SHORT COMMUNICATIONS

Convergence-Preserving Maps and Fixed-Point Theorems

A. E. Gutman^{1*} and A. V. Koptev^{2**}

¹Sobolev Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia

²Sobolev Institute of Mathematics, Russian Academy of Sciences, Novosibirsk, Russia Received November 12, 2013

DOI: 10.1134/S0001434614050150

Keywords: sequential convergence, (pre)topological convergence, single-valued convergence, sequential topological space, convergence-preserving map, (sub)sequentially convergent map, fixed-point theorem.

By a *convergence* (to be more precise, by a *sequential convergence*) on a set X we mean a correspondence between sequences and elements of X, i.e., any subset of $S_X \times X$, where $S_X := X^{\mathbb{N}}$. A convergence on X is *(pre)topological* if it coincides with convergence in some (pre)topology on X. It is easy to see that if $\tau: X \to \mathcal{P}(\mathcal{P}(X)) \setminus \{\varnothing\}$ and $(\forall x \in X)(\forall U \in \tau(x))(x \in U)$, then the convergence

$$\alpha \to x \quad \Longleftrightarrow \quad (\forall U \in \tau(x)) (\exists \, \overline{n} \in \mathbb{N}) (\forall \, n \ge \overline{n}) (\alpha(n) \in U)$$

is pretopological. In particular, this class contains all convergences determined by metrics, partial metrics [1], generalized metrics [2], cone metrics [3], and tvs-metrics [4].

We denote the constant sequence $\mathbb{N} \times \{x\}$ by x^{\wedge} . Given $\alpha, \beta \in \mathcal{S}_X$, by $\min(\alpha, \beta)$ we denote the sequence $\gamma \in \mathcal{S}_X$ such that $\gamma(2n-1) = \alpha(n)$ and $\gamma(2n) = \beta(n)$ for all $n \in \mathbb{N}$. If β is a subsequence of α , then we write $\beta \preccurlyeq \alpha$. For any convergence \rightarrow on X, we define a convergence $\stackrel{*}{\rightarrow}$ on X by setting

$$\alpha \xrightarrow{*} x \quad \Longleftrightarrow \quad (\forall \beta \preccurlyeq \alpha) (\exists \gamma \preccurlyeq \beta) (\gamma \rightarrow x).$$

A convergence is said to be *single-valued* if

 $(\forall \alpha \in \mathcal{S}_X)(\forall x, y \in X)(\alpha \to x \& \alpha \to y \Rightarrow x = y).$

Consider the following properties of a convergence \rightarrow on a set *X*:

- (0) $(\forall \alpha \in \mathcal{S}_X)(\forall x \in X)((\forall n \in \mathbb{N})(\alpha(n)^{\wedge} \to x) \Rightarrow \alpha \to x);$
- (1) $(\forall x \in X)(x^{\wedge} \to x);$
- (2) $(\forall \alpha \in \mathcal{S}_X)(\forall x \in X)(\alpha \to x \Rightarrow (\forall \beta \preccurlyeq \alpha) \beta \to x);$
- (3) $(\forall \alpha \in \mathcal{S}_X)(\forall x \in X)(\alpha \xrightarrow{*} x \Rightarrow \alpha \to x).$

Theorem 1 ([5]). (a) A convergence is pretopological if and only if it satisfies conditions (0)–(3).

(b) The following three properties of a single-valued convergence are pairwise equivalent: the convergence is pretopological; the convergence is topological; the convergence satisfies conditions (1)-(3).

(c) Any topological convergence on X coincides with convergence in some sequential topology on X.

^{*}E-mail: gutman@math.nsc.ru

^{**}E-mail: koptev@math.nsc.ru

Recall that a topological space X is said to be *sequential* if

$$(\forall Y \subset X)(\operatorname{cl}_{\sigma} Y = Y \Rightarrow \operatorname{cl} Y = Y),$$

and it is called a Fréchet space if

$$(\forall Y \subset X)(\operatorname{cl}_{\sigma} Y = \operatorname{cl} Y),$$

where cl Y denotes the closure of Y and $cl_{\sigma} Y := \{x \in X : (\exists \alpha \in S_Y)(\alpha \to x)\}$ denotes the sequential closure of Y. Since a sequential topology with given convergence is unique, assertion (c) says that the notions of topological convergence and sequential topology are equivalent.

