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BINARY CORRESPONDENCES
AND THE INVERSE PROBLEM OF CHEMICAL KINETICS!

A. E. Gutman®?, L. I. Kononenko®’

Abstract. We show how binary correspondences can be used for simple formalization of the notion
of problem, definition of the basic components of problems, their properties, and constructions.
In particular, formalization of the following notions is presented: condition, data, unknowns, and solutions
of a problem, solvability and unique solvability, inverse problem, composition and restriction of problems,
isomorphism between problems. We also consider topological problems and the related notions of stability
and correctness. A connection is indicated between the stability and continuity of a uniquely solvable to-
pological problem. The definition of parametrized set is given. The notions are introduced of parametrized
problem, the problem of reconstruction of an object by the values of parameters, as well as the notions of
locally free set of parameters and stability with respect to a set of parameters.

As an illustration, we consider a singularly perturbed system of ordinary differential equations which
describe a process in chemical kinetics and burning. Direct and inverse problems are stated for such
a system. We extend the class of problems under study by considering polynomials of arbitrary degree as
the right-hand sides of the differential equations. It is shown how the inverse problem of chemical kinetics
can be corrected and made more practical by means of the composition with a simple auxiliary problem
which represents the relation between functions and finite sets of numerical characteristics being measured.
For the corrected inverse problem, formulas for the solution are presented and the conditions of unique
solvability are indicated. Within the study of solvability, a criterion is established for linear independence
of functions in terms of finite sets of their values. With the help of the criterion, realizability is clarified
of the condition for unique solvability of the inverse problem of chemical kinetics.

Key words: binary correspondence, inverse problem, solvability, composition, stability, correctness,
differential equation, chemical kinetics, linear independence.
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We continue the study started in [1, 2] which is devoted to formalization of the notion

of problem and solution of the inverse problem of chemical kinetics. In particular, we extend
the class of problems under study by considering polynomials of arbitrary degree as the right-
hand sides of the differential equations.

1. Formalization of the notion of problem

In this section, we employ binary correspondences for formalizing the notion of problem,

basic components of problems, their properties, and constructions: the condition of a problem,
data and unknowns, solvability and unique solvability, inverse problem, composition and rest-
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riction of problems. We also consider topological problems, the related notions of stability
and correctness, and problems with parameters.

1.1. By a problem we mean an arbitrary correspondence between the elements of two sets,
i. e, atriple P = (A, B,C), where A and B are any sets and C C Ax B. The sets A, B, and C
(i. e., the set of departure, the set of destination, and the graph of the correspondence P) are
denoted by Dom P, Im P, and Gr P and called the domain of data, the domain of unknowns,
and the condition of the problem P. The containment (a,b) € Gr P is written as P(a,b) and
is treated as the condition expressing the fact that the unknown b corresponds to the data a.
Therefore, the problem P assumes the following informal interpretation:

Given data a € Dom P, find unknowns b € Im P which meet the condition P(a,b).

The image P[X] and preimage P~'[Y] of subsets X C Dom P and Y C Im P with respect to
the correspondence P are defined by the traditional formulas

PIX]={b€ImP: 3z € X) P(z,b)},
PlY]={a€DomP: (3ycY) Pla,y)}.

1.2. A solution to a problem P for a data instance a € Dom P is an arbitrary unknown
b € Im P which meets the condition P(a,b). The set of solutions to P for a is denoted by PJa].
Therefore,
Pla] = P[{a}] ={b€ImP: P(a,b)}, a¢& DomP.

A problem P is solvable for a € Dom P whenever Pla] # @, i. e., given a, the problem P has
at least one solution. The domain of definition of the correspondence P

dom P :={a € Dom P : Pla] # @}

is called the domain of solvability of the problem P. If dom P = Dom P, the problem P is
called solvable or, more precisely, everywhere solvable.

1.3. A problem P is said to be uniquely solvable for a € Dom P if, given a, the problem P
has a unique solution, i. e., Pla] = {b} for some b € Im P. The corresponding solution b is
denoted by P*(a). Therefore, if P is uniquely solvable for a then

Pla] = {P*(a)}.

