y], define the section
He S[X,JJ} by the rule

H(qe) = He(q), H(qa) = H(g) forall ¢€Q.
Therefore, ET(-,O) = H,. and f[(, 1)=H.

5.17. The mapping H — H is a linear isometry of the Banach space CDy[X, )]
onto C[X y] Moreover, for all f € CDy(Q), u € CDy(Q, X), and H € CDy[X, ],
we have Hu = Hu and fH fH

<4 Let f € CDy(Q), u € CDy(Q, X), and H € CDy[X,Y]. By 5.13 we have

Hu (-,0) = (Hu), Huc—H(,O)'d(70) (Hu)( 0),
Hu(-,1) = Hu = H(-,1) u( 1) = (Hu)(-,

and thus Hu = Ha. Similarly, by using 5.14, we obtain fH fH
Show that H € C’[X y] Indeed, if v € C(Q X) then v = u for some section

u € CDy(Q,X) (see 3.15); hence, Hv = Hu = Hu € C(Q y) It remains to
employ 5.2. B

The mapping H — H is obviously linear. In addition, due to 5.15, for all H €
CDy|X, Y] we have

| H || = max {||H(-.0), | H (-, 1)||} = max{||H.|, [|H|l} = | H].

It remains to show that the image of the mapping H H coincides with C [f , j]

Consider an arbitrary homomorphism G € C[X~, ﬂ and put H := G(-,1). As is
easily seen, H € S[X,))]. According to 3.16, for all u € CDy(Q, X') we have

Hu=G(-,1)u(-1) = (Gu)(-, 1) € CDo(Q, V);

whence H € CDo[X, V] (see 5.9). To prove the equality H = G, consider arbitrary
elements (¢,7) € Q and z € X(g,r) and show that

H(q,r)x=G(q,7)x

Due to 3.15 and the Dupré Theorem, there is a section u € CDy(Q, X') such that
u(g,r) = x. Taking account of 3.16 and 5.13, we have

H('v O) ﬂ(VO) = Hou, = (Hu)c = ((Gﬂ)(, 1)>C = (Gﬂ)(v 0) = G('7O) E(W 0)'
In addition, H(-,1)@(-,1) = Hu(-,1) = G(+,1) u(+, 1). Consequently,

H(q,r)x = H(q,r) (g, r) = G(q,7) (g, 7) = Glg, ) z. >
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5.18. The criterion presented below is immediate from 5.17. (In the case of
Y =Q x {R}, it is actually a restatement of [13, Proposition 8].)

The following properties of a section G € S [)? , 37] are equivalent:
(1) G ecl,Y);
(2) G(-,0) € C[X, V], G(-,1) = G(-,0) € co[X, V]
(3) G('v 1) € CDO[va]7 G(’,O) = G('a 1)c~

Note also that the images of the spaces C[X, )] and ¢[X, Y] under the isometry
H — H are described as follows:

{H: HeClX,V]} = {GeC[X,)] : G(-,0)=G(-1)}
{Ges[x,Y] : G(-,0)=G(-,1) e Clx, )]},
{H : HeclXx, )]} = {GeC[X,)] : G(-,00=0}
{Ges[x, Y] : G(-,00=0, G(-,1) € co[X, ] }.

5.19. In conclusion, we will describe the spaces of homomorphisms, ¢y-homomor-
phisms, and CDy-homomorphisms in terms of their action in Banach C(Q)-mod-
ules.

Let U and V be arbitrary vector subspaces of the Banach spaces £*°(Q, X') and
2(Q,Y). Say that T: U — V is an orthomorphism (cp. [10, 6.2.11], [15, 4.1.3 (5)])
if T is a bounded linear operator and, for all u € U and ¢ € @, the equality u(q) =0
implies (T'u)(q) = 0. Denote by Orth(U,V) the set of all orthomorphisms from U
into V. As is easily seen, Orth(i, V) is a closed vector subspace of the space of all
bounded linear operators from U into V endowed with the operator norm.

The following properties of a function T : C(Q,X) — £>°(Q,)) are equivalent:

(1) T is an orthomorphism;

(2) T is a homomorphism of Banach C(Q)-modules, i.e., T is a bounded linear
operator and T(fu) = fTu for all f € C(Q), u € C(Q, X);

(3) there exists a section H € ¢>°[X,))] such that (Tu)(q) = H(q)u(q) for all
u € C(Q,X) and q € Q; furthermore, ||T| = ||H]|.

< The implication (3)=(2) is obvious.

