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By a convergence (to be more precise, by a sequential convergence) on a set X we mean a
correspondence between sequences and elements of X, i.e., any subset of SX ×X, where SX := XN. A
convergence on X is (pre)topological if it coincides with convergence in some (pre)topology on X. It
is easy to see that if τ : X → P(P(X)) \ {∅} and (∀x ∈ X)(∀U ∈ τ(x))(x ∈ U), then the convergence

α → x ⇐⇒ (∀U ∈ τ(x))(∃n ∈ N)(∀n ≥ n)(α(n) ∈ U)

is pretopological. In particular, this class contains all convergences determined by metrics, partial
metrics [1], generalized metrics [2], cone metrics [3], and tvs-metrics [4].

We denote the constant sequence N× {x} by x∧. Given α, β ∈ SX , by mix(α, β) we denote the
sequence γ ∈ SX such that γ(2n − 1) = α(n) and γ(2n) = β(n) for all n ∈ N. If β is a subsequence
of α, then we write β � α. For any convergence → on X, we define a convergence

∗−→ on X by setting

α
∗−→ x ⇐⇒ (∀ β � α)(∃ γ � β)(γ → x).

A convergence is said to be single-valued if

(∀α ∈ SX)(∀x, y ∈ X)(α → x& α → y ⇒ x = y).

Consider the following properties of a convergence → on a set X:

(0) (∀α ∈ SX)(∀x ∈ X)((∀n ∈ N)(α(n)∧ → x) ⇒ α → x);

(1) (∀x ∈ X)(x∧ → x);

(2) (∀α ∈ SX)(∀x ∈ X)(α → x ⇒ (∀ β � α) β → x);

(3) (∀α ∈ SX)(∀x ∈ X)(α
∗−→ x ⇒ α → x).

Theorem 1 ([5]). (a) A convergence is pretopological if and only if it satisfies conditions (0)–(3).
(b) The following three properties of a single-valued convergence are pairwise equivalent:

the convergence is pretopological; the convergence is topological; the convergence satisfies
conditions (1)–(3).

(c) Any topological convergence on X coincides with convergence in some sequential topology
on X.
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Recall that a topological space X is said to be sequential if

(∀Y ⊂ X)(clσ Y = Y ⇒ clY = Y ),

and it is called a Fréchet space if

(∀Y ⊂ X)(clσ Y = clY ),

where clY denotes the closure of Y and clσ Y := {x ∈ X : (∃α ∈ SY )(α → x)} denotes the sequential
closure of Y . Since a sequential topology with given convergence is unique, assertion (c) says that the
notions of topological convergence and sequential topology are equivalent.

Throughout the paper, X and Y are sequential topological spaces.

We set CX = {α ∈ SX : (∃x ∈ X)(α → x)}. We refer to a space with single-valued convergence as
a single-valued space. If X is a single-valued space and α ∈ CX , then, for the (unique) limit of the
sequence α, we use the traditional notation limα. Single-valuedness occupies an intermediate position
between the classical separation axioms T1 and T2; the T1 axiom is equivalent to the uniqueness of a
limit for constant sequences:

(∀x, y ∈ X)(x∧ → y ⇒ x = y).

Let D ⊂ X, and let f : D → Y . We say that a function f is convergence-preserving if

(∀α ∈ SD)(α ∈ CX ⇒ f ◦ α ∈ CY ).
If the space D is sequential, then, as is known, the continuity of f is equivalent to the condition

(∀α ∈ SD)(∀x ∈ D)(α → x ⇒ f ◦ α → f(x)).

Lemma 1. The following equivalence holds:

(∀α, β ∈ SX)(∀x ∈ X)(mix(α, β) → x ⇔ (α → x& β → x)).

In particular, if X is single-valued, then mix(α, β) ∈ CX implies α, β ∈ CX and limα = limβ.

Proof. If α → x and β → x, then

(∀ γ � mix(α, β))(∃ δ � γ)(δ � α ∨ δ � β),

whence mix(α, β)
∗−→ x and, therefore, mix(α, β) → x. The reverse implication follows from the relations

α � mix(α, β) and β � mix(α, β).

Lemma 2. Let Y be a T1 space. Then a function f : X → Y is convergence-preserving if and only
if it is continuous.