The set
dom P® := {a € Dom P : P is uniquely solvable for a}

is called the domain of unique solvability of the problem P, and the function
P?: dom P° - ImP, a+ P°(a)

is called the solution function of the problem P. Obviously, dom P® C dom P C Dom P. The
problem P is uniquely solvable on a set D C Dom P if D C dom P5. The problem P is called
uniquely solvable or, more precisely, everywhere uniquely solvable if it is uniquely solvable on
Dom P, i. e., dom P® = Dom P. In this case, the correspondence P is an everywhere defined
function and thus coincides with P5.

1.4. Given a problem P = (Dom P, Im P, Gr P), the inverse problem is the inverse
correspondence

P~':= (ImP,Dom P, (Gr P)""), where (GrP)™' ={(b,a): (a,b) € Gr P}.
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REMARK. If a problem P models a real physical process, consideration of the inverse
problem P~! is motivated by the search of a relatively simple formal law which describes
the process with adequate accuracy. The data of the inverse problem are experimentally
measurable characteristics of the process, while the unknowns are, for instance, the coefficients
of a differential equation describing the process under observation.

In the case when the problem P is based on a functional equation, the formal data of the
inverse problem P~ are functions of the corresponding class, while, in practice, the role of da-
ta of the inverse problem is not played by the functions themselves but rather by some of
their characteristics which can be measured, i. e., by certain finite sets of numbers.

The inverse problem can be suitably corrected by means of the composition (see 1.5) of the
problem P~! and a simple auxiliary problem which represents the relation between functions
and their characteristics being measured. (An example of such correction is presented in 2.3.)

1.5. The composition of problems P and (@ is the composition of the correspondences,
which is the problem

Qo P:=(DomP, Im@, GrQ o GrP)

with condition
GrQoGrP = {(a,c) € Dom P xImQ : (3b € Im PN Dom Q) P(a,b) & Q(b,c)}.

The composition @) o P is usually considered in the case when Im P = Dom Q.

1.6. The restriction of a problem P onto subsets A C Dom P and B C Im P is the problem

P|” .= (4, B, GrPN (A x B)).
.. Im P

The restrictions P|4 := P‘A
The restriction of a problem can be defined by means of composition with the

corresponding embedding problems. Given arbitrary sets X and Y, consider the problem
1dY := (X,Y, 1Y), where

B .
and P|P = P’Dom p are particular cases.

IY={(z2): 2eXnY}={(z,y) € X xY : z=y}.
Then, for every problem P and any subsets A C Dom P and B C Im P, the following hold:

P‘A = POIdgomP’ P‘B _ IdI]?nP o P, p‘i — IdI]?nP OPOIdgomP.

1.7. An isomorphism between problems P and @ is a pair (f,g) of bijective mappings
f: Dom P — Dom @, g: Im P — Im () such that

GrQ = {(f(a),g()) : (a,b) € Gr P}.

Two problems are called isomorphic if there is an isomorphism between them.

1.8. Call P a topological problem if the domain of data Dom P and the domain of un-
knowns Im P are endowed with any topologies, i. e., the domains are topological spaces.
An isomorphism (f, g) between topological problems is a topological isomorphism if each of
the mappings f and g is a topological isomorphism (i. e., a homeomorphism).
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All the notions introduced here, which are related to topologies or continuity, admit
natural analogs for the case of uniformities and uniform continuity. (Metric and, in particular,
normed spaces are examples of uniform spaces.) We will not present the corresponding clarified
definitions, which are rather obvious.

1.9. A topological problem P is called stable at a point a € dom P if the correspondence
P is upper semi-continuous at the point, i. e., for every neighborhood V of the set Pla] in
Im P, the preimage P~![V] is a neighborhood of the point a in dom P. The problem P is
stable on a set D C dom P if P is stable at each point a € D. The problem P is called stable
or, more precisely, everywhere stable if P is stable on dom P.

