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LOCALLY CONVEX SPACES
WITH ALL ARCHIMEDEAN CONES CLOSED

A. E. Gutman and I. A. Emelianenkov UDC 517.98

Abstract: We provide an exhaustive description of the class of locally convex spaces in which all
Archimedean cones are closed. We introduce the notion of quasidense set and prove that the above
class consists of all finite-dimensional and countable-dimensional spaces X whose topological dual X ′

is quasidense in the algebraic dual X# of X.
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§ 1. Basic Notation and Terminology

Let N stand for the naturals {1, 2, . . . }. The sets of integers, rationals, and reals are denoted by Z, Q,
and R. By R+ we denote the collection {λ ∈ R : λ � 0} of positive reals. The set R is endowed with the
standard operations and topology that make it a field and a locally convex space. We designate as RD

the set of reals endowed with the discrete topology.
The sign “⊂” denotes the nonstrict inclusion of sets. The assignment symbol “:=” introduces

notation and indicates the equalities valid by definition.
In what follows, by a vector space we mean a vector space over R. The term subspace means a vector

subspace.
Closed, open, and semiopen numerical intervals are denoted by [α, β], ]α, β[, and [α, β[. If X is

a vector space, x, y ∈ X, and x �= y; then [x, y] := x + [0, 1] (y − x) and [x, y[ := x + [0, 1[ (y − x).
For convenience, we put [x, x] := [x, x[ := {x}. A set S ⊂ X is absorbing if for each x ∈ X there exists
a real ε > 0 such that [0, εx[ ⊂ S. Let coreS denote the core of S, i.e., the set of elements s ∈ S for which
S − s is absorbing. By linS and coS we designate the linear span and the convex hull of S. A subset
W ⊂ X is a wedge if W �= ∅, W +W ⊂ W , and R+W ⊂ W . A wedge W is a cone if W ∩ −W = {0}.

Given a set I, let RI
fin denote the subspace of finitely supported functions in RI , i.e., of functions

x : I → R whose support suppx := {i ∈ I : x(i) �= 0} is finite. Tuples x =
(
x(1), . . . , x(n)

)
∈ Rn, with

n ∈ N, are traditionally regarded as functions x : {1, . . . , n} → R. In what follows, we use the notation

en := χ{n} = (0, . . . , 0, 1
(n)
, 0, 0, . . . ) ∈ RN;

RN
n := lin {e1, . . . , en} =

{
x ∈ RN

fin : suppx ⊂ {1, . . . , n}
}
.

The linear operator πn : RN → Rn is defined by the formula

πns := s
∣
∣{1,...,n} =

(
s(1), . . . , s(n)

)
. (1)

We agree to use notation (1) not only for sequences s ∈ RN but also for tuples s ∈ Rm, with m � n.
Given a vector space X, let X# denote the algebraic dual of X, i.e., the space of all linear functionals

f : X → R. If X is endowed with a vector topology; then X ′ denotes the topological dual of X, i.e., the
subspace of X# consisting of continuous functionals.

Let clS and intS or, more precisely, clX S and intX S denote the closure and the interior of a set S
in a topological space X.

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project
FWNF–2022–0004).

†) The article is dedicated to Anatoly G. Kusraev on the occasion of his 70th birthday.
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§ 2. Introduction

2.1. The concept of a cone is closely related to that of an ordered vector space, a real vector space X
equipped with an order relation � such that the inequality x � y implies x+ z � y + z and λx � λy for
all x, y, z ∈ X and λ ∈ R+. Namely, if (X,�) is an ordered vector space then X+ := {x ∈ X : x � 0}
is a cone; and vice versa: if K ⊂ X is a cone and x �K y ⇔ y − x ∈ K, then (X,�K) is an ordered
vector space and X+ = K (see, for example, [1, 3.2; 2]).

2.2. An ordered vector space (X,�) is Archimedean provided that

if x, y ∈ X, y � 0, and x � 1
ny for all n ∈ N; then x � 0.

A cone K in a vector space X is Archimedean whenever the corresponding ordered vector space (X,�K)
is Archimedean.

2.3. Proposition [3, 3.1]. The following properties of a cone K in a vector space X are equivalent:

(a) K is Archimedean;

(b) X\K = core (X\K);

(c) [x, y[ ⊂ K implies y ∈ K for all x, y ∈ X;

(d) {λ ∈ R : x+ λy ∈ K} is closed for all x, y ∈ X;

(e) the intersection of K with every subspace of X of dimension � 2 is closed;

(f) the intersection of K with every finite-dimensional subspace of X is closed;

(g) K is sequentially closed in some Hausdorff vector topology on X;

(h) K is sequentially closed in the strongest locally convex topology on X.

� The implications (a)⇐(b)⇐(c)⇐(d)⇐(e)⇐(f)⇐(g)⇐(h) are obvious.

(a)⇒(f): Consider a finite-dimensional subspace X0 ⊂ X and put K0 := K ∩X0. Since the cone K0

has nonempty interior in linK0 ⊂ X0, it is closed in linK0 (see [2, 2.4]) and hence in X0.

(f)⇒(h): Let τ be the strongest locally convex topology on X. Owing to (f), it suffices to show that
the linear span of every τ -convergent sequence xn → x has finite dimension. Otherwise, there would exist
a subsequence (xnk

)k∈N such that x /∈ lin {xnk
: k ∈ N}, and then the convergence xnk

→ x in τ would
contradict the existence of a (continuous) linear functional equal to 0 on {xnk

: k ∈ N} and 1 at x. �

2.4. In 2.3, we trace some connection between the algebraic property of being Archimedean and
the topological property of closedness. In the case when an ordered vector space X is endowed with
some Hausdorff vector topology, the Archimedean property of X+ and its closedness can be reformulated
in terms of passage to the limit in linear inequalities. From 2.3(f) it is obvious that X+ is Archimedean
whenever we can pass to the limit in linear inequalities with fixed vectors and variable coefficients:
If x1, . . . , xn are elements of X and (λij)j∈N (i = 1, . . . , n) are convergent numeric sequences; then

n∑

i=1

λijxi � 0 (j ∈ N) ⇒
n∑

i=1

lim
j→∞

λijxi � 0. (2)

If X+ is closed then passage to the limit in linear inequalities is admissible without any restrictions:
For all convergent nets (xij)j∈J in X and (λij)j∈J in R (i = 1, . . . , n), we have

n∑

i=1

λijxij � 0 (j ∈ J) ⇒
n∑

i=1

lim
j∈J

λij lim
j∈J

xij � 0. (3)

The above considerations justify the advisability of describing the class of topological vector spaces with
all Archimedean cones closed or, which is the same, with (2) implying (3).
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2.5. Every closed cone is obviously Archimedean, whereas the converse is not true in general. The set(
RN

fin

)+
of positive finitely supported sequences in each of the classical Banach spaces 	p, with 1 � p � ∞,

serves as a basic example of a nonclosed Archimedean cone. As is known, in the finite-dimensional case,
a cone is Archimedean if and only if it is closed. Until recently, this simple observation actually exhausted
the information about the class of spaces with all Archimedean cones closed. The corresponding study
was initiated in [3], where the problem was solved for locally convex spaces of uncountable dimension.

Theorem [3, 4.2 and 4.3]. Let E be a Hamel basis for a Hausdorff locally convex space X, and let
e0 ∈ E. If |E| > |N|; then R+C is a nonclosed Archimedean cone in X, where

C =

{ ∑

e∈E
x(e)e : x ∈

(
RE

fin

)+
, x(e0) = 1,

∑

e �=e0

x(e) � 1,
∑

e �=e0

√
x(e) � 1

}
.

Therefore, in the case of uncountable dimension, nonclosed Archimedean cones exist even in the
strongest locally convex topology. On the other hand, in finite-dimensional spaces, all Archimedean cones
are closed. The case of countable dimension turned out more complicated, and any exhaustive description
of locally convex spaces with all Archimedean cones closed remained an open problem until now.

2.6. Since the closed convex sets are the same in all locally convex topologies compatible with a given
duality (see, for example, [1, 10.4.9; 4, 8-3-6]), the property under study of a locally convex space X is
completely determined by the topological dual X ′ or, more precisely, by the location of X ′ in X#. More-
over, we may assume that X is endowed with the weak topology compatible with the duality between X
and X ′. Considering that every countable-dimensional vector space X is isomorphic to RN

fin, and the alge-
braic dual X# of X is isomorphic to RN; the problem under consideration can be reformulated as follows:

Problem [3, 4.5]. Describe the vector subspaces Y ⊂ RN for which all Archimedean cones in RN
fin

are closed in the weak topology induced on RN
fin by Y under the duality 〈x | y〉 =

∑
n∈N x(n)y(n).

The article is aimed at solving the above problem. Section 3 contains some available and auxiliary
information on duality and polars. Sections 4–7 study the concept of quasi-interior and the related new
concepts of quasilocal boundedness, quasidenseness, and projectivity that play a key role on the path
to a solution. In Section 8, we establish Theorem 8.5, the main result of the article, which contains
a solution of the problem. The conclusion is given in Theorem 8.6, where we provide some exhaustive
description of the class of locally convex spaces with all Archimedean cones closed: the class consists of
finite-dimensional and countable-dimensional spaces X whose dual X ′ is quasidense in X#. In the same
section, we give two corollaries, one confirming a conjecture of [3], and the other offering a short justifica-
tion of the main result of [5]. In the final Section 9, we formulate a few questions that remain open by now.