(2)=(1): Let v € C(Q,X) and ¢ € @ be such that u(q) = 0. According
to [9, 2.11], there exist sequences of functions f,, € C(Q) and sections u,, € C(Q, X)
such that f,(¢) = 0 for all n € N and ||f,u, — ul| = 0 as n — oco. Then by (2)
we have

(Tu)(q) = lim (T (faun))(q) = lim (fuTun)(q) = lim fn(q)(Tun)(q) = 0.

n— oo

(1)=(3): Given a point ¢ € @, define the mapping H(q): X(q) — Y(q) by
putting H(q)u(q) = (Tu)(q) for all u € C(Q, X). The correctness of this definition
is immediate from (1) and the Dupré Theorem. The mapping H(q) is obviously
linear. In addition, by the Dupré Theorem we have

sup [H(@)] = sw {[H@u(a)] 4 €Q ueC@ ), Jul <1}
= swp { swp [(Tw)(@)] + we CQ.), Jull <1} = IT]. »
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5.20. Using 5.19, from the above-established results we can deduce a number of
direct corollaries on the spaces of orthomorphisms. We will state some of them.

Let X and Y be Banach bundles over a nonempty compact Hausdorfl space Q
without isolated points.

(1) Given asection H € {>°[X, )], define the function Ty : C(Q, X) — £°(Q, )
by putting (Tru)(q) = H(q)u(q) for allu € C(Q,X) and q € Q. The map-
ping H — Ty is a C(Q)-linear isometrical isomorphism between the fol-
lowing pairs of Banach C(Q)-modules:

(2[X,Y] & Orth(C(Q,X),(2(Q,))),
ClX, Y] & Orth(C(Q,X),C(Q, ).
c()[X,J/] < Orth(C(Q,X)mO(QJ/) y

CDo[X,Y] < Orth(C(Q,X),CDo(Q,)).
(2) The following direct sum decomposition holds:

Orth(C(Q, X), CDo(Q, )
= Orth(C(Q, X),C(Q,Y)) @ Orth(C(Q, X), co(Q,V)).

Therefore, every orthomorphism T : C(Q, X) — CDy(Q, D) is uniquely rep-
resentable as the sum T = T, + T, of some orthomorphisms T,.: C(Q, X) —
C(Q,Y) and Ty: C(Q,X) — ¢o(Q,Y). Moreover, T, = Ty, and Ty = Ty,
where H is the CDg-homomorphism from X' into ) determined by the equal-
jty T = TH

(3) For every orthomorphism T: C(Q,X) — CDy(Q,Y) we have ||T.|| < ||T],
ITall < 2/|T-

(4) For every orthomorphism T: C(Q,X) — CDy(Q,)Y) and every section
u e C(Q,X) we have T,u= (Tu), and Tyu = (Tu)q.

In particular, the Banach spaces CDy[X, )], C’P?,)N/], Orth(C(Q, X),CDy(Q,Y)),
and Orth(C’(@, X),0(Q, 37)) are linearly isometric.
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IIPOCTPAHCTBA CD,-®YHKIINI
" CDy-CEYEHUN BAHAXOBBIX PACCJIOEHUN

A. E.T'YVTMAH, A.B. KOIITEB

AHHOTALIUS. B navase paGoThl IpUBEIEHO KPATKOE U3JIOKEHHIE KJIIOYEBBIX 3Ta-
noB uccienosanug npocrpancrsa CDo(Q) = C(Q) + ¢o(Q), 2/1eMeHTBl KOTOPOro
ABJIAIOTCA CyMMaMU HEIPEPBIBHBIX U «IUCKPETHLIX> (DYHKIUI Ha KOMIIaKTe () 6e3
u30/mMpoBaHHbX Todek. (IIpH 5TOM OCHOBHOE BHIMAHHE YJIeJIeHO OIHCAHUIO KOM-

nakTa (), peajusyiomniero 6anaxony peierky CDo(Q) B Buje C(Q).) OcraBasicst
YaCTh CTATHU MOCBSINEHA AHAJIOTTIHOMY KPYTY BOIIPOCOB, CBSI3aHHOMY C TPOCTPAH-
crBoM CDy(Q, X) «HenpepbIBHO-IMCKPETHBIX» CedeHHil GaHaxoBa paccioeHns X
u ¢ npocrpancTBoM CDg-roMmoMopdu3MoB 6AHAXOBBIX PaCCIOEHUIA.

KJIIOYEBBIE CJIOBA. Banaxosa pererka, AM-IpoCcTpaHCTBO, yaBOEHHE TIO AJTeK-
CAHIPOBY, HEIIPEPBIBHOE DAHAXOBO PACCIOCHHE, CedeHre DaHaxoBa Pacc/JoeHus, ba-
HaxoB C(Q)-Momysb, roMOMOpMU3M GAHAXOBBIX PACCIOCHH, roMOMOpGU3M GaHa-
xoBbIx C(Q)-Momyiei.



