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As is known (see [1]), every Banach–Kantorovich
space � is isomorphic to an ideal of the space C

∞
(Q, �)

of extended continuous sections of a suitable ample
Banach bundle � over an extremally disconnected
compact space Q. Furthermore, the properties of the
bundle � or those of its single stalks reflect the analo�
gous global or local properties of the space �. In par�
ticular, the property of � to be locally finite�dimen�
sional or order separable is closely connected with the
property of the stalks of � to be finite�dimensional or
separable.

We study the topological characteristics of the set of
points at which the stalks of an ample Banach bundle
are finite�dimensional or separable, examine the con�
nection between the property of the stalks of a bundle
to be finite�dimensional or separable with the analo�
gous property of the stalks of the ample hull of the
bundle, and obtain a new criterion for existence of the
dual bundle in the separable case.

Throughout the paper, � is an arbitrary continuous
Banach bundle over an extremally disconnected com�

pact space Q,  is the ample hull of �, ω = {0, 1,

2, …},  = ω ∪ {∞}. We use the terminology and nota�
tion adopted in [1, 2].

The dimension of � is the function dim�: Q → 
which maps each point q ∈ Q into the dimension
dim�(q) ∈ ω of the stalk �(q) in case the latter is
finite�dimensional, and takes the value (dim�)(q) = ∞

�

ω

ω

otherwise. The dimension of � is bounded (on P ⊂ Q)
whenever dim� ≤ n (on P) for some n ∈ ω. The dimen�
sion of � is locally bounded on P ⊂ Q if it is bounded
on a neighborhood of each point p ∈ P. Given F: Q →

 and d ∈ , denote {F ≤ d} := {q ∈ Q: F(q) ≤ d}. The
symbols {F < d}, {F = d}, etc., are introduced similarly.
From [3, 18.1] it is clear that the set {dim� ≥ n} is open
for all n ∈ ω.

Theorem 1. Suppose that � is ample.
(1) The set {dim� = n} is clopen for every n ∈ ω. In

particular, {dim� < ∞} is open and σ�closed, {dim� = ∞}
is closed and σ�open.

(2) The following are equivalent: (a) {dim� < ∞} is
clopen; (b) {dim� = ∞} is clopen; (c) the set of values of
dim� is finite.

Theorem 2. If all stalks of � are finite�dimensional
then the following are equivalent:

(1) � is ample;
(2) {dim� = n} is open for every n ∈ ω;
(3) {dim� = n} is closed for every n ∈ ω and the

dimension of � is bounded;
(4) there is a finite partition of Q into clopen subsets

such that the dimension of � is constant on each element
of the partition.

Theorem 3. All stalks of  are finite�dimensional if
and only if the dimension of � is bounded. In this case,

the dimension of  is also bounded and maxdim  =
maxdim�.

Theorem 4. (1) If q ∈ Q and dim�(q) = n < ∞ then

the equality (q) = �(q) is equivalent to the contain�
ment q ∈ int{dim�= n}.

(2) The equalities {dim  = n} = cl int{dim�= n}

(n ∈ ω) and {dim  = 0} = int{dim� = 0} hold.

ω ω
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The following assertion ensues from the above facts
with [2, 3.2.9(1)] taken into account:

Corollary 1. Suppose that all stalks of � are finite�
dimensional.

(1) The stalks of � and  coincide on a dense subset
of Q.

(2) The set {dim  < ∞} is open, σ�closed, and dense

in Q; the equality {dim  < ∞} = Q holds if and only if
dim� is bounded.

Theorem 5. Suppose that � is ample and a point q ∈ Q
is not σ�isolated. Then the stalk �(q) is separable if and
only if it is finite�dimensional.

Corollary 2. If � is ample then the following are
equivalent:

(1) the stalks of � are separable at all points which
are not σ�isolated;

(2) the stalks of � are finite�dimensional at all
nonisolated points;

(3) the set {dim� = ∞} is finite;
(4) there is a partition of Q into clopen subsets Q0,

Q1, …, Qn, n ∈ ω, such that the dimension of � is con�
stant and finite on each of the sets Q1, Q2, …, Qn, and Q0
is a finite set of isolated points.

Recall that a bundle � is separable whenever
C(Q, �) includes a countable subset which is stalkwise
dense in �.

Theorem 6. If � is ample then the following are
equivalent:

(1) � is separable;
(2) all stalks of � are separable;
(3) the stalks of � are separable at all isolated points

and at all points which are not σ�isolated;
(4) the stalks of � are finite�dimensional everywhere

except a finite set of isolated points at which the stalks are
separable;

(5) there is a partition of Q into clopen subsets Q0,
Q1, …, Qn, n ∈ ω, such that the dimension of � is con�

stant and finite on each of the sets Q1, Q2, …, Qn, and
Q0 is a finite set of isolated points at which the stalks of �
are separable.

Corollary 3. The following are equivalent:

(1)  is separable;
(2) the stalks of � are separable at each point of a

finite set S ⊂ Q and the dimension of � is bounded
on Q\S;

(3) the stalks of � are separable at each point of a
finite set S ⊂ Q and the dimension of � is locally
bounded on Q\S.

Theorem 7. If the dual bundle �' exists, a point q ∈ Q is
not σ�isolated, and the stalk �(q) is separable, then �

(q) is finite�dimensional and coincides with (q).

Theorem 8. If the stalks of � are separable at all
points which are not σ�isolated then the following are
equivalent:

(1) the dual bundle �' exists;
(2) � is ample;
(3) there is a partition of Q into clopen subsets Q0,

Q1, …, Qn, n ∈ ω, such that the dimension of � is con�
stant and finite on each of the sets Q1, Q2, …, Qn, and Q0
is a finite set of isolated points.

Furthermore, (1)–(3) imply �'(q) = �(q)' for q ∈ Q. 
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