§ 3. Duality

We present the basic information, notation, and conventions that are related to duality between
vector spaces and weak locally convex topologies.

3.1. A triple (X,Y, 〈· | ·〉) is a duality space if X and Y are vector spaces and 〈· | ·〉 is a duality
between X and Y , i.e., a bilinear functional 〈· | ·〉 : X × Y → R such that ker 〈·| = {0} and ker |·〉 = {0},
where 〈x| = 〈x | ·〉 and |y〉 = 〈· | y〉 for x ∈ X and y ∈ Y . A duality space is also referred to as a dual pair
(see [4, 8-2-1]). Instead of (X,Y, 〈· | ·〉), we writeX|Y or simplyX, if Y and 〈· | ·〉 are clear from the context.
For x ∈ X, the functional 〈x| ∈ Y # is denoted by x̂.

When considering a duality space (X,Y, 〈· | ·〉), we assume Y endowed with the conjugate duality :
Y = Y |X = (Y,X, 〈· | ·〉∗), where 〈y |x〉∗ = 〈x | y〉. In particular, if y ∈ Y then ŷ = |y〉 ∈ X#.

3.2. Every Hausdorff locally convex space X is regarded as the duality space X|X ′ = (X,X ′, 〈· | ·〉)
with 〈x | f〉 = f(x). Conversely, every duality space X = (X,Y, 〈· | ·〉) is endowed with the correspond-
ing weak topology σ(X|Y ), turning into a Hausdorff locally convex space. Moreover, the mapping
|·〉 : y ∈ Y 
→ ŷ ∈ X# is a linear and topological isomorphism between the locally convex spaces Y = Y |X
and X ′ = X ′|X.
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3.3. Let X be a vector space with a Hausdorff locally convex topology τ . The weak topology
σ := σ(X|X ′) implied on the duality space X|X ′ need not coincide with τ . Nevertheless, owing to the
equality (X,σ)′ = (X, τ)′, the locally convex spaces (X,σ) and (X, τ) have the same closed convex sets,
closures of convex sets, and bounded sets (see [4, 8-1-3, 8-3-6, 8-3-7, 8-4-1]). Therefore, if the use of
the topology in a statement on a locally convex space X remains within the above-mentioned concepts,
we may assume that X = X|X ′ in the proof of the statement.

3.4. Given a set I, the vector space RI
fin is regarded as the duality space RI

fin

∣
∣RI =

(
RI

fin,R
I , 〈· | ·〉

)

with 〈x | y〉 =
∑

i∈I x(i)y(i). The same duality is implied when considering pairs of the form RI
fin

∣
∣Y ,

where Y is a subspace of RI . It is easy to see that {ŷ : y ∈ RI} = (RI
fin)

#.
The space RI is endowed with the conjugate duality: RI = RI

∣
∣RI

fin. The default weak topology

σ
(
RI

∣
∣RI

fin

)
of this space coincides with the Tikhonoff topology of the product RI =

∏
i∈I R that is also

called the pointwise convergence topology. This, in particular, implies the well-known compactness
criterion for RI : A subset of RI is compact if and only if it is closed and bounded. (This is so, for
example, because every bounded subset of RI lies in a product of the form

∏
i∈I [αi, βi] which is compact

by the Tikhonoff Theorem.)
If n ∈ N then Rn = RI = RI

fin, where I = {1, . . . , n}, which means that all the conventions and
notation introduced above for RI and RI

fin are applicable to Rn. In particular, Rn is assumed to be the
duality space Rn|Rn with 〈x | y〉 =

∑n
i=1 x(i)y(i).

3.5. Let X be a vector space. Given an arbitrary subspace Y ⊂ X#, the bilinear functional
〈· | ·〉 : X × Y → R acting as 〈x | y〉 = y(x) need not be a duality: only the second of the conditions
ker 〈·| = {0} and ker |·〉 = {0} is guaranteed.

Proposition. The following properties of a subspace Y ⊂ X# are equivalent:
(a) (x, y) 
→ y(x) is a duality between X and Y ;
(b) the weak topology σ(X|Y ) is Hausdorff;
(c) if x1, x2 ∈ X and x1 �= x2, then y(x1) �= y(x2) for some y ∈ Y ;
(d) for every nonzero x ∈ X there is y ∈ Y such that y(x) �= 0;
(e) for all linearly independent x1, . . . , xn ∈ X and all λ1, . . . , λn ∈ R, there exists y ∈ Y such that

y(x1) = λ1, . . . , y(xn) = λn;
(f) Y is dense in X#|X;
(g) clY = X# in the topological space RX

D .

In the literature, the dense subspaces ofX#|X are also called total overX, separating, or fundamental.
If Y is a subspace of X ′, with X a Hausdorff locally convex space; then the denseness of Y in X ′

is equivalent to the denseness of Y inX# (see [4, 8-3-9]). For this reason, the terms “dense subspace ofX ′”
and “dense subspace of X#” are interchangeable, and the use of the term “dense subspace” leads to
no ambiguity.

Given a vector space X and a dense subspace Y ⊂ X#, we imply the duality 〈x | y〉 = y(x) between X
and Y and introduce the corresponding dual pairs X|Y and Y |X into consideration.

3.6. The description below of the dense subspaces of RN can be easily deduced from 3.5:

Proposition. The following properties of a subspace Y ⊂ RN are equivalent:
(a) Y is a dense subspace of RN;
(b) πnY = Rn for all n ∈ N;
(c) πnen ∈ πnY for all n ∈ N;
(d) Y is dense in RN

D .

3.7. Let X|Y be a dual pair, let R ⊂ R, and let S ⊂ X. Agree to call the set

S〈R〉 := {y ∈ Y : 〈s | y〉 ∈ R for all s ∈ S}

the polar of S with respect to R.

1120



We list the classical special cases of polars:

S⊕ := S〈R+〉 is the dual wedge to S, often denoted in the literature by S′;
S� := S〈−R+〉 = −S⊕ is the normal wedge to S; the polar (S − x)� is called the normal wedge to S

at a point x ∈ X;
S� := (S\{0})〈 ]0,∞[ 〉 = {y ∈ Y : 〈s | y〉 > 0 for all s ∈ S\{0}} is the collection of strictly positive

elements of the dual space with respect to S;
S� := S〈 ]−∞,1] 〉 is the one-sided polar of S;
S◦ := S〈 [−1,1] 〉 is the absolute polar of S;
S⊥ := S〈{0}〉 is the annihilator of S.

Recall that the space Y is endowed by default with the conjugate duality: Y = Y |X. In particular,

T 〈R 〉 ⊂ X for T ⊂ Y (see 3.8(a) below).

3.8. Proposition. Let X|Y be a dual pair. Given R ⊂ R and S ⊂ X, the following hold:

(a) S ⊂ S〈R〉〈R 〉;
(b) if R0 ⊂ R and S0 ⊂ S then S

〈R 〉
0 ⊃ S〈R0〉;

(c) if 0 ∈ R then 0 ∈ S〈R 〉;
(d) if R is a convex, or absolutely convex, or closed subset of R, then S〈R 〉 is convex, or absolutely

convex, or closed subset of Y ;
(e) if R is absorbing (i.e., 0 ∈ intR) and S is bounded, then S〈R 〉 is absorbing;
(f) if R ∩ −R is bounded and S is absorbing, then S〈R〉 is bounded;
(g) if R ∩ −R is bounded and S〈R 〉 is absorbing, then S is bounded.

3.9. Corollary [6, 5.102]. Given a subset S of a Hausdorff locally convex space, the following hold:
(a) S⊕, S�, S�, S� are convex;
(b) S◦, S⊥ are absolutely convex;
(c) S⊕, S�, S�, S◦, S⊥ are closed and contain 0;
(d) if S is absorbing, then S� and S◦ are bounded;
(e) S is bounded ⇔ S� is absorbing ⇔ S◦ is absorbing.

3.10. Bipolar Theorem [6, 5.103]. For every nonempty set S in a Hausdorff locally convex space,

S
��

= cl co (S ∪ {0}), S◦◦ = cl co (S ∪ −S).

3.11. Theorem [2, 2.13]. If X|Y is a dual pair and W is a wedge in X, then W⊕ is a closed wedge
in Y and W⊕⊕ = clW .

§ 4. Quasi-Interior

Throughout this section,X is a Hausdorff locally convex space. According to 3.1 and 3.2, the spacesX
and X ′ are endowed with the natural duality, and so X = X|X ′ and X ′ = X ′|X. (In particular, if S ⊂ X ′

then S� ⊂ X.)
An element x of S ⊂ X is a relatively quasi-interior point of S, in symbols x ∈ qriS, whenever

cl R+(S − x) is a vector subspace of X. This concept was introduced and studied in [7] and was further
expanded in convex analysis and optimization methods. In the case under consideration, a slightly
different but very close notion of quasi-interior turns out to be useful (see, for example, [8, 2.1.2]).
Most of the facts about quasi-interior presented in this section have analogs established in [7] for relative
quasi-interior. Each of these statements is provided with a corresponding reference.

