Questions

Question 1. Prove that $J_4 \times J_4$ is recognizeble by set of conjugacy class sizes.

Question 2. If complement of prime graph of finite group contain no triangles then it is *3-colorable*.

Question 3. Is it true that $E_8(q) \times E_8(q)$ is recognisible by spectrum.

Question 4. Define $\Theta_{\pi} = \{\tau \subseteq \pi \mid \tau \neq \emptyset, |\tau| \geq |\pi| - 1\}$. Let π be a set of primes. We say that a group G satisfies the condition π^* if for every $a \in N(G)$ there exists $\tau_a \in \Theta_{\pi}$ such that $a_{\pi} = |G||_{\tau_a}$. Determine maximal size of π such that there exists a group $G \in \pi^*$

Question 5. Is it complement of prime graph of finite group contains 5-engeles.

Question 6. S_3 conjecture.

Question 7. Let there exists p-element $g \in G$ such that $|g^G|_p = |G||_p$. Is it true that G contains the normal p-complement?

Question 8 (Alexandre Moreto 2018 Monatsh Math). 1) Let S be a finite simple group and p the largest divisor of |S|. If G is a finite group with the same number of elements of order p as S and |G| = |S|, then $S \simeq G$.

2) Let S be nonabelian simple group that is not isomorphic to $L_2(q)$, where q is Mersenne prime and let p be the largest prime divisor of |S|. If a finite group G is generated by elements of order p and G has the same number of elements of order p as S? then $G/Z(G) \simeq S$.

Question 9 (Alexandre Moreto, Robert Guralnick 2018 Mathematische Nachrichten). Let G be a finite group and assume that $(xy)^G = x^G y^G$ for every $x, y \in G$ of prime power order with (|x|, |y|) = 1. Then G is solvable. Classify all such groups.

Question 10. Let L be a non-abelian simple group, H(L) = M(L).L, where M(L) is a Schur multiplier of L. Put G the group with property N(G) = N(H(L)). When we can garanted that $G \simeq H(L) \times A$, where A is an abelian group?

Question 11. Let S be a non-abelian simple group. Is it true that for any $n \in \mathbb{N}$ the group S^n is recognizable?

Question 12. 12.33. Suppose that G is a finite group and x is an element of G such that the subgroup $\langle x, y \rangle$ has odd order for any y conjugate to x in G. Prove, without using CFSG, that the normal closure of x in G is a group of odd order.

Question 13. Let Ω_1 and Ω_2 be sets of integers and if $a \in \Omega_1$, $b \in \Omega_2$ then (a, b) = 1. Put G is a finite group and $N(G) = \Omega_1 \times \Omega_2$. When $G = A \times B$, where $N(A) < \Omega_1$ and $N(B) < \Omega_2$. We can to formulate a more general question