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ABSTRACT.The paper presents a survey of author’s results on definable fixed points in modal,
temporal, and intuitionistic propositional logics. The well-known Fixed Point Theorem consid-
ers the modalized case, but here we investigate the positivecase. We give a classification of
fixed point theorems, describe some classes of models with definable least fixed points of pos-
itive operators, special positive operators, and give someexamples of undefinable least fixed
points. Some other interesting phenomena are discovered – definability by formulas that do not
preserve positivity of parameters and definability by finitesets of formulas. We also consider
negative operators, graded modalities, construct undefinable inflationary fixed points, and put
some problems.
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1. Introduction

It is well-known that many predicates can be defined as the least fixed points of
positive operators. Such a definition is implicit, but if theleast fixed point is formula-
definable, an explicit definition also exists. Usually an implicit definition is much
shorter than an explicit one, and to obtain an explicit definition, we need an algorithm
for its construction. This paper identifies some classes of modal and temporal models,
in which the least fixed points of positive operators are definable. We also consider
special positive operators and classes of modal models, where the least fixed points of
negative operators are definable. For every definability theorem stated in this paper,
there exists an algorithm constructing the corresponding formula (or a finite set of
formulas). All algorithms and detailed proofs can be found in the cited papers. Thesis
(Mardaev, 2001b) and the papers (Mardaev, 2006; Mardaev, 2004) also contain proofs
and numerous examples.
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Let us first recall some standard definitions.Modal propositional formulasare
constructed from propositional variablesp, q, r . . . and the constant⊥ (falsity) using
the binary connectives∧, ∨, and the unary connectives¬ and�. We introduce the
following abbreviations:

♦ = ¬�¬, ⊤ = ¬⊥,

⊡α = α ∧�α, ♦· α = α ∨ ♦α,

α→β = ¬α ∨ β, α↔β = (α→β) ∧ (β→α).

A modal Kripke frame〈W,R 〉 consists of a non-empty setW with a binary rela-
tionR. A Kripke model basedon a frame〈W,R 〉 is a triple〈W,R, v 〉, wherev is a
valuation functionassigning a subset ofW (the value) to every propositional variable.
This function is extended to formulas in the usual way as follows: the value of the
constant⊥ is always the empty set; the connectives¬, ∧, ∨ respectively correspond to
the complement, the intersection, and the union;� and♦ correspond to the following
operations on sets:

�A = {x | ∀y (xRy ⇒ y ∈ A)}, ♦A = {x | ∃y (xRy ∧ y ∈ A)}.

The value of a variableq is denoted by the corresponding uppercase letterQ. The
notationα(q1, . . . , qn) means that all variables occurring in the formulaα are in
the list q1, . . . , qn. Henceforthα(Q1, . . . , Qn) denotes the value of the formula
α(q1, . . . , qn).

A formulaα(q1, . . . , qn) is true at a pointx ∈ W in a model〈W,R, v 〉 if x ∈
α(Q1, . . . , Qn). A formulaα is true in a model〈W,R, v 〉 if α is true at eachx ∈ W
in the model. A formulaα is valid in a frame〈W,R〉 if α is true in all models based
on 〈W,R〉.

DEFINITION 1. — Consider a formulaϕ(p, q1, . . . , qn) in variables p, q1, . . . , qn
and a Kripke model〈W,R, v 〉 with valuesQ1, . . . , Qn of variablesq1, . . . , qn. De-
fine the operatorFϕ by the equalityFϕ(P ) = ϕ(P,Q1, . . . , Qn). This operator sends
everyP⊆W to the valueϕ(P,Q1, . . . , Qn) of the formulaϕ. A setP is called a
fixed point(of Fϕ) if P = Fϕ(P ). A fixed pointP is called theleast fixed pointif
P ⊆ P ′ holds for every fixed pointP ′. A formulaω(q1, . . . , qn) definesa fixed point
P if P = ω(Q1, . . . , Qn).

DEFINITION 2. — A modal formulaϕ(p, q1, . . . , qn) is called modalized inp if every
occurrence ofp in ϕ is within the scope of� or ♦.