In the case when a is an interior point of dom P® relative to dom P (i. e., there exists an
open set G C Dom P such that a € GNdom P C dom P*®), the stability of the problem P at a
is equivalent to the continuity of the function P*® at a. Analogously, if a set D is included in
the interior of dom P*® relative to dom P (i. e., there exists an open set G C Dom P such that
D C GndomP C dom P®), then the stability of the problem P on D is equivalent to the
continuity of the function P® on D. In particular, the stability of a uniquely solvable problem
is equivalent to its continuity.

1.10. A topological problem P is called correct (or, more precisely, locally correct) at
a point a € Dom P if a is an interior point of dom P® and the problem P is stable at a. In other
words, a problem is correct at a if, for data sufficiently close to a, the problem has a unique
solution, and the solution continuously depends on the data as it tends to a. A problem P
is said to be correct (or, more precisely, conditionally correct) on a set D C Dom P if P is
correct at each point a € D. A problem P is called correct if P is correct on Dom P. Therefore,
the correctness of a problem means its unique solvability and stability (or, which is the same,
continuity).

1.11. By a family (v;);e; we traditionally mean a function defined on I, and the term
v; denotes the value of the function at a point ¢ € I. Given an arbitrary family (V;);cs, the
symbol [],.; Vi stands for the corresponding Cartesian product, which is the set of families
(vi)ier such that v; € Vj foralli € I. If m: X — [[,c; Vi, i € I, and J C I, the functions

mi: X = Vi, 7TJ:X—>H‘/}‘
JjeJ

are defined by the formulas

mi(z) =7(x); € Vi, my(z):=mn(z)|se€ HV], z e X.
jed

1.12. A parametrization of a set X is an arbitrary injective mapping 7 defined on Dom 7 :=
dom7 = X and acting into the Cartesian product Im# := J[,.; Vi of some family (V;)ies.
In this case, I is called the set of parameters and denoted by Par 7, the elements ¢ € Par 7 are
called parameters, the set Im 7; := Vj is called the range of the parameter i, and 7;(x) € Imm;
is the value of the parameter i for an object x € X. The product []._;Vj is called the range
of the set of parameters J C Parm and denoted by Im ;.

jeJ

Note that the range Im7; of a parameter i need not coincide with the set imm; = m;[X]
of the values of the parameter, i. e., the inclusion imm; C Imm; can be strict. In the case of
equality im m; = Im7;, the range of the parameter i is called ezact.
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A set endowed with a parametrization is called a parametrized set. By default, the
parametrization of X is denoted by 7 or, more explicitely, by 7.

1.13. When considering a parametrization 7 of a topological space X, it is natural to
endow the set Im 7y, where J C Parm, with the image of the topology of X with respect
to my, i. e., to assume open those subsets U C Imm; whose preimage le[U] is open in X.
In this case, m occurs a continuous mapping from X into Im 7 and a topological isomorphism
between X and im 7.

The ranges Im m; of the parameters ¢ € Par 7 usually have their own natural topologies
which make the mappings m; continuous. Otherwise, Im m; can be endowed with the image of
the topology of X with respect to m; or with the topology induced from Im7 in which the
open subsets of Im 7r; are the sets of the form {u; : u € U}, where U is open in Im .

The ranges of parameters are often Banach spaces. In this case, parametrized topological
spaces are close analogs of Banach bundles (see, for instance, [3]), where the domain I
of a bundle V plays the role of the set of parameters, and the stalks V(i) are the ranges
of parameters i € I.

1.14. A problem P is called parametrized (or a problem with parameters) if its domain
of data Dom P and domain of unknowns Im P are parametrized sets. Every problem can
be regarded parametrized if we assume that non-parametrized domains X are endowed with

trivial parametrizations having single parameter: m(z) = x for all z € X.

As is easily seen, the pair (74,7%) is an isomorphism between a parametrized

problem (A, B,C) and the problem (A’ B’,C’), where A’ = im74, B’ = imn?, and
C'= {(WA(a,),ﬂB(b)) : (a,b) € C}. Furthermore, if the problem (A, B, C) is topological then

so are the problem (A’, B, C’) and the isomorphism (74, 75).