Proof. Let us clarify the only if part. Suppose that α → x. Then mix(α, x∧) → x, whence

mix(f ◦ α, f(x)∧) = f ◦mix(α, x∧) → y, where y ∈ Y ;

therefore, f ◦ α → y and f(x)∧ → y. Since Y is T1, it follows that f(x)∧ → y implies f(x) = y. Hence
f ◦ α → f(x).

Note that T1 separability in Lemma 2 cannot be relaxed to T0. Indeed, suppose that X, α ∈ SX , and
x ∈ X are such that α → x /∈ imα. Let Y be the set {0, 1} with the open topology {∅, {1}, {0, 1}}.
Then the function f : X → Y , where f ≡ 0 on X \ {x} and f(x) = 1, is convergence-preserving and
discontinuous.

Theorem 2. Suppose that X is a Fréchet space, Y is a regular single-valued sequential space,
and D ⊂ X. Then a function f : D → Y is convergence-preserving if and only if f can be extended
to a continuous function f : clD → Y .
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Proof. Sufficiency is obvious. Let us prove necessity. Suppose that f preserves convergence. If
α, β ∈ SD have a common limit, then mix(α, β) ∈ CX , whence

mix(f ◦ α, f ◦ β) = f ◦mix(α, β) ∈ CY
and, therefore, lim(f ◦ α) = lim(f ◦ β). Hence there exists a function f : clD → Y such that lim(f ◦
α) = f(x) for all x ∈ clD, α ∈ SD, and α → x. Let us prove the continuity of f . Arguing by
contradiction, suppose that β ∈ SclD and β → x ∈ clD but f ◦ β � f(x). Passing to a subsequence,
we can assume that f(x) /∈ cl im(f ◦ β). The regularity of Y implies the existence of disjoint open sets
U, V ⊂ Y for which f(x) ∈ U and im(f ◦ β) ⊂ V . For each n ∈ N, choose αn ∈ SD so that αn → β(n).
Taking into account the inclusion lim(f ◦ αn) = f(β(n)) ∈ V , we can assume that im(f ◦ αn) ⊂ V .
Therefore, f [A] ⊂ V , where A =

⋃
n∈N imαn. The inclusion im β ⊂ clA implies x ∈ clA. Since X

is a Fréchet space, it follows that α → x for some α ∈ SA ⊂ SD. Thus, lim(f ◦ α) = f(x) ∈ U , while
im(f ◦ α) ⊂ f [A] ⊂ V .

The following examples show that the assumptions of Theorem 2 cannot be relaxed by requiring X
to be only sequential (even in the case Y = {0, 1}) or by replacing the regularity requirement on Y by
the Hausdorffness requirement (even in the case where X is a metric space).

Example 1. Consider the pretopology on R
2 in which the “cross-shaped” sets

([s − ε, s+ ε]× {t}) ∪ ({s} × [t− ε, t+ ε]), ε > 0,

form a neighborhood base at each point (s, t). Since the convergence in this pretopology is single-
valued, it follows by Theorem 1 that it coincides with convergence in a suitable sequential topology τ
on R

2. Let X = (R2, τ). We set

D0 = {(s, t) ∈ R
2 : s < 0}, D1 = {(s, t) ∈ R

2 : 0 < t < s}, D = D0 ∪D1 ⊂ X.

The function f : D → {0, 1} identically equal to 0 on D0 and to 1 on D1 is convergence-preserving
but does not admit a continuous extension to clD. (Note that D, which is an open subset of X, is a
sequential space, and clD = clσ D.)

Example 2. Let X be the classical metric space R
2, and let D = R

2 \ (R × {0}). Consider the
topological space Y with underlying set R2 in which a neighborhood base at each point y ∈ D is formed
by the ordinary open disks B(y, ε), ε > 0, and a neighborhood base at each point y ∈ R×{0} consists of
all sets of the form B(y, ε) \ (R×{0})∪ {y}, ε > 0. The identity embedding f : D → Y is convergence-
preserving, but it does not admit a continuous extension to clD = X. (Note that Y is a first countable
Hausdorff space. In particular, Y is a Fréchet space.)

The following two notions were introduced in [6] (for the case of metric spaces). A function
f : X → Y is sequentially convergent if

(∀α ∈ SX)(f ◦ α ∈ CY ⇒ α ∈ CX).

A function f : X → Y is subsequentially convergent if

(∀α ∈ SX)(f ◦ α ∈ CY ⇒ (∃ β � α)(β ∈ CX)).

Lemma 3. If X is a T1 space and a function f : X → Y sequentially convergent, then f is injective
and the inverse function f−1 : im f → X is continuous.