DEFINITION 3. — A frame〈W,R 〉 satisfies theascending chain conditionif there is
no infinite sequencex1Rx2Rx3 . . . such thatxi 6= xj for all i 6= j.

The well-known Fixed Point Theorem (Bernardi, 1975; Bernardi, 1976;
Smorýnski, 1975; Sambin, 1976; Sambinet al., 1982; Smorýnski, 1985; Reidhaar-
Olson, 1990) states that fixed points are unique and definable:
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FIXED POINT THEOREM (DE JONGH, SAMBIN , BERNARDI, SMORYŃSKI). — For
any formulaϕ(p, q1, ..., qn) modalized inp, there exists a unique fixed point of the
operatorFϕ in every strictly partially ordered (i.e., irreflexive and transitive) model
with the ascending chain condition and there is a formulaω(q1, ..., qn), which defines
the fixed point in every model of this kind.

Recall that modal propositional calculusK has the following axioms:

(1) classical tautologies,

(2) �(q→ s)→ (�q→�s)

and inference rules:

(1) Modus ponens: α, α→β/β,

(2) substitution of modal formulas for variables,

(3) the rule of necessitation:α/�α.

Modal logicK consists of all formulas derivable inK. By a (normal) modal logic
we mean an arbitrary setL of modal formulas containingK and closed under the rules
(1)–(3).

A modal logicL ischaracterizedby a classC of frames ifL consists of all formulas
α valid in every frame〈W,R〉 ∈ C. It is well-known (Chagrovet al., 1997; Rybakov,
1997) thatK is characterized by the class of all frames.

If L is a normal modal logic andα is a modal formula, thenL ⊕ α denotes the
least normal modal logic containingL andα. The following notations of formulas and
logics are standard:

4 : �p→��p, w : �(�p→ p)→�p, t : �p→ p,

K4 = K⊕ 4 , GL = K4⊕w , S4 = K4⊕ t .

It is well-known (Segerberg, 1971; Chagrovet al., 1997; Rybakov, 1997) that
modal logicGL is characterized by the class of all strictly partially ordered frames
with the ascending chain condition. So we can reformulate Fixed Point Theorem.

FIXED POINT THEOREM. — For any formulaϕ(p, q1, ..., qn) modalized inp, there
exists a formulaω(q1, ..., qn) such that logicGL contains the formula

�(p↔ϕ)↔�(p↔ω).
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2. Modal positive operators

2.1. The least fixed points

An occurrence of a variable in a formula is calledpositiveif it is within the scope
of an even number of negations. A formulaϕ(p, q1, . . . , qn) is calledpositive inp if
all occurrences ofp are positive.

The positive case can be reduced to the modalized one. In fact, let a formulaϕ be
positive inp. Transform the formulaϕ as follows: replace all occurrences ofp that are
not within the scope of� or ♦, with⊥. The resulting formulaζ is positive, modalized
in p and has the following property.

PROPOSITION4. — In every Kripke model the least fixed points of operatorsFϕ and
Fζ coincide.

Fixed Point Theorem does not hold for strictly partially ordered Kripke models
without the ascending chain condition or for partially ordered (i.e., reflexive, transitive,
and antisymmetric) models. For example, consider a Kripke model based on the frame
〈N,<〉, whereN is the set of natural numbers. Ifϕ = �p, then the operatorFϕ has
two fixed points,∅ andN .

If ϕ = �¬p, then the operatorFϕ does not have fixed points. So theorems from
this paper (except for Theorem 28) do not follow from Fixed Point Theorem.

For a positive operatorFϕ in a Kripke model, consider the ordinal sequence of
sets:

P 0 = ∅, Pα+1 = Fϕ(Pα), Pα =
⋃

β<α

P β if α is a limit ordinal.

Then obviously,Fϕ is monotonic, i.e.,

∀P1, P2 ⊆W (P1 ⊆ P2 ⇒ Fϕ(P1) ⊆ Fϕ(P2)).

From the general theory of monotonic operators (Aczel, 1977) it is known that the
sequencePα reaches the least fixed point ofFϕ.