4.1. The quasi-interior qiS of a set S ⊂ X is defined as follows:

qiS := {x ∈ S : cl R+(S − x) = X}.(
Note that in this definition we cannot weaken the containment x ∈ S to x ∈ X even for a convex
set S. For example, if X �= {0} and S = K\{0}, where K is a dense cone in X; then 0 /∈ S, while
cl R+(S − 0) = clK = X.

)
The elements of qiS are quasi-interior points of S. The set S is quasiopen

whenever qiS = S.
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4.2. If need be, the symbol qi, as well as cl, is provided with a qualifying index: qiX S = {x ∈ S :
clX R+(S−x) = X} for S ⊂ X. If Y is a dense subspace of X then qiY S = qiX S for all S ⊂ Y . (Indeed,
by the denseness of Y in X, the relations clY R+(S − y) = Y and clX R+(S − y) = X are equivalent for
each y ∈ S.) In this context, we agree to use the notation qiS without specifying the ambient space of
the quasi-interior of S.

4.3. Lemma. If C is a nonempty convex subset of X, then

C
�
= (cl R+C)

�
, C

��
= cl R+C.

� Given an arbitrary f ∈ X ′, the inclusion R+(cl R+C) ⊂ cl R+C implies

f ∈ C
� ⇔ f � 0 on cl R+C ⇔ f � 1 on cl R+C ⇔ f ∈ (cl R+C)

�
;

whence, by the Bipolar Theorem, it follows that

C
��

= (cl R+C)
��

= cl co (cl R+C ∪ {0}) = cl R+C. �

4.4. Proposition [7, 2.8]. For all convex C ⊂ X and x ∈ X, we have

x ∈ qiC ⇔ x ∈ C and (C − x)
⊕
= {0}.

� We may assume that x = 0. If 0 ∈ qiC then cl R+C = X; whence, by 4.3, it follows that

−C
⊕
= C

�
= (cl R+C)

�
= X

�
= {0}.

Conversely, if C⊕ = {0}; then, on appealing again to 4.3, we conclude that

cl R+C = C
��

= (−C
⊕
)
�
= {0}�

= X. �

In what follows, we repeatedly use 4.4 without explicit references.

4.5. Proposition [7, 2.9]. If C is a convex set, x ∈ qiC, and y ∈ C; then [x, y[ ⊂ qiC.

� We may assume that x = 0. Let 0 ∈ qiC, y ∈ C, and 0 < λ < 1. To show that λy ∈ qiC,
consider f ∈ (C−λy)⊕ and establish that f = 0. Inserting the values c = 0 and c = y into the inequality
f(c− λy) � 0, we obtain f(y) � 0 and f(y) � 0, respectively. Hence f(c) = f(c− λy) � 0 for all c ∈ C,
i.e., f ∈ C⊕. On the other hand, 0 ∈ qiC implies C⊕ = {0}. �

4.6. Corollary [7, 2.11]. The quasi-interior of a convex set is convex.

4.7. Proposition [7, 2.12]. If C is a convex set with nonempty quasi-interior, then cl qiC = clC.

� It suffices to show that C ⊂ cl qiC. Let y ∈ C. By hypothesis, there is x ∈ qiC. Owing to 4.5,
[x, y[ ⊂ qiC. It remains to note that y ∈ cl [x, y[. �

4.8. Proposition [7, 2.13]. Let C and D be convex subsets of X, with intD �= ∅. Then

qiC ∩ intD = qi(C ∩D).

� By shifting, the claim reduces to the equivalence

0 ∈ qiC ∩ intD ⇔ 0 ∈ qi(C ∩D).

Let 0 ∈ qiC ∩ intD. Consider f ∈ (C ∩ D)⊕ and show that f = 0. Since 0 ∈ C ∩ intD; for every
c ∈ C there is a real ε > 0 such that εc ∈ C ∩D, and hence f(c) = 1

εf(εc) � 0. Consequently, f ∈ C⊕.
On the other hand, 0 ∈ qiC implies C⊕ = {0}.

Conversely, let (C ∩ D)⊕ = {0}. Assume to the contrary that 0 /∈ intD. Since intD �= ∅; by the
Separation Theorem, there exists a nonzero f ∈ X ′ such that f � 0 on D. But then, in particular,
f ∈ (C ∩D)⊕; and, hence, f = 0. �

1122



4.9. Proposition. Let C be a convex subset of X.
(a) intC ⊂ coreC ⊂ qiC.
(b) The inclusions in (a) can be strict simultaneously. For example, if f ∈ X#\X ′ and C = {x ∈ X :

f(x) � 0}; then intC = ∅, coreC = {x ∈ X : f(x) > 0}, and qiC = C.
(c) If X is finite-dimensional then intC = qiC.
(d) If intC �= ∅ then intC = qiC (see [7, 2.14]).
(e) The absolutely convex compact set C := {x ∈ RN : |x| � 1} in RN has empty interior and

nonempty quasi-interior.

� (d): If intC �= ∅; then, using 4.8, we see that

intC = qiX ∩ intC = qi (X ∩ C) = qiC.

(e): For every x ∈ C we have R+(C − x) ⊂ 	∞ �= RN and so x /∈ intC. On the other hand, 0 ∈ qiC,
since cl R+C = cl 	∞ = RN. �

4.10. Proposition. If C is a convex subset of X then qiC is quasiopen, i.e., qi qiC = qiC.

� It suffices to assume 0 ∈ qiC and justify that 0 ∈ qi qiC. Consider f ∈ (qiC)⊕ and show that
f = 0. Since qiC �= ∅, by 4.7, we have cl qiC = clC; therefore, the positivity of f on qiC implies the
positivity of f on C. Consequently, f = 0, since C⊕ = {0}. �

4.11. The operation qi : P(X) → P(X) is not in general the interior with respect to any topology
on X, since the equality

qi (S1 ∩ S2) = qiS1 ∩ qiS2

can be violated even for convex sets S1 and S2. For example, if X �= {0} and K is a dense cone in X,
then 0 ∈ qi (K) ∩ qi (−K), while K ∩ −K = {0} and so 0 /∈ qi (K ∩ −K).

4.12. The following is a slightly strengthened version of Proposition [8, 2.1.1]:

Proposition. (a) qiC⊕ ⊂ C� for every convex set C ⊂ X.
(b) If W is a closed wedge in X then qiW⊕ = W�.

� (a): Assume that f ∈ qiC⊕, but f(x) = 0 for some x ∈ C\{0}. Then 〈x | g − f〉 = 〈x | g〉 � 0 for
all g ∈ C⊕; i.e., x ∈ (C⊕ − f)⊕, which is impossible, since (C⊕ − f)⊕ = {0}.

(b): Assume that f > 0 on W\{0}, but f /∈ qiW⊕. Then (W⊕ − f)⊕ �= {0} and so there exists
a nonzero x ∈ X such that 〈x | g〉 � 〈x | f〉 for all g ∈ W⊕. Since W⊕ is a wedge, this implies 〈x | g〉 � 0
for all g ∈ W⊕; therefore, x ∈ W⊕⊕ = clW = W (see 3.11) and, hence, 〈x | f〉 > 0. But then 〈x | g〉 �
〈x | f〉 > 0 for all g ∈ W⊕, which is impossible as 0 ∈ W⊕. �

4.13. Theorem. For every convex set C ⊂ RN, we have

qiC = {c ∈ C : πnc ∈ intπnC for all n ∈ N}.
In particular, a convex set C is quasiopen in RN if and only if every projection πnC is open in Rn.

� It suffices to establish the equivalence

0 ∈ qiC ⇔ 0 ∈ C and 0 ∈ intπnC for all n ∈ N,

which, by 4.4 and 4.9(c), reduces to the equivalence

C
⊕
= {0} ⇔ (πnC)

⊕
= {0} for all n ∈ N.

Suppose that C⊕ = {0}. If n ∈ N, x ∈ Rn, and x̂ � 0 on πnC; then the sequence

y :=
(
x(1), . . . , x(n), 0, 0, . . .

)
∈ RN

fin

meets the inequality ŷ � 0 on C, whence y = 0 and, in particular, x = πny = 0.
Conversely, suppose that (πnC)⊕ = {0} for all n ∈ N. If n ∈ N, x ∈ RN

n , and x̂ � 0 on C; then
(πnx)

∧ � 0 on πnC, whence πnx = 0 and so x = 0. �
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§ 5. Quasilocal Boundedness

This section studies the new concept of quasilocally bounded locally convex space. As it turns out
later (see § 6), these spaces have a few useful properties related to the closedness of cones in the respective
weak topologies. The main result of this section is Theorem 5.10 claiming that RN is quasilocally bounded.

In what follows, X is a Hausdorff locally convex space.

5.1. A convex setC ⊂X is quasilocally bounded at x∈ qiC if x∈ qiB for some bounded subsetB⊂C.
The space X is quasilocally bounded if every convex set C in X is quasilocally bounded at every x∈ qiC.

