CUMULATIVE STRUCTURE
OF A BOOLEAN-VALUED MODEL
OF SET THEORY

Gutman Alexander Efimovich*

Sobolev Institute of Mathematics, Novosibirsk State University
e-mail: gutman@math.nsc.ru

A Boolean-valued algebraic system of set-theoretic signature {=, €} is a non-
empty class X endowed with Boolean-valued interpretations of the signature sym-
bols which are functions =y, €x: X? — B taking values in a complete Boolean
algebra B and satisfying the analogs of the classical axioms of equality, such as

Ex(z,y) N =x(y,2) < €x(w,2)

(see [1, 3.1]). By means of the operations in B of supremum a V b, infimum a A b,
and complement —b, as well as suprema sup A and infima inf A of subsets A C B,
the truth value [p(Z)]x € Bin X at T = z1,...,z, € X is recursively defined for
an arbitrary formula ¢ of the first-order language of signature {=, €}. In the case
[(Z)]x = 1z, the assertion ¢(Z) is said to be true in X, which fact is denoted as
X E o(Z).

A simple and natural example of a Boolean-valued algebraic system is the
class V¥ of all functions defined on a nonempty set S with the interpretations

=ys(@,y) ={s € 5 :a(s) =y(s)},
Eys(@,y) ={s € S:a(s) €y(s)},

which take values in the Boolean algebra P(S) of all subsets of S. In this case,
the truth value of every formula can be calculated pointwise:

[p(z1,- s 2n)]ys = {se€S:p(xi(s),...,zn(s))}.

A more general function example of a Boolean-valued system is the class C(Q, V?)
of continuous sections of a bundle V& of models of set theory over an extremally
disconnected compact space @ (see [2; 3, Ch. 6]).
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Let X be a Boolean-valued system with truth algebra B. A Boolean-valued
class in X is a function ®: X — B subject to the relation

for all z,y € X (see [1, 3.5; 3, 4.6.1]). Such natural agreements as
[re®x = (), [r=2=[Vy)lyczeyecd)k

make it possible to use Boolean-valued classes inside the truth value expressions,
analogously to the use of classes in the language of set theory. Say that an element
x € X represents a Boolean-valued class ® and write z ~ ® if X F (z=@).

Let BX be the class of all functions F': dom F' — B on subsets dom F C X.
The ascent of ' € BX is the Boolean-valued class F't: X — B defined as follows:

Fi(z) =\ [z=ylx AF(y).

yedom F'

An element z € X is the mizing of a family (z;);c; C X with respect to a par-
tition of unity (d;);er C B whenever [x =x;]x > d; for all ¢ € I. The symbol
mix Y denotes the totality of various mixings of elements of a subset Y C X.

A Boolean-valued algebraic system X with truth algebra B is called a Boolean-
valued universe (see [1, 3.4]) or a B-valued universe, if it meets the following five
conditions:

(1) (Vo,y € X)(XF(z=y) =z =y);

) (VF € BX)3z € X)(z ~ F?);

) (Vo € X)(3F € BX)(z ~ F?);

) XENzy)((V2)(zex e zey) = a=y);

) X F (V2)(By)ly € 2) = By e z)(Vz € 2)(2 ¢ y)).

As is known (see [1, 3]), for every complete Boolean algebra B, there exists
a B-valued universe V(3) which occurs a model of ZFC: if ¢ is a theorem of ZFC
then the assertion V(&) E ¢ is also a theorem of ZFC.

In the research paper [4] under announcement, we show that every B-valued
universe X has the following multilevel structure analogous to the von Neumann
cumulative hierarchy:

XO = @;

Xoy1 = {x eX:axz>=F1, Fe BXQ} for every ordinal «;

X.=U s<aXp for every limit ordinal o;

X = U,cora Xa; where Ord is the class of ordinals.
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Another cumulative structure is obtained if we consider the ascents of constant
functions only and add mixings at the limit steps:

YQ = @;

Yor1 ={z€X : v~ (Dx{b})t, DCY,, be B} for every ordinal o

Y, = mix s<a Yp for every limit ordinal o;

X = UozEOrd Ya'

Such cumulative hierarchies clarify the structure of Boolean-valued systems and,
in particular, make it possible to easily prove the uniqueness of a Boolean-valued
universe up to isomorphism.

In addition, [4] contains a general tool for adding ascents to Boolean-valued
systems which builds the hierarchy (X4)acora for an arbitrary system Xg sat-
isfying (4) and enlarges Xy to a system X = [J,corq Xa subject to (2)-(4), as
well as to (1) and (5) as soon as Xy meets the corresponding requirements. This
makes it possible to construct examples of Boolean-valued systems with unusual
properties. By means of the tool, we show in [4] that each of the five conditions
(1)—(5) listed in the definition of a Boolean-valued universe, is essential and does
not follow from the other conditions.
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