Throughout the paper, X and Y are sequential topological spaces.

We set $C_X = \{\alpha \in S_X : (\exists x \in X) (\alpha \to x)\}$. We refer to a space with single-valued convergence as a *single-valued* space. If X is a single-valued space and $\alpha \in C_X$, then, for the (unique) limit of the sequence α , we use the traditional notation $\lim \alpha$. Single-valuedness occupies an intermediate position between the classical separation axioms T_1 and T_2 ; the T_1 axiom is equivalent to the uniqueness of a limit for constant sequences:

$$(\forall x, y \in X)(x^{\wedge} \to y \Rightarrow x = y).$$

Let $D \subset X$, and let $f: D \to Y$. We say that a function f is *convergence-preserving* if

 $(\forall \alpha \in \mathcal{S}_D)(\alpha \in \mathcal{C}_X \Rightarrow f \circ \alpha \in \mathcal{C}_Y).$

If the space D is sequential, then, as is known, the continuity of f is equivalent to the condition

 $(\forall \alpha \in \mathcal{S}_D)(\forall x \in D)(\alpha \to x \Rightarrow f \circ \alpha \to f(x)).$

Lemma 1. The following equivalence holds:

$$(\forall \alpha, \beta \in \mathcal{S}_X)(\forall x \in X)(\min(\alpha, \beta) \to x \Leftrightarrow (\alpha \to x \& \beta \to x)).$$

In particular, if X is single-valued, then $mix(\alpha, \beta) \in C_X$ implies $\alpha, \beta \in C_X$ and $lim \alpha = lim \beta$.

Proof. If $\alpha \to x$ and $\beta \to x$, then

$$(\forall \gamma \preccurlyeq \min(\alpha, \beta))(\exists \delta \preccurlyeq \gamma)(\delta \preccurlyeq \alpha \lor \delta \preccurlyeq \beta),$$

whence $\min(\alpha, \beta) \xrightarrow{*} x$ and, therefore, $\min(\alpha, \beta) \to x$. The reverse implication follows from the relations $\alpha \preccurlyeq \min(\alpha, \beta)$ and $\beta \preccurlyeq \min(\alpha, \beta)$.

Lemma 2. Let Y be a T_1 space. Then a function $f: X \to Y$ is convergence-preserving if and only if it is continuous.

Proof. Let us clarify the *only if* part. Suppose that $\alpha \to x$. Then $mix(\alpha, x^{\wedge}) \to x$, whence

$$\min(f \circ \alpha, f(x)^{\wedge}) = f \circ \min(\alpha, x^{\wedge}) \to y, \quad \text{where} \quad y \in Y;$$

therefore, $f \circ \alpha \to y$ and $f(x)^{\wedge} \to y$. Since Y is T_1 , it follows that $f(x)^{\wedge} \to y$ implies f(x) = y. Hence $f \circ \alpha \to f(x)$.

Note that T_1 separability in Lemma 2 cannot be relaxed to T_0 . Indeed, suppose that $X, \alpha \in S_X$, and $x \in X$ are such that $\alpha \to x \notin \operatorname{im} \alpha$. Let Y be the set $\{0,1\}$ with the open topology $\{\emptyset, \{1\}, \{0,1\}\}$. Then the function $f: X \to Y$, where $f \equiv 0$ on $X \setminus \{x\}$ and f(x) = 1, is convergence-preserving and discontinuous.

Theorem 2. Suppose that X is a Fréchet space, Y is a regular single-valued sequential space, and $D \subset X$. Then a function $f: D \to Y$ is convergence-preserving if and only if f can be extended to a continuous function $\overline{f}: \operatorname{cl} D \to Y$.