It is easy to see that every normed space is quasilocally bounded. Some wider class of examples
of quasilocally bounded spaces is provided by 5.9.

5.2. Proposition. If X is infinite-dimensional and X ′ = X# then every bounded subset of X has
empty quasi-interior. In particular, X is not quasilocally bounded in this case.

� Let X be infinite-dimensional, let X ′ = X#, and let S be a subset of X with nonempty quasi-
interior. We may assume that 0 ∈ qiS and thus cl R+S = X. Consider a maximal linearly independent
subset E ⊂ S. Then S ⊂ linE, and the set E is infinite, because otherwise X = cl R+S ⊂ cl linE = linE
despite X being infinite-dimensional. Therefore, there exists an unbounded function f : E → R that
extends to a functional f ∈ X# = X ′ unbounded on S. �

5.3. Lemma. Let C be a convex subset of X and let x ∈ qiC. Put D := 1
2(C +x) = 1

2(C −x)+x.

Then x ∈ qiD and D ⊂ qiC. In particular, if 0 ∈ qiC then 1
2C ⊂ qiC.

� The containment x ∈ qiD follows from x ∈ D and (D−x)⊕ = 1
2(C−x)⊕ = {0}. Moreover, by 4.5,

for all c ∈ C we have 1
2(c+ x) ∈ [x, c[ ⊂ qiC and so D ⊂ qiC. �

5.4. Proposition. Let a convex set C ⊂ X be quasilocally bounded at x ∈ qiC. Then
(a) there is a bounded convex subset B ⊂ C such that x ∈ qiB, B ⊂ qiC, and clB ⊂ qi clC;
(b) if C is closed then there exists a closed bounded convex subset B ⊂ C such that

x ∈ qiB ⊂ cl qiB = B ⊂ qiC.

� We may assume that x = 0.
(a): Let 0 ∈ qiB0, where B0 is a bounded subset of C. Then B := 1

2 coB0 is the desired set. Indeed,

the containment 0 ∈ qiB is obvious and, by 5.3, we have B ⊂ 1
2C ⊂ qiC and clB ⊂ 1

2 clC ⊂ qi clC.
(b): According to (a), there is a bounded convex subset B0 ⊂ C such that 0 ∈ qiB0 and clB0 ⊂

qi clC = qiC. Since qi clB0 �= ∅, by 4.7, we have cl qi clB0 = clB0; and, hence,

0 ∈ qi clB0 ⊂ cl qi clB0 = clB0 ⊂ qiC.

Therefore, B := clB0 is the desired set. �

5.5. Proposition. The space X is quasilocally bounded if and only if every dense wedge W ⊂ X
includes a bounded subset B ⊂ W such that 0 ∈ qiB.

� Only sufficiency needs some demonstration. Let C be a convex subset of X and let 0 ∈ qiC. Show
that 0 ∈ qiB for some bounded subset B ⊂ C. By hypothesis, the dense wedge R+C includes a bounded
subset B ⊂ R+C such that 0 ∈ qiB. We may assume that B is convex. Then B := B ∩ C is the desired
set. Since cl R+B = X, to establish the required relation cl R+B = X it suffices to consider an arbitrary
b̄ ∈ B and note that b̄ ∈ R+B. Indeed, B ⊂ R+C implies b̄ = λc for some λ � 0 and c ∈ C. If λ � 1 then
b̄ = λc ∈ [0, c] ⊂ C; so b̄ ∈ B ∩ C = B and, in particular, b̄ ∈ R+B. If λ > 1 then c ∈ [0, λc] = [0, b̄] ⊂ B,
whence c ∈ B ∩ C = B and again b̄ = λc ∈ R+B. �

5.6. Say that a locally convex space is subnormable if its topology isweaker than somenormed topology.
Obviously, every normable space is subnormable. Metrizability, in general, does not imply subnorma-

bility. For example, RN is metrizable, but has no bounded absorbing sets and therefore is not subnormable
(see 5.7).
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5.7. Proposition. The following properties of a locally convex space X are equivalent:
(a) X is subnormable;
(b) there exists a norm on X whose unit ball is bounded in X;
(c) there is a bounded absorbing set in X;
(d) X admits a bounded set with nonempty core;
(e) X has a bounded Hamel basis.

� (a)⇒(b): IfB is the unit ball in a norm whose topology is stronger than that ofX, thenB is bounded
in X. Indeed, every neighborhood U of the origin in X contains εB for some ε> 0, and hence B⊂ 1

εU .
The implications (b)⇒(c)⇔(d) are trivial.
(c)⇒(e): If B is a bounded absorbing set and E is a Hamel basis, then there is a numerical family

λe > 0 such that λee ∈ B for all e ∈ E, and then {λee : e ∈ E} is a bounded Hamel basis.
(e)⇒(a): Let E be a bounded Hamel basis for X. Define a norm on X by putting

‖x‖ :=
∑

e∈E
|xe|,

where xe is the coefficient at e in the expansion of x with respect to E. Show that the topology of the
norm ‖·‖ is stronger than that of X. Every neighborhood of the origin in X contains an absolutely convex
subneighborhood U . The boundedness of E implies E ⊂ λU for some real λ > 0. Since the unit ball B
in the norm ‖·‖ is the absolutely convex hull of E, we have B ⊂ λU . Consequently, 1

λB ⊂ U and, hence,
U is a neighborhood of the origin in the topology of the norm ‖·‖. �

5.8. Proposition. X is subnormable if and only if X ′ is subnormable.

� If B is a bounded absorbing subset of X; then, by 3.9(d),(e), its polar B� is a bounded absorbing
subset of X ′. For the same reason, the existence of a bounded absorbing set in X ′ implies the existence
of such set in X. �

5.9. Proposition. Every subnormable space is quasilocally bounded.

� Let B be a bounded absorbing subset of X (see 5.7), and let W be a dense wedge in X. Then
R+(W ∩B) = W and so cl R+(W ∩B) = X, i.e., 0 ∈ qi (W ∩B). It remains to refer to 5.5. �

Note that the converse does not hold: for example, RN is quasilocally bounded (see 5.10) but not
subnormable.

5.10. Theorem. RN is quasilocally bounded.

� Using 5.5, consider an arbitrary dense wedge W ⊂ RN and show that 0 ∈ qiB for some bounded
subset B ⊂ W . By 4.13, for each n ∈ N we have 0 ∈ intπnW . Since the projection πnW is a wedge
in Rn; therefore, πnW = Rn. Therefore, for all n ∈ N and m ∈ {1, . . . , n}, there are w+

nm, w−
nm ∈ W such

that πnw
+
nm = πnem and πnw

−
nm = −πnem. Put

B := co

( ⋃

n∈N

{w+

n1, . . . , w
+
nn, w

−
n1, . . . , w

−
nn} ∪ {0}

)
.

Obviously, B ⊂ W . For each n ∈ N the set πnB contains the vectors

πnw
±
n1 = ±πne1, . . . , πnw

±
nn = ±πnen

whose convex hull is the unit ball of the 	1-norm in Rn. Hence, 0 ∈ intπnB for all n ∈ N and so 0 ∈ qiB
by 4.13. To prove that B is bounded, consider an arbitrary k ∈ N and show that the numerical set
B(k) := {b(k) : b ∈ B} is bounded. Indeed, for all n � k and m ∈ {1, . . . , n}, we have

w±
nm(k) =

(
πnw

±
nm

)
(k) = (±πnem)(k) ∈ {−1, 0, 1},

and so B(k) lies in the convex hull of the finite set

k−1⋃

n=1

{
w±
n1(k), . . . , w

±
nn(k)

}
∪ {−1, 0, 1}. �
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§ 6. Quasidenseness

In this section, the connection is studied between two new concepts: those of quasidense subspace and
strictly closed cone. The main results here are Theorem 6.11 and Corollary 6.12, according to which the
strict closedness of cones is inherited by the topologies induced by quasidense subspaces of quasilocally
bounded spaces.

Throughout the section, X is a Hausdorff locally convex space. We let Pcbc(X) denote the collection
of all closed bounded convex subsets of X.

6.1. Lemma. Let Z be a subspace of X. The following properties of a subset S ⊂ X are equivalent:
(a) if B ∈ Pcbc(X) and qi (Z ∩B) �= ∅ then S ∩B �= ∅;
(b) if B ∈ Pcbc(X) and qi (Z ∩B) �= ∅ then S ∩ qiB �= ∅;
(c) if B ∈ Pcbc(Z ) and qiB �= ∅ then S ∩ clB �= ∅;
(d) if B ∈ Pcbc(Z ) and qiB �= ∅ then S ∩ qi clB �= ∅,

where the operations cl and qi are performed in X.

� (a)⇒(b): Let B ∈ Pcbc(X) and z ∈ qi (Z ∩ B). Put C := 1
2(B − z) + z. Obviously, C ∈ Pcbc(X).