1.15. Let 7 be a parametrization of a set A, a € A, J C Parm, J' := Parn\J. Denote by
Res%(A) the problem (Im7y, A, R), where

RY ={(v,b): velmmy, be A, m;(b) =v, my(b) =7my(a)},

which is the problem of reconstruction of an element of A by the values of the parameters J
on assuming fixed the values of the rest parameters. In the case J = {i}, we write Res{(A)
instead of Res;y (A).

Since 7 is injective, the problem Res%(A) is uniquely solvable on the set

domResG(A) = {my(b) :be A, mp(b) =my(a)}
and its solution for every v € dom Res%(A) is determined by the formula

v;, if 1€ J;

Res?(A)P(v) =7 ' (v@my(a)), where (v®@w); = {w g

1.16. Let m be a parametrization of a topological space A, a € A, J C Parm. A set
of parameters J is locally free at the point a, if the domain of solvability dom Res%(A) of
the problem Res%(A) is a neighborhood of the point 7;(a) in the topological space Imm .
Therefore, a locally free set of parameters realizes all sufficiently small changes of values with
the values of the rest parameters fixed. A parameter i is locally free at a if so is the set {i}.
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1.17. Let P be a parametrized topological problem, a € dom P, and let J C Parm,
where 7 := 79°™ P The problem P is stable at the point a with respect to J, if the problem
P o Res(dom P) is stable at the point 7(a). Stability of a problem at a with respect to J
is usually considered in the case when the set of parameters J is locally free at the point a.

The problem P is stable on a set D C dom P with respect to J, if P is stable at each point
a € D with respect to J. The problem P is stable with respect to J if P is stable on dom P
with respect to J. In the case J = {i}, the term stability with respect to the parameter i
is used.

If the natural topology on im 7 is considered and a is an interior point of dom P® relative
to dom P, the stability of a uniquely solvable problem P at the point a with respect to J
is equivalent to the continuity at a of the function

v € my[dom R] — P®(R%(v)), where R :=Res%(Dom P).

The latter, in its turn, means that the solution P5(b) continuously depends on the values
m7(b) of the parameters J as 7;(b) tend to 7s(a) with the equality 7 (b) = 7 (a) preserved.

1.18. Let P be a parametrized topological problem, ¢ € Parmw. The problem P is called
a “problem with small parameter ¢” if Im 7; C R, the number 0 is a limit point of Im 7;, and
a question is under consideration about any asymptotic behavior of P for the values of i close
to 0, for instance, about the stability of P with respect to ¢ at a point a with m;(a) = 0.

2. The inverse problem of chemical kinetics

As an illustration, we consider a singularly perturbed system of ordinary differential
equations which arises in modeling certain processes of chemical kinetics and burning (see,
for instance, [4,5]). Within the study of the corresponding inverse problem, a criterion will be
established for linear independence of functions in terms of finite sets of their values (see 2.5).

2.1. Suppose that m,n € N, X := R™, Y is a domain in R”, T := R, 0 < g9 € R. Put
E={cR: 0<e<eg}h, F=C(XxYXTxE R"),G:=C(XxY xTxE, R").

Consider the problem P with domain of data Dom P = F' x G x E, domain of unknowns
ImP = CYT, X) x CYT,Y), and condition

P((f’._(]?g)v ($,y)) < {x(t) - f(x<t>7y(t)7t,€>7 fOI' all te T,
ey(t) = g(x(t),y(t), t,€)

where f€e F, g€ G, e € B,z € CH(T,X),y € CHT,Y).

Solution of the problem P is based on the method of integral manifolds (see [6-8]),
a convenient tool for studying multidimensional singularly perturbed systems of differential
equations which makes it possible to lower the dimension of the system under study.

In the problem P, the number € plays the role of “small parameter” thus splitting the
system into “slow” and “fast” subsystems:

#(t) = f(x(t),y(t), t,e) and ey(t) = g(z(t),y(t),t,€).