MATHEMATICAL NOTES Vol. 95 No. 5 2014

Proof. Sufficiency is obvious. Let us prove necessity. Suppose that f preserves convergence. If $\alpha, \beta \in S_D$ have a common limit, then $\min(\alpha, \beta) \in C_X$, whence

$$\min(f \circ \alpha, f \circ \beta) = f \circ \min(\alpha, \beta) \in \mathcal{C}_Y$$

and, therefore, $\lim(f \circ \alpha) = \lim(f \circ \beta)$. Hence there exists a function $\overline{f} : \operatorname{cl} D \to Y$ such that $\lim(f \circ \alpha) = \overline{f}(x)$ for all $x \in \operatorname{cl} D$, $\alpha \in S_D$, and $\alpha \to x$. Let us prove the continuity of \overline{f} . Arguing by contradiction, suppose that $\beta \in S_{\operatorname{cl} D}$ and $\beta \to x \in \operatorname{cl} D$ but $\overline{f} \circ \beta \to \overline{f}(x)$. Passing to a subsequence, we can assume that $\overline{f}(x) \notin \operatorname{cl} \operatorname{im}(\overline{f} \circ \beta)$. The regularity of Y implies the existence of disjoint open sets $U, V \subset Y$ for which $\overline{f}(x) \in U$ and $\operatorname{im}(\overline{f} \circ \beta) \subset V$. For each $n \in \mathbb{N}$, choose $\alpha_n \in S_D$ so that $\alpha_n \to \beta(n)$. Taking into account the inclusion $\lim(f \circ \alpha_n) = \overline{f}(\beta(n)) \in V$, we can assume that $\operatorname{im}(f \circ \alpha_n) \subset V$. Therefore, $f[A] \subset V$, where $A = \bigcup_{n \in \mathbb{N}} \operatorname{im} \alpha_n$. The inclusion $\operatorname{im} \beta \subset \operatorname{cl} A$ implies $x \in \operatorname{cl} A$. Since X is a Fréchet space, it follows that $\alpha \to x$ for some $\alpha \in S_A \subset S_D$. Thus, $\lim(f \circ \alpha) = \overline{f}(x) \in U$, while $\operatorname{im}(f \circ \alpha) \subset f[A] \subset V$.

The following examples show that the assumptions of Theorem 2 cannot be relaxed by requiring X to be only sequential (even in the case $Y = \{0, 1\}$) or by replacing the regularity requirement on Y by the Hausdorffness requirement (even in the case where X is a metric space).

Example 1. Consider the pretopology on \mathbb{R}^2 in which the "cross-shaped" sets

$$([s-\varepsilon,s+\varepsilon]\times\{t\})\cup(\{s\}\times[t-\varepsilon,t+\varepsilon]),\qquad \varepsilon>0,$$

form a neighborhood base at each point (s,t). Since the convergence in this pretopology is single-valued, it follows by Theorem 1 that it coincides with convergence in a suitable sequential topology τ on \mathbb{R}^2 . Let $X = (\mathbb{R}^2, \tau)$. We set

$$D_0 = \{(s,t) \in \mathbb{R}^2 : s < 0\}, \qquad D_1 = \{(s,t) \in \mathbb{R}^2 : 0 < t < s\}, \qquad D = D_0 \cup D_1 \subset X.$$

The function $f: D \to \{0, 1\}$ identically equal to 0 on D_0 and to 1 on D_1 is convergence-preserving but does not admit a continuous extension to cl D. (Note that D, which is an open subset of X, is a sequential space, and cl $D = cl_{\sigma} D$.)