From the equalities Z ∩C− z = 1
2(Z ∩B− z) and (Z ∩B− z)⊕ = {0} it follows that (Z ∩C− z)⊕ = {0},

i.e., z ∈ qi (Z ∩C). Then S ∩C �= ∅ according to (a). Moreover, C ⊂ qiB by 5.3. Hence, S ∩ qiB �= ∅.
(b)⇒(d): Let B ∈ Pcbc(Z) and qiB �= ∅. It is clear that clB ∈ Pcbc(X). The inclusion Z ∩ clB ⊃ B

implies qi (Z ∩ clB) ⊃ qiB �= ∅, and so S ∩ qi clB �= ∅ according to (b).
The implication (d)⇒(c) is trivial.
(c)⇒(a): Let B ∈ Pcbc(X) and qi (Z ∩ B) �= ∅. Since Z ∩ B ∈ Pcbc(Z), condition (c) implies

S ∩ cl (Z ∩B) �= ∅. In this case, cl (Z ∩B) ⊂ clB = B. �

6.2. A subset S ⊂ X satisfying the equivalent conditions (a)–(d) in 6.1 is quasidense in X with
respect to Z. A quasidense set in X with respect to X is quasidense in X. Therefore, the following are
equivalent:

(a) S is quasidense in X;
(b) if B ∈ Pcbc(X) and qiB �= ∅ then S ∩B �= ∅;
(c) if B ∈ Pcbc(X) and qiB �= ∅ then S ∩ qiB �= ∅.

6.3. Proposition. If there exists a bounded set in X with nonempty quasi-interior, then every
quasidense subset of X is dense in X.

� Let B be a bounded subset of X with nonempty quasi-interior. We may assume that 0 ∈ qiB.
Suppose that X has a quasidense set S that is not dense. Then there are U and u such that U is a closed
convex subset of X, u ∈ intU , and U ⊂ X\S. Put B := cl coB and C := (B + u) ∩ U . It is clear
that C ∈ Pcbc(X) and qiC �= ∅. Indeed, since u ∈ B + u and

(
(B + u) − u

)⊕ = B⊕ ⊂ B⊕ = {0},
we have u ∈ qi (B + u), whence, by 4.8, it follows that u ∈ qi (B + u) ∩ intU = qi

(
(B + u) ∩ U

)
= qiC.

Then the quasidenseness of S in X implies that S ∩ C is nonempty, which contradicts the inclusions
C ⊂ U ⊂ X\S. �

On the other hand, if all bounded sets in X have empty quasi-interior (see, for example, 5.2); then
Pcbc(X) = ∅, in which case, by 6.2, every subset of X is quasidense.

6.4. Corollary. All quasidense subsets of RN are dense.

� Owing to 6.3, it suffices to note that {x∈RN : |x|� 1} is a bounded subset of RN with nonempty
quasi-interior (see 4.9(e)). �

The converse is not true: RN
fin is an example of a dense but not quasidense subset of RN. Indeed,

B :=
{
s ∈ RN : |s(n)− 1| � 1

2 for all n ∈ N
}

belongs to Pcbc(RN), and (1, 1, . . . ) ∈ qiB, while RN
fin ∩B = ∅.
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6.5. A pseudo-base (respectively, a base) of a wedge K in X is a convex subset B ⊂ K such that
0 /∈ B and for every nonzero x ∈ K there exists a real (respectively, a unique real) λ > 0 for which λx ∈ B.
Obviously, every wedge with a pseudo-base is a cone. As is known (see, for example, [9, 3.6]), the existence
of a base for a cone K is equivalent to the existence of a linear functional strictly positive on K\{0}.

6.6. Proposition. The following properties of a wedge K ⊂ X are equivalent:
(a) K� �= ∅, i.e., there is a functional f ∈ X ′ such that f > 0 on K\{0};
(b) K has a pseudo-base B such that 0 /∈ clB;
(c) K has a base B such that 0 /∈ clB;
(d) K\{0} ⊂ R+U for some open convex set U ⊂ X such that 0 /∈ U ;
(e) K\{0} ⊂ intK for some cone K ⊂ X.

6.7. A wedge K ⊂ X is strictly closed if every element x ∈ X\K is strictly separated from K\{0};
i.e., there is f ∈ X ′ such that f > 0 on K\{0} and f(x) < 0.

Obviously, a strictly closed wedge is a cone. In a finite-dimensional space, every closed cone is strictly
closed. The sets of positive sequences

(
RN

)+
and

(
RN

fin

)+
are examples of closed cones in RN

∣
∣RN

fin and RN
fin

∣
∣RN

fin

that are not strictly closed. On the other hand, all closed cones in RN
fin

∣
∣RN are strictly closed (see 8.4).

6.8. Proposition. The following properties of a wedge K ⊂ X are equivalent:
(a) K is a strictly closed cone;
(b) K is closed and K� �= ∅;
(c) K is closed and has a closed pseudo-base;
(d) K is closed and has a closed base.

� By 6.6, only the implication (b)⇒(a) needs demonstration. Suppose that K is closed, g ∈ K�,
and x ∈ X\K. By the Strict Separation Theorem, there exists a functional h ∈ X ′ such that h � 0 on K
and h(x) < 0. Let λ > 0 be a real such that λh(x) < −g(x). Then the functional f := g + λh strictly
separates x from K\{0}. �

6.9. Lemma. If C ∈ Pcbc(X), C �= ∅, and 0 /∈ C; then R+C is a closed cone in X.

� The set R+C is obviously a cone. To prove its closedness, consider nets λα ∈ R+ and cα ∈ C,
suppose that λαcα → x ∈ X, and demonstrate that x ∈ R+C. We may assume that x �= 0. Since
C is closed and does not contain 0, by the Strict Separation Theorem, there exists f ∈ X ′ such that
f � 1 on C. The boundedness of C implies the boundedness of the net f(cα). Passing to a subnet,

we may assume that f(cα) → μ for some real μ � 1. Put λ := f(x)
μ . The relations 1

f(cα)
→ 1

μ and

f(λαcα) → f(x) imply
λα = 1

f(cα)
f(λαcα) → 1

μf(x) = λ.

Since C is bounded and λαcα → x �= 0, the net λα cannot converge to zero; hence, λ > 0. Therefore, we
may assume that λα > 0 for all α. Since 1

λα
→ 1

λ and λαcα → x, we have cα = 1
λα

λαcα → 1
λx. Appealing

to the closedness of C, we conclude that 1
λx ∈ C and so x ∈ R+C. �

6.10. Lemma. Suppose that Y and Z are dense subspaces of X ′, B ∈ Pcbc(X
′), qi cl (Z ∩B) �= ∅,

and Y ∩ B = ∅. Then (Z ∩ B)⊕ ⊂ X is a cone that is strictly closed in X|Z and dense (in particular,
not closed) in X|Y .

� By hypothesis, C := Z ∩ B and D := clC satisfy the relations D ∈ Pcbc(X
′), 0 /∈ D ⊂ B, and

qiD �= ∅. Lemma 6.9 implies that R+D is a closed cone in X ′. Put

K := C
⊕
= D

⊕
= (R+D)

⊕
.

Owing to 3.11, we have K⊕ = (R+D)⊕⊕ = R+D. Since C ⊂ Z, the wedge K = C⊕ is closed in X|Z.
Moreover, according to 4.12(a), Z∩K� ⊃ Z∩qiK⊕ ⊃ Z∩qiD = qiD �= ∅ hold and, hence, K is a strictly
closed cone in X|Z (see 6.8(b)). The condition Y ∩B = ∅ implies Y ∩K⊕ = Y ∩R+D ⊂ Y ∩R+B = {0}.
Using 4.4, we conclude that 0 ∈ qiX|Y K, i.e., clX|Y K = X. �
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6.11. Theorem. Let Y and Z be dense subspaces of X ′. Consider the following properties:
(a) every strictly closed cone in X|Z is strictly closed in X|Y ;
(b) every strictly closed cone in X|Z is closed in X|Y ;
(c) Y is quasidense in X ′ with respect to Z.

Then the implications (a)⇒(b)⇒(c) hold; and if Z is quasilocally bounded, then (a)–(c) are equivalent.

� The implication (a)⇒(b) is trivial; and (b)⇒(c) is immediate from 6.10 in view of 6.1(a). Assume
that Z is quasilocally bounded and establish the implication (c)⇒(a).

Let Y be quasidense in X ′ with respect to Z, and let K be a strictly closed cone in X|Z. To prove
the strict closedness of K in X|Y , consider an arbitrary x ∈ X\K and demonstrate the existence of
y ∈ Y such that y > 0 on K\{0} and y(x) < 0. In terms of K� and

H0 := {f ∈ X ′ : f(x) < 0},
the current goal is formulated as follows:

Y ∩K� ∩H0 �= ∅. (4)

Owing to the strict closedness of K in X|Z, we have Z ∩K� ∩H0 �= ∅, which, by 4.12(b), means the
existence of z ∈ qi (Z ∩K⊕) ∩H0 (see 4.2). Since Z is quasilocally bounded, there is B ∈ Pcbc(Z) such
that z ∈ qiB and B ⊂ Z ∩K⊕ (see 5.4(b)). Put

H := {f ∈ X ′ : f(x) � 0}, C := clB ∩H.

