The technique of definable terms in Boolean valued analysis

A. E. Gutman

Let Φ be a set of first-order formulas of set-theoretic signature. A formula φ is said to be of class Φ (" φ is Φ " for short) whenever ZFC $\vdash\left[\varphi \Leftrightarrow \varphi^{\prime}\right]$ for some φ^{\prime} in Φ. Let $\tau(\bar{x})$ be any term introduced in (a conservative extension of) ZFC by means of a definition of the form $\tau(\bar{x})=y \Leftrightarrow \varphi(\bar{x}, y)$. Say that τ is of class Φ (" τ is Φ ") whenever φ is of class Φ. Say that τ is Φ-definable via a term σ (" τ is $\Phi(\sigma)$ ") whenever there is a formula $\varphi(\bar{x}, y, z)$ of class Φ such that ZFC $\vdash[\tau(\bar{x})=y \Leftrightarrow \varphi(\bar{x}, y, \sigma(\bar{x}))]$.

In what follows, we denote formulas and terms by φ and τ, σ, ρ with possible indices; Δ_{0} is the smallest set containing the formulas $x \in y$ and closed under the connectives \vee, $\neg,(\exists x \in y) ; \quad \Sigma_{1}$ is constituted by the formulas $(\exists x) \varphi$, with φ in Δ_{0}. A formula φ is of class Δ_{1} (" φ is Δ_{1} ") whenever φ and $\neg \varphi$ are Σ_{1}.

Lemma. (1) If $\varphi, \tau, \tau_{1}, \ldots, \tau_{n}$ are Σ_{1} then so are $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ and $\tau\left(\tau_{1}, \ldots, \tau_{n}\right)$.
(2) If $\tau_{1}, \ldots, \tau_{n}$ are Σ_{1} and φ is Δ_{1} then $\varphi\left(\tau_{1}, \ldots, \tau_{n}\right)$ is Δ_{1}.
(3) If τ is Σ_{1} and φ is Δ_{1} then $\{\tau(\bar{x}): \bar{x} \in y, \varphi(\bar{x}, y)\}$ is Σ_{1}.
(4) If τ is $\Sigma_{1}(\sigma)$ and ρ is $\Sigma_{1}(\tau)$ then ρ is $\Sigma_{1}(\sigma)$.
(5) If $\tau, \tau_{1}, \ldots, \tau_{n}$ are $\Sigma_{1}(\sigma)$ then so is $\tau\left(\tau_{1}, \ldots, \tau_{n}\right)$.
(6) If τ is Σ_{1} then $\tau(\sigma)$ is $\Sigma_{1}(\sigma)$.
(7) If τ is Σ_{1} and φ is Δ_{1} then $\{\tau(\bar{x}): \bar{x} \in \sigma, \varphi(\bar{x}, \sigma)\}$ is $\Sigma_{1}(\sigma)$.
(8) If τ is Σ_{1} and φ is Δ_{1} then $\{\tau(\bar{x}): \bar{x} \in \sigma, \varphi(\bar{x}, \sigma)\}^{\mathbb{N}}$ is $\Sigma_{1}\left(\sigma^{\mathbb{N}}\right)$.

The following example shows that statements (3) and (7) do not extend to the case in which φ is Σ_{1}.

Example. Assume that ZFC is consistent and put $\varphi(x):=(\exists z)(z \subseteq \mathbb{N} \wedge z \notin x)$. Then φ is Σ_{1}, φ is not Δ_{1}, and $\{x \in y: \varphi(x)\}$ is not Σ_{1}.

In what follows, $(\cdot)^{\wedge}$ stands for the canonical embedding of \mathbb{V} into the Boolean valued universe $\mathbb{V}^{(B)}$.

Theorem. If ρ is Σ_{1}, τ is $\Sigma_{1}(\sigma)$, and all the parameters of ρ, σ, τ are in \bar{x} then the following is provable in ZFC: for every complete Boolean algebra B and all \bar{x}
(1) $\mathbb{V}^{(B)} \vDash\left[\rho(\bar{x})^{\wedge}=\rho\left(\bar{x}^{\wedge}\right)\right]$;
(2) $\mathbb{V}^{(B)} \vDash\left[\sigma(\bar{x})^{\wedge}=\sigma\left(\bar{x}^{\wedge}\right)\right] \Rightarrow \mathbb{V}^{(B)} \vDash\left[\tau(\bar{x})^{\wedge}=\tau\left(\bar{x}^{\wedge}\right)\right]$.

Let \mathbb{R}_{D} and \mathbb{R}_{C} stand for the set of reals defined as Dedekind cuts and, respectively, classes of Cauchy sequences in \mathbb{Q}.

Corollary (ZFC). Let B be a complete Boolean algebra.
(1) $\mathbb{V}^{(B)} \vDash\left[\mathbb{R}_{\mathrm{D}} \subseteq \mathbb{R}_{\mathrm{D}}\right] ; \mathbb{V}^{(B)} \vDash\left[\mathcal{P}_{\mathrm{fin}}(X)^{\wedge}=\mathcal{P}_{\text {fin }}\left(X^{\wedge}\right)\right]$ for all X.
(2) The following properties of B are pairwise equivalent: B is σ-distributive; $\mathbb{V}^{(B)} \vDash\left[\mathcal{P}(\mathbb{N})^{\wedge}=\mathcal{P}(\mathbb{N})\right] ; \mathbb{V}^{(B)} \vDash\left[\left(\mathbb{N}^{\mathbb{N}}\right)^{\wedge}=\mathbb{N}^{\mathbb{N}}\right] ; \mathbb{V}^{(B)} \vDash\left[\mathbb{R}_{\mathrm{D}}^{\wedge}=\mathbb{R}_{\mathrm{D}}\right] ; \mathbb{V}^{(B)} \vDash\left[\mathbb{R}_{\mathrm{C}}^{\wedge} \subseteq \mathbb{R}_{\mathrm{C}}\right] ;$ $\mathbb{V}^{(B)} \vDash\left[\mathbb{R}^{\wedge}\right.$ and \mathbb{R} are isomorphic ordered fields $]$.
Sobolev Institute of Mathematics, Novosibirsk State University, Novosibirsk
E-mail: gutman@math.nsc.ru