Solution of P in a sense reduces to solving the so called degenerate system which is obtained
from the initial system by putting the parameter ¢ equal to zero. This is justified by the
results of A. N. Tikhonov (see, for instance, [9]) on passing to a solution to the degenerate
problem as a small parameter tends to zero.
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2.2. The inverse problem to P consists in finding the unknown functions on the right-
hand side of the system, given some data on the solution to the direct problem P. The close
connection of the initial problem with the degenerate system motivates the study of the case
€ = 0. We additionally assume that the “slow surface” defined by the equation

g(xvy)tao) =0

consists of a single sheet (with respect to the dependence of y on x) and that the function
g € G meets the condition of the implicit function theorem, which fact allows us to replace
the equation

g(x(t), y(t),1,0) =0

by the equivalent equation of the form

We also assume that the right-hand side f of the main differential equation is a polynomial
(which is natural for problems of chemical kinetics).

So, consider the partial case of the problem P in which m = n =1, E = {0}, and the
functions f € F' are polynomials in two variables of degree at most p € N:

flyte) = Y 'y,

(i,)€K (p)

where v;; € R, (4,5) € K(p),
K(p) :={(i,j): 0<i,j€Z,i+j<p}.

Introduce the notation

() = (p+1)2(p+2)

for the number of elements of the set K (p) and fix an arbitrary enumeration
K(p) - {(ilajl)a (2‘27j2>7 sy (im(p)ajn(p))} .

Therefore, the expression ZZ(:pl) vk %17k is the general form of a polynomial in two variables
x,y of degree at most p.

As a result of the above agreements, we arrive at the problem ) with domain of data
Dom Q = R*®) domain of unknowns Im Q = C''(R)?, and condition

(p) .

; — i Jk
B0 = w0 g

y(t) = h(x(t),t)

where 71,792, -+, Vep) €ER, 2,y € CL(R), h € C1(R?).

2.3. The formal inverse problem Q~!, which has pairs of functions (x,y) € C'(R)? as
data, is very simple and impractical. For representing the domain of data, finite collections
of the values of functions or their derivatives are more adequate than everywhere defined
functions. The corresponding correction of the inverse problem is realized by composition of

QY (z,y) &



44 Gutman A. E., Kononenko L. I.

the problem Q! and the auxiliary problem R with domain of data Dom R = (R“(p))3, domain
of unknowns Im R = C'(R)?, and condition

x(7‘1> = g, 33(7'2) =9, ..., x(TK(p)> = Oé,{(p),
R ) ) Y )
(e, P), (@) & {a'r(ﬁ) = B1, #(r2) = Bay - -» #(Tur) = Bar)

where 7,0, 8 € R*P) 2,y € C'(R).

As compared to the formal inverse Q~!, the composition Q' o R is more practical and
amounts to the following problem: Given 7,«, 8 € R*®) find the coefficients v € R*®) for
which there exist functions z,y € C!(R) subject to the condition

(2(71) = au, 2(72) = @, -y T(Tagp) = Qi)

i(m1) = P, 2(12) = B2, -y T (Tu(p) = Brip)s
k(p) ) .

z(t) = > )= y(t)’* for all ¢t e R,
k=1

Ly(t) = h(x(t),t) forall teR.

2.4. The following assertion can be proven for arbitrary p € N in the same way as the
case p = 1 which is considered in [10, 11].

Theorem. If 7, o € R¥®) meet the condition

oy h(on, 7)) of? (o, )72 LAl ha 1,710
A(T, Oé) — O/él h(a2; 72)]1 O(;? h(Oé27 7'2).72 o CVQK(p) h(a2’ 72)]K(p) ?é 07
i . i . i) e .
Vi) M@ (p)s Trp) ) ) h((p)s Tu(p) )2 - - am(zf) h(Q(p)s Tro(p) )@

then, given arbitrary 8 € R*®) | the problem Q~'o R is uniquely solvable for the data (1,0, 8),
and its solution (1,72, ..., V() = (Q~'oR)*(7, e, 8) can be calculated by Cramer’s formulas

Ak (Ta «, /8)
= — = k=12,...
Tk A(T, a) ) IR ) Ii(p)a
where Ay (7, o, ) is the determinant of the matrix formed from the above matrix by replacing
the kth column (a3 h(ar, 1), o h(ag, 7o), ..., a;’“(p) M), Tr(p))’*) with the column

6 = (51a/327 ce e 7/8/%(])))-

2.5. The following criterion clarifies the case in which there exist numbers 7, ...
satisfying the hypothesis of Theorem 2.4.