It is clear that C ∈ Pcbc(X
′). Moreover, since intH = H0 �= ∅; according to 4.8, we have

z ∈ qiB ∩H0 = qi (B ∩H) = qi (Z ∩B ∩H) ⊂ qi (Z ∩ C).

Invoking the quasidenseness of Y in X ′ with respect to Z, we conclude that Y ∩ qiC �= ∅. Using 4.8
again, we have

qiC = qi (clB ∩H) = qi clB ∩H0 ⊂ H0,

which means Y ∩ qiC ∩H0 �= ∅. To justify (4), it remains to note that

qiC ⊂ qi clB ⊂ qi clK
⊕
= qiK

⊕ ⊂ K�. �

6.12. Corollary. Let Y be a dense subspace of X ′, and let X ′ be quasilocally bounded. Then the
following are equivalent:

(a) every strictly closed cone in X is strictly closed in X|Y ;
(b) every strictly closed cone in X is closed in X|Y ;
(c) Y is quasidense in X ′.

If, contrary to (c), there exists B ∈Pcbc(X
′) such that qiB �=∅ and Y ∩B = ∅; then B⊕ is an example

of a strictly closed cone in X that is not closed (moreover, is dense) in X|Y .

§ 7. Projective Sets

The space RN
fin equipped with the strongest locally convex topology is the direct limit (colimit) lim−→ Rn

of the sequence (Rn)n∈N within the category of locally convex spaces with respect to the embeddings
Rn ↔ Rn×{(0, . . . , 0)} ⊂ Rm (n � m) and coincides with the strict inductive limit of the sequence of
subspaces RN

n = lin {e1, . . . , en} ⊂ RN
fin (see [4, 13-3-3; 10, 19.4]). The corresponding dual space RN

∣
∣RN

fin

is the inverse limit lim←− Rn in the same category with respect to the projections (x 
→ πnx) : Rm → Rn

(m � n) and coincides with the topological projective limit of the sequence of locally convex spaces Rn

under the projections πn : RN → Rn (see [10, 19.8]).
The above considerations serve as a conceptual premise for introducing the notions of projective set,

projective sequence, and projective limit whose study this section is devoted to. The main goal is to link
the concepts with that of quasi-interior.

As before, RN
fin and RN are equipped with the natural duality and endowed with the corresponding

weak topologies (see 3.4).
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7.1. Let (Sn)n∈N be a sequence of subsets Sn ⊂ Rn. A sequence (xn)n∈N is a chain in (Sn)n∈N if
xn ∈ Sn and xn = πnxn+1 for all n ∈ N. In this case,

⋃
n∈N xn is the element s ∈ RN such that πns = xn

for all n ∈ N.

Lemma. The following properties of S ⊂ RN are equivalent:
(a) if s ∈ RN and πns ∈ πnS for all n ∈ N then s ∈ S;
(b) if (xn)n∈N is a chain in (πnS)n∈N then

⋃
n∈N xn ∈ S;

(c) S is closed in RN
D .

A set S ⊂ RN with the equivalent properties (a)–(c) is projective. Arbitrary Cartesian products∏
n∈NΛn, where Λn ⊂ R, serve as examples of projective sets. Moreover, every closed subset of RN is also

closed in RN
D and is thus projective.

7.2. Lemma 7.1 implies that, for every S ⊂ RN, the following sets coincide:
(a) {s̄ ∈ RN : πns̄ ∈ πnS for all n ∈ N};
(b)

{⋃
n∈N xn : (xn)n∈N is a chain in (πnS)n∈N

}
;

(c) the largest subset S ⊂ RN such that πnS = πnS for all n ∈ N;
(d) the projective subset S ⊂ RN such that πnS = πnS for all n ∈ N;
(e) the smallest projective subset of RN including S;

(f) the closure of S in the topological space RN
D .

The set described by one of the equivalent ways (a)–(f) is the projective closure of S.

7.3. Lemma. The following properties of a sequence of sets Sn ⊂ Rn (n ∈ N) are equivalent:
(a) there is S ⊂ RN such that Sn = πnS for all n ∈ N;
(b) Sn = πnSm for n � m;
(c) Sn = πnSn+1 for all n ∈ N.

Moreover, ⋂

n∈N

π−1
n (Sn) =

{
s ∈ RN : πns ∈ Sn for all n ∈ N

}

=

{ ⋃

n∈N

xn : (xn)n∈N is a chain in (Sn)n∈N

}
(5)

is the largest among the sets S satisfying (a), presenting the only projective set among them, and coincides
with the projective closure of each of them.

A sequence (Sn)n∈N satisfying the conditions of the above lemma is a projective sequence. The set (5)
is denoted by lim←− (Sn)n∈N or, in short, by lim←− Sn and is the projective limit of the sequence (Sn)n∈N

or the projective limit of Sn.
Therefore, given a projective sequence (Sn)n∈N and S ⊂ RN, the following hold:

lim←− Sn =
{
s ∈ RN : πns ∈ Sn for all n ∈ N

}
; (6)

S = lim←− Sn ⇔ S is projective and πnS = Sn for all n ∈ N; (7)

S is projective ⇔ S = lim←− πnS. (8)

7.4. Lemma. If (Cn)n∈N is a projective sequence of convex sets with nonempty interiors, then
(intCn)n∈N is a projective sequence and

lim←− intCn = qi lim←− Cn.

� Fix an arbitrary n ∈ N and show that intCn = πn(intCn+1).
The inclusion intCn ⊃ πn(intCn+1) is obvious: if x ∈ Rn+1, ε > 0, and the ball B(x, ε) of the uniform

norm lies in Cn+1; then B(πnx, ε) = πn
(
B(x, ε)

)
⊂ πnCn+1 = Cn.
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Cn = πnCn+1

Cn+1

πnz
x

πny

yz
x̄

Fig. 1

Let x ∈ intCn (see Fig. 1). Show that x = πnx̄ for some x̄ ∈ intCn+1. Consider an arbitrary
y ∈ intCn+1. If πny = x then there is nothing to prove. Let πny �= x. Since x ∈ intCn, there is a real
λ > 0 such that x+λ(x−πny) ∈ Cn. Owing to the equality Cn = πnCn+1, there exists z ∈ Cn+1 for which
x+λ(x−πny) = πnz. Put x̄ := λ

λ+1y+
1

λ+1z. The containment y ∈ intCn+1 implies x̄ ∈ [y, z[ ⊂ intCn+1.
Moreover,

πnx̄ = λ
λ+1πny +

1
λ+1πnz = λ

λ+1πny +
1

λ+1

(
x+ λ(x− πny)

)
= x.

The equality lim←− intCn= qi lim←− Cn follows from (6) and 4.13, because

s ∈ lim←− intCn ⇔ s ∈ lim←− Cn and πns∈ intCn for all n∈N ⇔ s ∈ qi lim←− Cn

for all s ∈ RN. �

7.5. In the statement of Lemma 7.4, the convexity and nonemptiness of interiors are both essential.
For example, if S1 = [0, 2], S2 = [0, 1]2 ∪ ([1, 2]× {0}), and Sn = S2 × Rn−2 for n > 2; then (Sn)n∈N

is a projective sequence and intSn �= ∅ for all n ∈ N, but the sequence (intSn)n∈N is not projective
because intS1 = ]0, 2[, while π1(intS2) = π1(]0, 1[

2) = ]0, 1[.
If S1 = [0, 1] and Sn = [0, 1] × {(0, . . . , 0)} for n > 1; then (Sn)n∈N is a projective sequence and all

sets Sn are convex, but the sequence (intSn)n∈N is not projective, since intS1 = ]0, 1[ and π1(intS2) = ∅.

7.6. The following is a consequence of 4.13, 7.4, and (8):

Corollary. If C is a projective convex subset of RN, then qiC is projective. Moreover, if qiC �= ∅

then (intπnC)n∈N is a projective sequence, qiC = lim←− intπnC; and, in particular, πnqiC = qiπnC =
intπnC for all n ∈ N.

7.7. Let P be a property of subsets of a locally convex space. Call P projectively invariant whenever
the following is true for every projective set S ⊂ RN: S has property P if and only if πnS have property P
for all n ∈ N; i.e., if S is the projective limit of sets with property P .

Proposition. The following properties are projectively invariant:
(a) to be nonempty;
(b) to be convex;
(c) to be bounded;
(d) to be compact (closed and bounded );
(e) to be convex and quasiopen;
(f) to be convex and have nonempty quasi-interior.

� The projective invariance of (a) and (c) is obvious. The projective invariance of (b) and (d)
is provided by the linearity and continuity of the mappings πn : RN → Rn and by the representation
S =

⋂
n∈N π−1

n (πnS) of a projective set S; see (5). The projective invariance of (e) and (f) follows
from 4.13 and 7.4. �
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It is easy to see that the projective limit of closed sets is closed. Nevertheless, closedness is not
projectively invariant even under the additional requirement of convexity. For example, the convex set

S = {s ∈ RN : s(1) > 0, s(1) · s(2) � 1}

is closed (and thus projective), but the projection π1S = ]0,∞[ is not closed.