Example 2. Let *X* be the classical metric space \mathbb{R}^2 , and let $D = \mathbb{R}^2 \setminus (\mathbb{R} \times \{0\})$. Consider the topological space *Y* with underlying set \mathbb{R}^2 in which a neighborhood base at each point $y \in D$ is formed by the ordinary open disks $B(y, \varepsilon), \varepsilon > 0$, and a neighborhood base at each point $y \in \mathbb{R} \times \{0\}$ consists of all sets of the form $B(y, \varepsilon) \setminus (\mathbb{R} \times \{0\}) \cup \{y\}, \varepsilon > 0$. The identity embedding $f : D \to Y$ is convergence-preserving, but it does not admit a continuous extension to $\operatorname{cl} D = X$. (Note that *Y* is a first countable Hausdorff space. In particular, *Y* is a Fréchet space.)

The following two notions were introduced in [6] (for the case of metric spaces). A function $f: X \to Y$ is *sequentially convergent* if

$$(\forall \alpha \in \mathcal{S}_X)(f \circ \alpha \in \mathcal{C}_Y \Rightarrow \alpha \in \mathcal{C}_X).$$

A function $f: X \to Y$ is subsequentially convergent if

$$(\forall \alpha \in \mathcal{S}_X)(f \circ \alpha \in \mathcal{C}_Y \Rightarrow (\exists \beta \preccurlyeq \alpha)(\beta \in \mathcal{C}_X)).$$

Lemma 3. If X is a T_1 space and a function $f: X \to Y$ sequentially convergent, then f is injective and the inverse function f^{-1} : im $f \to X$ is continuous.

Proof. If $x_1, x_2 \in X$ and $f(x_1) = f(x_2)$, then $f \circ \min(x_1^{\wedge}, x_2^{\wedge}) = f(x_1)^{\wedge} \in \mathcal{C}_Y$, whence we have $\min(x_1^{\wedge}, x_2^{\wedge}) \in \mathcal{C}_X$ and, therefore, $x_1 = x_2$. The continuity of f^{-1} follows by Lemma 2.

Corollary 1. Let X be a regular single-valued sequential space, and let Y be a Fréchet space. Then a function $f: X \to Y$ is sequentially convergent if and only if f is injective and the inverse function f^{-1} : $\inf f \to X$ can be extended to a continuous function $\overline{f^{-1}}$: $\dim f \to X$. In particular, if the image of f is closed, then the sequential convergence of f is equivalent to the existence and continuity of f^{-1} . **Theorem 3.** Let X be a T_1 space, and let Y be a single-valued sequential space. Then the following properties of a function $f: X \to Y$ are pairwise equivalent:

- (a) *f* is continuous and sequentially convergent;
- (b) *f* is continuous, injective, and subsequentially convergent;
- (c) f is a homeomorphism of X onto a closed subspace im $f \subset Y$.

Proof. The implication $(c) \Rightarrow (b)$ is obvious.

Let us prove (b) \Rightarrow (a). Suppose that $\alpha \in S_X$ and $f \circ \alpha \to y \in Y$. Let us show that $\alpha \in C_X$. The subsequential convergence of f implies the existence of a $\beta_0 \preccurlyeq \alpha$ and an $x \in X$ for which $\beta_0 \to x$. Since $f \circ \beta_0 \preccurlyeq f \circ \alpha \to y$, it follows that $f \circ \beta_0 \to y$; hence y = f(x), because f is continuous and Y is single-valued. In order to prove the relation $\alpha \xrightarrow{*} x$, we must show that $(\exists \gamma \preccurlyeq \beta)(\gamma \to x)$ for $\beta \preccurlyeq \alpha$. Note that $f \circ \beta \to y$, because $f \circ \beta \preccurlyeq f \circ \alpha \to y$. Again applying the subsequential convergence of f, consider $\gamma \preccurlyeq \beta$ and $x' \in X$ for which $\gamma \to x'$. The continuity of f implies $f \circ \gamma \to f(x')$. On the other hand, $f \circ \gamma \preccurlyeq f \circ \beta \to y$ implies $f \circ \gamma \to y = f(x)$. Thanks to the single-valuedness of Y, we have f(x') = f(x), whence x' = x (by virtue of the injectivity of f) and, therefore, $\gamma \to x$.

