= **MATHEMATICS** =

Distribution of Finite-Dimensional and Separable Stalks of an Ample Banach Bundle

A. E. Gutman^{*a*, *b*} and A. V. Koptev^{*a*}

Presented by Academician Yu.G. Reshetnyak October 23, 2013

Received November 7, 2013

Abstract—The topological characteristics are studied of the set of points at which the stalks of an ample Banach bundle are finite-dimensional or separable. A connection is established between the property of the stalks of a bundle to be finite-dimensional or separable with the analogous property of the stalks of the ample hull of the bundle. A new criterion is obtained for existence of the dual bundle.

DOI: 10.1134/S1064562414030168

As is known (see [1]), every Banach–Kantorovich space \mathcal{U} is isomorphic to an ideal of the space $C_{\infty}(Q, \mathcal{X})$ of extended continuous sections of a suitable ample Banach bundle \mathcal{X} over an extremally disconnected compact space Q. Furthermore, the properties of the bundle \mathcal{X} or those of its single stalks reflect the analogous global or local properties of the space \mathcal{U} . In particular, the property of \mathcal{U} to be locally finite-dimensional or order separable is closely connected with the property of the stalks of \mathcal{X} to be finite-dimensional or separable.

We study the topological characteristics of the set of points at which the stalks of an ample Banach bundle are finite-dimensional or separable, examine the connection between the property of the stalks of a bundle to be finite-dimensional or separable with the analogous property of the stalks of the ample hull of the bundle, and obtain a new criterion for existence of the dual bundle in the separable case.

Throughout the paper, \mathscr{X} is an arbitrary continuous Banach bundle over an extremally disconnected compact space Q, $\overline{\mathscr{X}}$ is the ample hull of \mathscr{X} , $\omega = \{0, 1, 2, ...\}$, $\overline{\omega} = \omega \cup \{\infty\}$. We use the terminology and notation adopted in [1, 2].

The dimension of \mathscr{X} is the function dim $\mathscr{X}: Q \to \overline{\omega}$ which maps each point $q \in Q$ into the dimension dim $\mathscr{X}(q) \in \omega$ of the stalk $\mathscr{X}(q)$ in case the latter is finite-dimensional, and takes the value $(\dim \mathscr{X})(q) = \infty$

e-mail: gutman@math.nsc.ru, koptev@math.nsc.ru

otherwise. The dimension of \mathscr{X} is bounded (on $P \subset Q$) whenever dim $\mathscr{X} \leq n$ (on *P*) for some $n \in \omega$. The dimension of \mathscr{X} is locally bounded on $P \subset Q$ if it is bounded on a neighborhood of each point $p \in P$. Given $F: Q \rightarrow$

 $\overline{\omega}$ and $d \in \overline{\omega}$, denote $\{F \le d\} := \{q \in Q: F(q) \le d\}$. The symbols $\{F < d\}, \{F = d\}$, etc., are introduced similarly. From [3, 18.1] it is clear that the set $\{\dim \mathcal{X} \ge n\}$ is open for all $n \in \omega$.

Theorem 1. Suppose that \mathscr{X} is ample.

(1) The set $\{\dim \mathscr{X} = n\}$ is clopen for every $n \in \omega$. In particular, $\{\dim \mathscr{X} < \infty\}$ is open and σ -closed, $\{\dim \mathscr{X} = \infty\}$ is closed and σ -open.

(2) The following are equivalent: (a) $\{\dim \mathcal{X} < \infty\}$ is clopen; (b) $\{\dim \mathcal{X} = \infty\}$ is clopen; (c) the set of values of dim \mathcal{X} is finite.

Theorem 2. If all stalks of \mathcal{X} are finite-dimensional then the following are equivalent:

(1) \mathscr{X} is ample;

(2) {dim $\mathscr{X} = n$ } is open for every $n \in \omega$;

(3) $\{\dim \mathcal{X} = n\}$ is closed for every $n \in \omega$ and the dimension of \mathcal{X} is bounded;

(4) there is a finite partition of Q into clopen subsets such that the dimension of \mathcal{X} is constant on each element of the partition.

Theorem 3. All stalks of $\overline{\mathcal{X}}$ are finite-dimensional if and only if the dimension of \mathcal{X} is bounded. In this case, the dimension of $\overline{\mathcal{X}}$ is also bounded and $\max \dim \overline{\mathcal{X}} = \max \dim \mathcal{X}$.

Theorem 4. (1) If $q \in Q$ and dim $\mathscr{X}(q) = n < \infty$ then the equality $\overline{\mathscr{X}}(q) = \mathscr{X}(q)$ is equivalent to the containment $q \in int\{\dim \mathscr{X} = n\}$.