Proof. If x1, x2 ∈ X and f(x1) = f(x2), then f ◦mix(x∧1 , x
∧
2 ) = f(x1)

∧ ∈ CY , whence we have
mix(x∧1 , x

∧
2 ) ∈ CX and, therefore, x1 = x2. The continuity of f−1 follows by Lemma 2.

Corollary 1. Let X be a regular single-valued sequential space, and let Y be a Fréchet space.
Then a function f : X → Y is sequentially convergent if and only if f is injective and the
inverse function f−1 : im f → X can be extended to a continuous function f−1 : cl im f → X.
In particular, if the image of f is closed, then the sequential convergence of f is equivalent to
the existence and continuity of f−1.
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Theorem 3. Let X be a T1 space, and let Y be a single-valued sequential space. Then the
following properties of a function f : X → Y are pairwise equivalent:

(a) f is continuous and sequentially convergent;

(b) f is continuous, injective, and subsequentially convergent;

(c) f is a homeomorphism of X onto a closed subspace im f ⊂ Y .

Proof. The implication (c) ⇒ (b) is obvious.

Let us prove (b) ⇒ (a). Suppose that α ∈ SX and f ◦ α → y ∈ Y . Let us show that α ∈ CX . The
subsequential convergence of f implies the existence of a β0 � α and an x ∈ X for which β0 → x.
Since f ◦ β0 � f ◦ α → y, it follows that f ◦ β0 → y; hence y = f(x), because f is continuous and Y

is single-valued. In order to prove the relation α
∗−→ x, we must show that (∃ γ � β)(γ → x) for β � α.

Note that f ◦ β → y, because f ◦ β � f ◦ α → y. Again applying the subsequential convergence of f ,
consider γ � β and x′ ∈ X for which γ → x′. The continuity of f implies f ◦ γ → f(x′). On the other
hand, f ◦ γ � f ◦ β → y implies f ◦ γ → y = f(x). Thanks to the single-valuedness of Y , we have
f(x′) = f(x), whence x′ = x (by virtue of the injectivity of f ) and, therefore, γ → x.

We proceed to (a) ⇒ (c). Since X is T1, due to Lemma 3, it suffices to prove that im f is closed.
Suppose that β ∈ Sim f and β → y ∈ Y . We set α = f−1 ◦ β. Since f ◦ α = β ∈ CY , it follows from the
sequential convergence of f that α → x ∈ X; hence β = f ◦ α → f(x), because f is continuous. The
single-valuedness of Y implies y = f(x) and, therefore, y ∈ im f .

Note that the separation assumptions in Theorem 3 are essential. Indeed, consider X = {0} ∪N with
the topology {∅, {0}, {0} ∪N} and Y = N with the topology {∅,N}. The space Y is a closed subspace
of X, and the function f : X → Y defined by f(x) = x+ 1 is a sequentially convergent continuous
bijection, while the inverse function f−1 : Y → X is discontinuous at the point 1.

The facts mentioned above make it possible to give a simple proof of some theorems on T -contrac-
tions and similar results. As an example, consider the following theorem proved in [6].

Theorem 4 ([6]). Let (X, d) be a complete metric space. Suppose that a function T : X → X is
continuous, injective, and subsequentially convergent and a continuous map S : X → X is a T -
contraction, i.e., satisfies the condition

(∃C ∈]0, 1[ )(∀x, y ∈ X) d(TSx, TSy) ≤ C d(Tx, Ty).

Then S has a unique fixed point. If, in addition, T is sequentially convergent, then, for any point
x0 ∈ X, the sequence of iterations Snx0 converges to the fixed point of S.

Proof. According to Theorem 3, the function T is a homeomorphism of X to a closed (and, therefore,
complete) subspace imT ⊂ X. Hence the function dT : X

2 → R defined by dT (x, y) = d(Tx, Ty) is
a metric on X, with respect to which the map S is a contraction; moreover, the space (X, dT ) is
complete, and convergence in dT coincides with convergence in d. To complete the proof of Theorem 4,
it remains to refer to Banach’s contraction principle. (Note also that the continuity requirement on S
in the statement of Theorem 4, as well as the additional assumption of the sequential convergence of T ,
can be dispensed with.)

Similar considerations apply to the main results of [7]–[33], each of which is a generalization of
some known fact obtained by replacing a distance d(x, y) by d(Tx, Ty), where T is a (sub)sequentially
convergent injection.
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