' Tr(p)

Theorem. Let n € N, let T be an arbitrary set, and let p;: T — R, i = 1,...,n.
The family of functions @1, ..., p, is linearly independent in the vector space R if and only
if there are points ty,...,t, € T satisfying the condition
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< For convenience, introduce a notation for the matrix in (1):

p1(t1) w2(t1) .. enltr)
TR
®1 (tn> (PQ(tn) (Pn(tn)

The case n = 1 is trivial: if {¢1} is linearly independent then ¢ # 0 and, hence, for some
point t; € T we have pi1(t1) # 0, i. e., |M1(p1; t1)| # 0.

Let n € N and assume that for every linearly independent family ¢1,...,¢0,: T — R
there exist points t1,...,t, € T satisfying (1). Now consider a linearly independent family
©1y -y Pn,Ynt+1: I — R. By the induction hypothesis, there are points ¢1,...,t, € T such
that the matrix

M = Mn(@h <o Pns t1,... 7tn)
is invertible. We are to find a point ¢ € T" which ensures invertibility of the matrix
M(t) = Mn—}—l(‘pla <oy Pny Pt tla v 7tn7t)~

Assume to the contrary that |M(t)| = 0 for all t € T. Then, for each t € T, there is a tuple
0% (a1(t),...,an+1(t)) € R™ satisfying the condition

M) (ai(t),...,ang1(t)) =0
or, which is the same,

e1(t1) ar(t) + -+ on(t1) an(t) + ent1(ts) anta(t)

—0,
P1(t2) ar(t) + -+ on(t2) an(t) + @nt1(t2) anta(t) =0,

®1 (tn) aq (t) +-+ (pn(tn) an(t) + Pn+1 (tn) an—i—l(t) = 07
e1(t) ar(t) 4+ @n(t) an(t) + @ny1(t) angr(t) = 0. (3)
The subsystem (2) is equivalent to the equality
M(Oq (t)v s 7an(t)) + Oén+1(t)((pn+1 (t1>7 sy Pndl (tn>) =0
which implies
(@1(t), s an(t) = —ant1() M~ (ppi1(t)s -, o () - (4)

Due to (4), in the case an11(t) = 0 we would have a;(t) = -+ = anp41(t) = 0, which
contradicts the condition (aq(t),...,an+1(t)) # 0. Consequently, a,11(t) # 0 and

( a1 (t) an(t)

ang1(t) 7 anga(t)

) =M (ont1(t1), -, Pnt1(tn)) - (5)

IO N ()

According to (5), the numbers 3y := o1 (D = o (D do not depend on ¢. It remains

to observe that (3) implies

Blgol(t) + -+ ﬁngon(t) + gOnJrl(t) =0 forall te€T

contrary to the linear independence of the family ¢1,..., ¢n, Pnr1. >

2.6. Theorems 2.4 and 2.5 directly imply the following condition for unique solvability of
the “corrected inverse problem” Q! o R.
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Theorem. Let x € C1(R), h € C1(R?). If the family of functions

t x(t)* h(z(t), )7, k=1,2,...,k(p),

is linearly independent in the vector space RR then there exist ri,... s Tr(p) € R such that,
for all pi,...,Bep) € R, the problem Q™' o R is uniquely solvable for the data T, ... s Tr(p) s

56(7'1), s ax(Tm(p))7 B, )Bm(p)'

10.

11.