7.8. A subset of RN of the form
∏

n∈NΛn, where Λn are open subsets of R, is called an open box.

The topology on RN for which open boxes serve as basic open sets is the box topology. It is easy to see
that, for every s ∈ RN, the convex open boxes

∏

n∈N

]s(n)− εn, s(n) + εn[, εn > 0, (9)

form a base of neighborhoods of s in the box topology.

Proposition. (a) An arbitrary convex open box in RN is an example of a projective quasiopen set.
Moreover, all subsets of RN open in the box topology are quasiopen.

(b) The converse of (a) fails. For example, the projective convex set

C :=
{
s ∈ RN : |s(1)− s(n)| < 1

n

}

is quasiopen, but intC = ∅ in the box topology.

� (a): The first assertion follows from 7.7(e), and the second is a consequence of the first, since each
box neighborhood includes a subneighborhood of the form (9).

(b): The projectivity of C is obvious. Its convexity and quasiopenness follow from 7.7(e), since
the projections of πnC are convex open subsets of Rn. The equality intC = ∅ in the box topology is due
to the fact that all elements c∈C satisfy the condition limn→∞ c(n) = c(1), while every nonempty open
box obviously includes a sequence that violates this condition. �

§ 8. Criterion for Closedness of Archimedean Cones

In this section, after characterizing the Archimedean cones in RN
fin (Theorem 8.4), we use the above

auxiliary results for solving the target problem describing the class of subspaces Y ⊂ RN for which
all Archimedean cones are closed in RN

fin

∣
∣Y . The main result is Theorem 8.5 asserting that the class

consists of quasidense subspaces. Propositions 8.8 and 8.9 describe the class in more detail by proposing
a few necessary and sufficient conditions for quasidenseness of a set in RN.

As a corollary, we obtain some exhaustive description of locally convex spaces with all Archimedean
cones closed (Theorem 8.6). Moreover, the answers are given to questions on the so-called “subtle” spaces
which are the dense subspaces Y ⊂ RN for which RN

fin

∣
∣Y includes nonclosed Archimedean cones. Namely,

Corollary 8.10 confirms the conjecture of [3] that linQN is not subtle, and, in particular, gives a negative
answer to the question in [3] and [5] of whether all proper subspaces of RN are subtle. Moreover, using
Theorem 8.5, it is possible to obtain a short justification of the result of [5] on the existence of a subtle
hyperspace (Corollary 8.11).

8.1. A sequence of subsets Sn ⊂ RN
n (n ∈ N) is inductive if it possesses each of the following equivalent

properties:
(a) there exists S ⊂ RN

fin such that Sn = S ∩ RN
n for all n ∈ N;

(b) Sn = Sm ∩ RN
n for n � m;

(c) Sn = Sn+1 ∩ RN
n for all n ∈ N.

Moreover, S satisfying (a) is unique and equal to
⋃

n∈N Sn.

8.2. Lemma [11, 3.3]. Let K be a closed locally quasicompact cone in a locally convex space X,
letX0 be a closed subspace of X, and let f0 ∈X ′

0. If f0 ∈ (K∩X0)
� then f0 is extendible ontoX to f ∈K�.
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8.3. Lemma. If Kn ⊂ RN
n (n ∈ N) is an inductive sequence of closed cones, then (πnKn)

� (n ∈ N)
is a projective sequence and

lim←− (πnKn)
� =

( ⋃

n∈N

Kn

)�
. (10)

� Consider an arbitrary n ∈ N and establish the inclusion (πnKn)
� ⊂ πn(πn+1Kn+1)

�. (The reverse
inclusion and equality (10) are easily verified.) Let y ∈ (πnKn)

�. Put

X := Rn+1, X0 := Rn × {0} ⊂ X, K := πn+1Kn+1.

Then K is a closed cone in X and

ŷ ◦ πn ∈ (πnKn × {0})� = (K ∩X0)
�.

By 8.2, there is an element z ∈ K� such that ẑ = ŷ ◦ πn on X0. In this case, y = πnz and hence
y ∈ πn(πn+1Kn+1)

�. �

8.4. Theorem. The following properties of K ⊂ RN
fin are equivalent:

(a) K is an Archimedean cone;
(b) K is a closed cone;
(c) K is a strictly closed cone;
(d) K ∩ RN

n is a closed cone in RN
n for all n ∈ N;

(e) K =
⋃

n∈NKn for some inductive sequence of closed cones Kn ⊂ RN
n .

� The implications (c)⇒(b)⇒(a)⇒(d)⇒(e) are evident (see 2.3(f)). Show (e)⇒(c). In (e), the union
K =

⋃
n∈NKn is obviously an Archimedean cone. As is known, the strongest locally convex topology τ

on RN
fin is sequential (see [4, Prob. 12-3-113]). From 2.3(h) it follows that the Archimedean cone K

is closed in τ and hence in the weak topology σ
(
RN

fin

∣
∣RN

)
. Further, the cones πnKn are closed in Rn

and thus they are strictly closed. From 6.8 it follows that (πnKn)
� �= ∅ for all n ∈ N. Invoking 8.3,

we conclude that K� = lim←− (πnKn)
� �= ∅. �

8.5. The criterion below provides a solution to the problem this article is devoted to.

Theorem. The following properties of a dense subspace Y ⊂ RN are equivalent:
(a) all Archimedean cones in RN

fin

∣
∣Y are closed;

(b) all Archimedean cones in RN
fin

∣
∣Y are strictly closed;

(c) Y is quasidense in RN.
If, contrary to (c), there exists a compact convex set C ⊂ RN such that qiC �= ∅ and Y ∩ C = ∅

(see 8.8(b)); then C⊕ is an example of an Archimedean but not closed (moreover, dense) cone in RN
fin

∣
∣Y .

� According to 5.10, the space RN dual to RN
fin is quasilocally bounded. Moreover, by 8.4, the classes

of strictly closed and Archimedean cones in RN
fin coincide. It remains to use 6.12 with RN

fin as X. �

8.6. Owing to Theorems 2.5 and 8.5, we can now give some exhaustive description of the spaces
in which all Archimedean cones are closed.

Theorem. Given a Hausdorff locally convex space X, all Archimedean cones in X are closed if and
only if X has finite or countable dimension and the dual space X ′ is quasidense in X# with respect to
the weak∗ topology.

8.7. Lemma. Let C be a projective convex subset of RN and let x ∈ qiC. Put D := 1
2(C + x).

Then x ∈ qiD and clD ⊂ qiC.

� We may assume that x = 0. The containment 0 ∈ qi 12C is obvious. Since qiC = lim←− intπnC

(see 7.6), to prove that cl 12C ⊂ qiC it suffices to fix an arbitrary n ∈ N and show that πn cl
1
2C ⊂

intπnC. According to 4.13, 0 ∈ qiC implies 0 ∈ intπnC. Hence, cl 12πnC ⊂ intπnC (see, for example,

[1, 7.1.1(1)]). It remains to note that, by the continuity of the linear operator πn : RN → Rn, we have
πn cl

1
2C ⊂ cl 12πnC. �
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8.8. Proposition. The following properties of S⊂RN are equivalent:
(a) S is quasidense in RN;
(b) if C is a compact convex subset of RN and qiC �=∅, then S ∩ C �=∅;
(c) if B is a nonempty projective bounded quasiopen convex subset of RN, then S ∩B �= ∅;
(d) if (Bn)n∈N is a projective sequence of nonempty bounded open convex sets, then S∩ lim←− Bn �= ∅;
(e) if C is a projective convex subset of RN and qiC �=∅, then S ∩ C �=∅.

� Using the compactness criterion in RN (see 3.4), we see that (a)⇔(b) is valid by definition 6.2(b).
(b)⇒(c): Let B ⊂ RN possess the properties listed in (c) and let b ∈ B. Put C := cl 12(B + b).

By 8.7, we have qiC �= ∅ and C ⊂ B. Since C is compact (see 3.4); (b) implies S ∩ C �= ∅ and,
in particular, S ∩B �= ∅.

The equivalence (c)⇔ (d) is ensured by the projective invariance of the combination of the properties
of B listed in (c) (see 7.7).

(c)⇒(e): Let C be a projective convex subset of RN and let qiC �= ∅. By 8.7, there is a closed
convex set D ⊂ RN such that qiD �= ∅ and D ⊂ C. Further, owing to 5.10 and 5.4(b), there exists
a compact convex subset B ⊂ D with qiB �= ∅. Being closed, B is projective and, hence, according
to 7.6, qiB is also projective. Moreover, qiB is quasiopen (see 4.10). Then (c) implies S ∩ B �= ∅,
whence S ∩ C �= ∅ since B ⊂ D ⊂ C.