We proceed to (a) \Rightarrow (c). Since *X* is T_1 , due to Lemma 3, it suffices to prove that im *f* is closed. Suppose that $\beta \in S_{\text{im } f}$ and $\beta \rightarrow y \in Y$. We set $\alpha = f^{-1} \circ \beta$. Since $f \circ \alpha = \beta \in C_Y$, it follows from the sequential convergence of *f* that $\alpha \rightarrow x \in X$; hence $\beta = f \circ \alpha \rightarrow f(x)$, because *f* is continuous. The single-valuedness of *Y* implies y = f(x) and, therefore, $y \in \text{im } f$.

Note that the separation assumptions in Theorem 3 are essential. Indeed, consider $X = \{0\} \cup \mathbb{N}$ with the topology $\{\emptyset, \{0\}, \{0\} \cup \mathbb{N}\}$ and $Y = \mathbb{N}$ with the topology $\{\emptyset, \mathbb{N}\}$. The space Y is a closed subspace of X, and the function $f: X \to Y$ defined by f(x) = x + 1 is a sequentially convergent continuous bijection, while the inverse function $f^{-1}: Y \to X$ is discontinuous at the point 1.

The facts mentioned above make it possible to give a simple proof of some theorems on T-contractions and similar results. As an example, consider the following theorem proved in [6].

Theorem 4 ([6]). Let (X,d) be a complete metric space. Suppose that a function $T: X \to X$ is continuous, injective, and subsequentially convergent and a continuous map $S: X \to X$ is a *T*-contraction, i.e., satisfies the condition

 $(\exists C \in]0,1[)(\forall x, y \in X) \ d(TSx, TSy) \le C \ d(Tx, Ty).$

Then S has a unique fixed point. If, in addition, T is sequentially convergent, then, for any point $x_0 \in X$, the sequence of iterations $S^n x_0$ converges to the fixed point of S.

Proof. According to Theorem 3, the function *T* is a homeomorphism of *X* to a closed (and, therefore, complete) subspace im $T \subset X$. Hence the function $d_T \colon X^2 \to \mathbb{R}$ defined by $d_T(x, y) = d(Tx, Ty)$ is a metric on *X*, with respect to which the map *S* is a contraction; moreover, the space (X, d_T) is complete, and convergence in d_T coincides with convergence in *d*. To complete the proof of Theorem 4, it remains to refer to Banach's contraction principle. (Note also that the continuity requirement on *S* in the statement of Theorem 4, as well as the additional assumption of the sequential convergence of *T*, can be dispensed with.)

Similar considerations apply to the main results of [7]–[33], each of which is a generalization of some known fact obtained by replacing a distance d(x, y) by d(Tx, Ty), where T is a (sub)sequentially convergent injection.