(2) The equalities $\{\dim \overline{\mathcal{X}} = n\} = \operatorname{cl} \operatorname{int} \{\dim \mathcal{X} = n\}$ $(n \in \omega) \text{ and } \{\dim \overline{\mathcal{X}} = 0\} = \operatorname{int} \{\dim \mathcal{X} = 0\} \text{ hold.}$

^a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 4, Novosibirsk, 630090 Russia

^b Novosibirsk State University,

ul. Pirogova 2, Novosibirsk, 630090 Russia

The following assertion ensues from the above facts with [2, 3.2.9(1)] taken into account:

Corollary 1. Suppose that all stalks of \mathcal{X} are finitedimensional.

(1) The stalks of \mathcal{X} and $\overline{\mathcal{X}}$ coincide on a dense subset of Q.

(2) The set {dim $\overline{\mathcal{X}} < \infty$ } is open, σ -closed, and dense

in Q; the equality $\{\dim \overline{\mathcal{X}} < \infty\} = Q$ holds if and only if $\dim \mathcal{X}$ is bounded.

Theorem 5. Suppose that \mathscr{X} is ample and a point $q \in Q$ is not σ -isolated. Then the stalk $\mathscr{X}(q)$ is separable if and only if it is finite-dimensional.

Corollary 2. If \mathcal{X} is ample then the following are equivalent:

(1) the stalks of \mathscr{X} are separable at all points which are not σ -isolated;

(2) the stalks of \mathscr{X} are finite-dimensional at all nonisolated points;

(3) the set {dim $\mathscr{X} = \infty$ } is finite;

(4) there is a partition of Q into clopen subsets Q_0 , $Q_1, \ldots, Q_n, n \in \omega$, such that the dimension of \mathscr{X} is constant and finite on each of the sets Q_1, Q_2, \ldots, Q_n , and Q_0 is a finite set of isolated points.

Recall that a bundle \mathscr{X} is separable whenever $C(Q, \mathscr{X})$ includes a countable subset which is stalkwise dense in \mathscr{X} .

Theorem 6. If \mathcal{X} is ample then the following are equivalent:

(1) \mathscr{X} is separable;

(2) all stalks of \mathscr{X} are separable;

(3) the stalks of \mathscr{X} are separable at all isolated points and at all points which are not σ -isolated;

(4) the stalks of \mathscr{X} are finite-dimensional everywhere except a finite set of isolated points at which the stalks are separable;

(5) there is a partition of Q into clopen subsets Q_0 , $Q_1, \ldots, Q_n, n \in \omega$, such that the dimension of \mathcal{X} is con-

stant and finite on each of the sets $Q_1, Q_2, ..., Q_n$, and Q_0 is a finite set of isolated points at which the stalks of \mathcal{X} are separable.

Corollary 3. *The following are equivalent:*

(1) $\overline{\mathcal{X}}$ is separable;

(2) the stalks of \mathscr{X} are separable at each point of a finite set $S \subset Q$ and the dimension of \mathscr{X} is bounded on $Q \setminus S$;

(3) the stalks of \mathscr{X} are separable at each point of a finite set $S \subset Q$ and the dimension of \mathscr{X} is locally bounded on $Q \setminus S$.

Theorem 7. If the dual bundle \mathscr{X} exists, a point $q \in Q$ is not σ -isolated, and the stalk $\mathscr{X}(q)$ is separable, then \mathscr{X}

(q) is finite-dimensional and coincides with $\mathscr{X}(q)$.

Theorem 8. If the stalks of \mathscr{X} are separable at all points which are not σ -isolated then the following are equivalent:

(1) the dual bundle \mathscr{X}' exists;

(2) \mathscr{X} is ample;

(3) there is a partition of Q into clopen subsets Q_0 , $Q_1, \ldots, Q_n, n \in \omega$, such that the dimension of \mathscr{X} is constant and finite on each of the sets Q_1, Q_2, \ldots, Q_n , and Q_0 is a finite set of isolated points.

Furthermore, (1)–(3) imply $\mathscr{X}'(q) = \mathscr{X}(q)'$ for $q \in Q$.

REFERENCES

- A. E. Gutman, "Banach bundles in the theory of lattice-normed spaces," in *Linear Operators Coordinated with Order*, Proceedings of Sobolev Institute of Mathematics (Inst. Mat., Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 1995), Vol. 29, pp. 63–211 [in Russian].
- A. E. Gutman and A. V. Koptev, "Dual Banach bundles," in *Nonstandard Analysis and Vector Lattices* (Springer Science, Dordrecht, 2000), pp. 105–159.
- 3. G. Gierz, Bundles of Topological Vector Spaces and Their Duality (Springer-Verlag, Berlin, 1982).