The implication (e)⇒(b) is obvious, since compactness implies closedness, and closedness implies
projectivity. �

8.9. Proposition. A set S ⊂ RN is quasidense in each of the cases listed below:
(a) S includes ΛN, where Λ is a dense subset of R;
(b) S includes

∏
n∈NΛn, where Λn are dense subsets of R;

(c) S includes a projective subset P satisfying the following:

cl {p(1) : p ∈ P} = R; (11)

cl {p(n+ 1) : p ∈ P, πnp = x} = R for all n ∈ N and x ∈ πnP. (12)

� Conditions (a) and (b) are particular cases of (c), while (c) can easily be verified using 8.8(d).
Indeed, let P ⊂ RN satisfy (11) and (12) and let (Bn)n∈N be a projective sequence of nonempty open
convex sets. Proceeding by recursion on n ∈ N, construct a sequence of bn ∈ Bn ∩ πnP as follows:
According to (11), there is b1 ∈ B1 ∩ π1P . Assume that bn ∈ Bn ∩ πnP is defined. Since Bn = πnBn+1,
there is a real λ ∈ R such that

(
bn(1), . . . , bn(n), λ

)
∈ Bn+1. Owing to the openness of Bn+1, there exists

a real ε > 0 such that

(
bn(1), . . . , bn(n), μ

)
∈ Bn+1 for all μ ∈ ]λ− ε, λ+ ε[.

From (12) it follows that there is p ∈ P satisfying the conditions πnp = bn and p(n+ 1) ∈ ]λ− ε, λ+ ε[.
Put bn+1 := πn+1p. Then (bn)n∈N is a chain both in (Bn)n∈N and in (πnP )n∈N, which means that

⋃
n∈N bn

belongs to both lim←− Bn and P . �

8.10. In [3], the term subtle spaces is used for the dense subspaces Y ⊂ RN that admit existence of
nonclosed Archimedean cones in RN

fin

∣
∣Y . (Owing to 8.5, we know now that the subtle spaces are exactly

the dense subspaces that are not quasidense.) The following fact confirms conjecture [3, 4.9] and also
gives a (negative) answer to the question in [3] and [5] of whether all proper subspaces of RN are subtle:

Corollary. All Archimedean cones in RN
fin

∣
∣ linQN and RN

fin

∣
∣ linNN are closed.

� Obviously, linQN ⊂ RN meets 8.9(a). The same is true of linNN. Indeed, by Kronecker’s Approxi-
mation Theorem, Λ := {m

√
2 + n : m,n ∈ Z} is dense in R. It remains to note that

linNN = lin (NN − NN) = lin (N − N)N = linZN ⊃
√
2ZN + ZN = (

√
2Z + Z)N = ΛN. �
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8.11. Theorem 8.5 makes it possible to obtain a short demonstration for the main result of [5].

Corollary. If L ∈ (RN)# and L(s) = limn→∞ s(n) for convergent sequences s ∈ RN; then RN
fin

∣
∣ kerL

contains a nonclosed Archimedean cone.

� Put C :=
∏

n∈N

[
1− 1

n , 1 +
1
n

]
. Then kerL ∩ C = ∅. By 8.5, 7.8, and 8.8, the latter implies that

RN
fin

∣
∣ kerL contains a nonclosed Archimedean cone and, moreover, C⊕ is an example of such cone. �

§ 9. Open Questions

In conclusion, we formulate several natural questions that remain open by now.

9.1. Quasilocal boundedness. In Section 5, we only undertake an initial study of the concept
of quasilocal boundedness. Within a more detailed study, it would be appropriate to clarify relationship
between the following properties of a Hausdorff locally convex space X and, in particular, to find out
which of them are equivalent:

(a) X is quasilocally bounded;

(b) every convex subset of X with nonempty quasi-interior contains a bounded subset with nonempty
quasi-interior;

(c) there exists a bounded set in X with nonempty quasi-interior;

(d) there exists a dense subnormable subspace in X;

(e) for every dense wedge W ⊂ X, there exists a subnormable subspace Z ⊂ X such that Z ∩ W
is dense in X;

(f) every dense subspace of X contains a dense subnormable subspace.

The following implications seem obvious: (a)⇒(b)⇒(c)⇔(d), (e)⇒(f)⇒(d), (e)⇒(a).

9.2. Limits of quasilocally bounded spaces. The space RN
∣
∣RN

fin is the inverse limit lim←− Rn

of the sequence (Rn)n∈N within the category of locally convex spaces under the natural projections
πn : RN → Rn and πnm : Rm → Rn (n � m). Analysis of the proofs of Theorems 4.13 and 5.10 makes it
possible to propose the conjecture that the statements of those theorems can be generalized to the case
of arbitrary inverse limits. Namely, let

(
X, (πi)i∈I

)
be the inverse limit of a net (Xi)i∈I of locally convex

spaces. Given a convex set C in X, does the following equality hold:

qiC = {c ∈ C : πic ∈ qiπiC in Xi for all i ∈ I}?

If Xi are quasilocally bounded, does their inverse limit lim←− Xi have the same property?

9.3. Closed total wedges. Theorem 6.11 and Corollary 6.12 offer criteria for the inheritance
of strict closedness of cones in a space with quasilocally bounded dual. From the proof of 6.11, it is
clear that the claim remains valid if the quasilocal boundedness is weakened to the requirement that the
wedges of the form K⊕ be quasilocally bounded at their quasi-interior points, where K is a closed cone
in the dual space. Presented below is a description of such wedges which follows from [2, 2.13].

A subset S of a Hausdorff locally convex space X is total if cl linS = X (see [4, 2-3-12]).

Proposition. The following properties of W ⊂ X are equivalent:

(a) W is a closed total wedge;

(b) W is a closed wedge and W⊕ is a cone;

(c) W⊕ is a cone and W⊕⊕ = W ;

(d) W = K⊕ for some closed cone K ⊂ X ′.

Therefore, the statements of 6.11 and 6.12 remain valid for the respective spaces Z and X ′ in which
all closed total wedges are quasilocally bounded at their quasi-interior points. Is the latter condition
equivalent to the quasilocal boundedness of the space?
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9.4. Strictly closed cones. Denote by �(X) and �s(X) the sets of closed and strictly closed
cones in a locally convex Hausdorff space X. If X ′ is quasilocally bounded then, according to 6.12, for
each subspace Y ⊂ X ′ we have

Y is quasidense ⇔ �s(X) ⊂ �(X|Y ) ⇔ �s(X) = �s(X|Y ).

How do the equalities �(X) = �(X|Y ) and �(X|Y ) = �s(X|Y ) relate to the above statements?

9.5. Strictly closed cones in RN
. A similar question arises in connection with Theorem 8.5.

Let Y be a subspace of RN. Since closed cones are Archimedean, according to Theorem 8.5, the following
implication holds:

Y is quasidense ⇒ �
(
RN

fin

∣
∣Y

)
= �s

(
RN

fin

∣
∣Y

)
.

Is the converse true? In other words, is it possible to supplement the list 8.5(a)–(c) with the claim that
all closed cones in RN

fin

∣
∣Y are strictly closed?

9.6. Polars of cones. If Kn ⊂ RN
n (n ∈ N) is an inductive sequence of closed cones then, by 8.3,

the sequence of the polars (πnKn)
� is projective. Is the sequence of the dual wedges (πnKn)

⊕ projective
in this situation?

9.7. Quasidenseness and projectivity. According to 8.8, the quasidenseness of a set S⊂RN

is equivalent to either of the following conditions:

(a) S intersects every nonempty convex set B ⊂ RN that is bounded, quasiopen, and projective;

(b) S intersects every convex set C ⊂ RN that has nonempty quasi-interior and is projective.

Is the requirement that B and C be projective essential under the above two conditions? If we remove the
projectivity, do the conditions remain equivalent to the quasidenseness of S provided that S is a dense
vector subspace of RN?

9.8. Examples of quasidense spaces. Call S ⊂ RN exponentially dense, or Cartesian dense,
or recursively dense whenever S possesses the respective property (a), or (b), or (c) in 8.9. The three
properties are connected by the obvious implications (a)⇒(b)⇒(c) and, according to 8.9, imply quasi-
denseness. Currently, the short list of available examples of quasidense subspaces of RN includes only
spaces that are exponentially dense in RN (see 8.10). In this connection, three natural questions arise
about the existence of quasidense subspaces Y ⊂ RN such that

(a) Y is Cartesian dense, but not exponentially dense;

(b) Y is recursively dense, but not Cartesian dense;

(c) Y is not recursively dense.

9.9. Box density. By 8.8, a subset of RN is quasidense if and only if it intersects every nonempty
projective quasiopen convex set B. Since the totality of such sets B includes the open boxes (9), that
form a base of the box topology on RN; it follows that every quasidense set is box-dense. Is the converse
true? Does there exist a dense subspace Y ⊂ RN that is box-dense but not quasidense?

9.10. Topological nature of quasidenseness. If the answer to the previous question turns
out negative, and box-denseness is not equivalent to quasidenseness; then is there any other topology τ
on RN such that τ -denseness is equivalent to quasidenseness? Is quasidenseness topological for dense
subspaces of RN?

9.11. Cones and linearly independent sets. It is easy to show that existence of a nonclosed lin-
early independent set in a Hausdorff locally convex space implies existence of a nonclosed Archimedean cone
in the space (see [3, 4.7]). Is the converse assertion true? Does there exist a dense subspace Y ⊂RN such
that all linearly independent sets in RN

fin

∣
∣Y are closed, but RN

fin

∣
∣Y contains nonclosed Archimedean cones?
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