References

Gutman A. E., Kononenko L. I. Formalization of Inverse Problems and its Applications, Sibirskij zhurnal
chistoj i prikladnoj matematiki [Siberian Journal of Pure and Applied Mathematics], 2017, vol. 17, no. 4,
pp- 49-56 (in Russian). DOI: 10.17377/PAM.2017.17.5.

Gutman A. E., Kononenko L. I. The Inverse Problem of Chemical Kinetics as a Composition of Binary
Correspondences. Sibirskie elektronnye matematicheskie izvestiya [Siberian Electronic Mathematical
Reports], 2018, vol. 15, pp. 48-53 (in Russian). DOI: 10.17377/semi.2018.15.006.

Gutman A. E., Koptev A. V. Finite Dimensionality and Separability of the Stalks of Banach Bundles,
Siberian Mathematical Journal, 2014, vol. 55, no. 2, pp. 246-253. DOIL: 10.1134/s0037446614020074.
Kononenko L. I. Qualitative Analysis of Singularly Perturbed Systems with One or Two Slow and
Fast Variables, Sibirskij zhurnal industrialnoj matematiki [Siberian Journal of Industrial Mathematics],
2002, vol. 5, no. 4, pp. 55—62 (in Russian).

Kononenko L. I. Relaxations in Singularly Perturbed Planar Systems, Vestnik Nowosibirskogo Gosu-
darstvennogo Universiteta. Ser.: Matematika, Mehanika, Informatika [Bulletin of the Novosibirsk State
University. Series: Mathematics, Mechanics, Informatics]|, 2009, vol. 9, no. 4, pp. 45-50 (in Russian).
Mitropolsky Yu. A., Lykova O. B. Integral’nye mnogoobraziya v nelinejnoj mekhanike [Integral Mani-
folds in Nonlinear Mechanics], Moscow, Nauka, 1963 (in Russian).

Vasil’eva A. V., Butuzov V. F. Singulyarno vozmuschennye uravneniya v kriticheskikh sluchayakh [Sin-
gularly Perturbed Equations in Critical Cases|, Moscow, Moscow State University, 1978 (in Russian).
Goldstein V. M., Sobolev V. A. Kachestvennyj analiz singulyarno vozmuschennykh sistem [Qualitative
Analysis of Singularly Perturbed Systems], Novosibirsk, Sobolev Institute of Mathematics, 1988
(in Russian).

Tikhonov A. N. On Independence of Solutions to Differential Equations on a Small Parameter,
Matematicheskij Sbornik [Sbornik: Mathematics|, 1948, vol. 22 (64), no. 2, pp. 193-204 (in Russian).
Kononenko L. I. Direct and Inverse Problems for a Singular System with Slow and Fast Variables
in Chemical Kinetics, Viadikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], 2015, vol. 17,
no. 1, pp. 39-46 (in Russian). DOI: 10.23671/VNC.2015.1.7291.

Kononenko L. I. Identification Problem for Singular Systems with Small Parameter in Chemical
Kinetics, Sibirskie elekironnye matematicheskie izvestiya [Siberian Electronic Mathematical Reports],
2016, vol. 13, pp. 175-180 (in Russian). DOI: 10.17377/semi.2016.13.015.

Received July 3, 2018

Fyrman A. E.*’, Kononenko JI. M.%" Bunapubie cooTBeTCTBHSI 1 06paTHAs 3a/ata
XuMHu4eckoii kuuernku // Basdukasrazcrul mamemamuseckud owcypnaa. 2018. T. 20, Ne 2.
C. 37-47 (in English). DOI: 10.23671/VNC.2018.3.17981.