GUTMAN, KOPTEV

REFERENCES

- 1. S. G. Matthews, in *Ann. New York Acad. Sci.*, Vol. 728: *Papers on General Topology and Applications* (New York Acad. Sci., New York, 1994), pp. 183–197.
- 2. A. Branciari, Publ. Math. Debrecen 57 (1-2), 31 (2000).
- 3. L.-G. Huang and X. Zhang, J. Math. Anal. Appl. 332 (2), 1468 (2007).
- 4. Z. Kadelburg, S. Radenović, and V. Rakočević, Fixed Point Theory Appl., Article ID 170253 (2010).
- 5. V. Koutník, in Math. Res., Vol. 24: Convergence Structures 1984 (Akademie-Verlag, Berlin, 1985), pp. 199-204.
- 6. A. Beiranvand, S. Moradi, M. Omid, and H. Pazandeh, *Two Fixed-Point Theorems for Special Mappings*, arXiv:math. FA/0903.1504v1(2009).
- 7. J. R. Morales and E. Rojas, Notas Mat. 4 (2), 66 (2008).
- 8. J. R. Morales Medina and E. M. Rojas, Notas Mat. 5 (1), 64 (2009).
- 9. S. Moradi and A. Beiranvand, A Fixed-Point Theorem for Mapping Satisfying a General Contractive Condition of Integral Type Depended an Another Function, arXiv:math. FA/0903.1569v1(2009).
- 10. S. Moradi, Fixed-Point Theorem For Mappings Satisfying a General Contractive Condition Of Integral Type Depended an Another Function, arXiv:math. FA/0903.1574v1 (2009).
- 11. S. Moradi, Kannan Fixed-Point Theorem On Complete Metric Spaces And On Generalized Metric Spaces Depended an Another Function, arXiv:math. FA/0903.1577v1(2009).
- 12. J. R. Morales and E. Rojas, Fixed-Point Theorems for a Class of Mapping's Depending of Another Function and Defined on Cone Metric Spaces, arXiv:math. FA/0906.2160v1 (2009).
- 13. J. R. Morales and E. Rojas, *T-Zamfirescu and T-Weak Contraction Mappings on Cone Metric Spaces*, arXiv:math. FA/0909.1255v1(2009).
- 14. J. R. Morales and E. Rojas, On the Existence of Fixed Points of Contraction Mappings Depending of Two Functions on Cone Metric Spaces, arXiv:math. FA/0910.4921v1(2009).
- 15. J. R. Morales and E. Rojas, Int. J. Math. Anal. (Ruse) 4 (4), 175 (2010).
- 16. R. Sumitra, V. Rhymend Uthariaraj, and R. Hemavathy, Int. Math. Forum 5 (30), 1495 (2010).
- 17. S. Moradi and M. Omid, Int. J. Math. Anal. (Ruse) 4 (30), 1491 (2010).
- 18. S. Bhatt, A. Singh, and R. C. Dimri, Int. J. Math. Archive 2 (4), 444 (2011).
- 19. K. P. R. Sastry, Ch. Srinivasarao, K. Sujatha, G. Praveena, and Ch. Srinivasarao, Int. J. Comp. Sci. Math. **3** (2), 133 (2011).
- 20. S. Moradi and D. Alimohammadi, Int. J. Math. Anal. (Ruse) 5 (47), 2313 (2011).
- 21. M. Sharma, R. Shrivastava, and Z. K. Ansari, J. Contemp. Appl. Math. 1 (1), 103 (2011).
- 22. R. Shrivastava, Z. K. Ansari, and M. Sharma, Int. J. Phys. Math. Sci. 2 (1), 83 (2011).
- 23. M. Öztürk and M. Başarır, Int. J. Math. Anal. 5 (3), 119 (2011).
- 24. S. K. Malhotra, S. Shukla, and R. Sen, Math. Aeterna 1 (6), 353 (2011).
- 25. M. Abbas, H. Aydi, and S. Radenović, Int. J. Math. Math. Sci., Article ID 313675 (2012).
- 26. V. Parvaneh, J. Basic Appl. Sci. Res. 2 (3), 2354 (2012).
- 27. V. Parvaneh and H. Hosseinzadeh, J. Appl. Sci. 12 (9), 848 (2012).
- 28. Tran Van An, Kieu Phuong Chi, Erdal Karapınar, and Tran Duc Thanh, Int. J. Math. Math. Sci., Article ID 431872 (2012).
- 29. Erdal Karapınar, Kieu Phuong Chi, and Tran Duc Thanh, Abstr. Appl. Anal., Article ID 518734 (2012).
- 30. Kieu Phuong Chi, Erdal Karapınar, and Tran Duc Thanh, Arab J. Math. Sci. 18 (2), 141 (2012).
- 31. J. R. Morales and E. Rojas, Int. J. Math. Math. Sci., Article ID 213876 (2012).
- A. Razani and V. Parvanekh, Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 47 (2013) [Russian Math. (Iz. VUZ) 57 (3), 38 (2013)].
- 33. A. K. Dubey, R. Shukla, and R. P. Dubey, Int. J. Appl. Math. Res. 2 (1), 151 (2013).