Awnnvoramusa. [Tokazano, kak GuHAPHBIE COOTBETCTBUS MOTYT OBITH WCIOJIH30BAHBI I TIPOCTOM (hopma-

JIM3aITiY TTOHSATUS 3312491, OIPeIeIeHNs] OCHOBHBIX KOMITOHEHTOB 337129, UX CBOMCTB M KOHCTPYKImii. B gact-
HOCTH, TIPEJI0KeHa (HOpMaIN3AIMs C/IEAYIOIMNX TOHSTHI: YCIOBUe, TAHHBIE, NCKOMBIE U PEIIeHUs 3aa4M,

¢ Nucruryr maremaruku um. C.JI. Cobonesa CO PAH, Poccusa, 630090, Hosocubupck, np. Axamemu-
ka Kormrriora, 4
® Hosocubmpcxkwmit rocymapcrsenusiii yamsepenrer, Poccus, 630090, Hosocubupck, yi. ITuporosa, 1

E-mail: gutman@math.nsc.ru; larakon2@gmail.ru, larak@math.nsc.ru



Binary correspondences and the inverse problem of chemical kinetics 47

Pa3pemmnMoCTh W OJHO3HAYHAS PA3PEINMOCTh, O0paTHas 3a/1a9a, KOMIO3UIINS W OTPAHUYEHNE 3341, H30MOP-
busm mMexay 3amatdamu. PacCMOTPEHBI TOMOJIOTUYeCKre 332N U CBI3aHHBIE C HUMU TIOHITHUS YCTONYIUBOCTHA
¥ KOPPEKTHOCTHU. Y Ka3aHa CBA3b MEXK/y yCTOMYNBOCTHIO W HEIIPEPHIBHOCTHIO OTHO3HAYHO PAa3PEIIMMOii TOIIO-
JIOTUYEeCKOi 3ama4uu. [JaHo ompeieienne mapaMeTpu3alii MHOYKECTBA. BBeIeHbI TOHATHS TTapaMeTPU30BaAHHOI
3a/1a4M, 331291 BOCCTAHOBJIEHUS 00HEKTA 0 3HAYCHUSM [IAPAMETPOB, & TAKKe MOHSITUS JIOKATIBHO CBOOOIHOTO
Habopa MapaMeTpPoOB U YCTONYINBOCTH OTHOCHTEIHHO HAOOPA MapaMeTpPOB.

B kauecTBe MIUTIOCTPAIN PACCMOTPEHA CHHTYJISIPHO BO3MYIIEHHAsST CUCTEMA OOBIKHOBEHHBIX T dhepeHImaih-
HBIX yPaBHEHU!, OMUCHIBAIONIAS IPOIECC XUMUIECKON KUHeTUKY u ropenns. st Takoil cuctemsbr chopMyan-
poBaHBI IpsiMas u obpaTHas 3ama4da. V3ydgaemblil Kiracc 3a/1a4 paCcIIiupeH 3a CYeT PACCMOTPEHUsT MHOTOYIEHOB
IMPOM3BOJILHON CTEMEHN B KAaYeCTBE MPaBbIX dacTeill mud depeHmaipbHbiX ypaBHenuii. [lokazamno, kak obpat-
Had 33/[a9a XUMUIECKON KMHETHKHU MOYKeT OBITh CKOPPEKTHUPOBAHA W IMPUOINKEHa K IMPAKTHKE MOCPEICTBOM
KOMITO3UIINH C IMPOCTOM BCIIOMOTATEIbHON 33/1a9eil, peaau3dyomeil CBsI3b MeXIy (MYHKIUIMU U KOHETHBIMHI
HabOpaMu M3MEPSIeMbIX UYHNC/IOBBIX XapaKTEpUCTUK. [IpuBemernl (popMyJIbl pelreHrs U yKa3aHbl YCIOBUS OI-
HO3HAYHON DPa3PEeNmMOCTH CKOPPEKTUPOBAHHON 0OpaTHON 3amadn. B pamkax mcciaeqoBaHWs Pa3pPeninMOCTHA
MOJIyYeH KPUTEPUil JIMHEINHOW HEe3aBUCUMOCTH BENIECTBEHHBIX (DYHKIIMI B TEPMHUHAX KOHEYHBIX HAOOPOB MX
3uadenuii. C MOMOIIBIO YCTAHOBJIEHHOTO KPUTEPHUs YyTOYHEHA PEAIM3YEMOCTD YCIOBUS OJHO3HATHON Pa3peI-
MOCTH OOpATHOM 33/1a4i XUMUIECKON KUHETUKHU.
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