Let us give some examples of undefinable least fixed points of positive operators
in partially ordered models.

EXAMPLE 5. — Letϕ = �(p ∨ q) ∨�(p ∨ ¬q). Consider a linearly ordered model
of typeω + ∗ω; its frame consists of two copiesN andN ′ of the natural numbers
0 6 1 6 2 6 · · · 6 2′ 6 1′ 6 0′ (see Fig. 1, left; the models in Fig. 1 are ordered
“upwards"). LetQ be the set of even numbers (marked by bullets). Then the set
N ′ = Pω (marked by double circles) is the least fixed point of the operatorFϕ. This
set is undefinable. �

EXAMPLE 6. — The next model is an infinite partially ordered tree (Fig.1, middle).
The setQ is marked by bullets. It is easy to show that the least fixed pointPω (marked
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by double circles) of the operatorFϕ is the tree without its trunk. This point is unde-
finable. Analogous examples can be constructed for strictlypartially ordered models.

�

EXAMPLE 7. — In Fig. 1 (right) irreflexive elements· · · < 2′ < 1′ < 0′ are above
the reflexive elementa (marked by a bullet). Letϕ = �p. The setN ′ = Pω (marked
by double circles) is the least fixed point of the operatorFϕ. This point is also unde-
finable. �
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Figure 1. The least fixed points are undefinable

2.2. E-frames

A subsetA⊆W is calledcofinal in a frame〈W,R 〉 if for any x ∈ W there is
y ∈ A such thatxRy.

For a frame〈W,R 〉 theweak cofinality condition for infinite ascending chainsis
the following:

Letx1Rx2R . . . be an infinite chain such that for alli 6= j, xi 6= xj ; then for some
i, the chainxi+1Rxi+2Rxi+3 . . . is cofinal in the subframe{y ∈W |xiRy} (Fig. 2).

An E-frameis a partially ordered Kripke frame with the weak cofinality condition
for infinite ascending chains. Here are some examples: everypartially ordered Kripke
frame with the ascending chain condition; the natural numbers 〈N,6 〉; the integers
〈Z,6 〉.

Here is another example. Take a finite partially ordered frame and attachω-chains
to some its elements. Then we obtain anE-frame (Fig. 3).

A Kripke model based on anE-frame is called anE-model.
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Figure 2. Weak cofinality condition for infinite ascending chains
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Figure 3. Example of anE-frame

DEFINITION 8. — A formulaω(q1, . . . , qn) (defining the least fixed point) preserves
the positivity of parameters forϕ(p, q1, . . . , qn) if for every variableqi, the following
condition holds: ifϕ(p, q1, . . . , qn) is positive inqi, thenω is also positive inqi.

THEOREM 9 (MARDAEV, 2002B). — For any formulaϕ(p, q1, ..., qn) positive
in p, there is a formulaω(q1, ..., qn) preserving the positivity of parameters for
ϕ(p, q1, ..., qn) and defining the least fixed point of the operatorFϕ in everyE-model.

Examples: ifϕ = �(p ∨ q) ∨�(p ∨ ¬q), thenω is equivalent to�♦(�q ∨�¬q)
in E-models. Ifϕ = �(p ∨ q), thenω is equivalent to�q in E-models.
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Let us introduce the following notation:

e : �(�(p→�p)→ p)→ (�♦�p→ p),

S4E = S4⊕ e.

Let 〈W,R〉 be a transitive frame. Define an equivalence relation∼ on W by
puttingx ∼ y iff either x = y or xRy andyRx. The equivalence classes with respect
to∼ are calledclusters. Then the quotient relation

C1 R/∼ C2 iff ∃x ∈ C1 ∃y ∈ C2 xRy

is transitive and antisymmetric.

PROPOSITION10. —The logicS4E is characterized by the class of allE-frames.
S4E is also characterized by the class of all finite preordered (i.e., reflexive and tran-
sitive) frames, in which every non-maximal cluster (with respect toR/ ∼) consists of
a single element.

COROLLARY 11. —For any formulaϕ(p, q1, ..., qn) positive inp, there is a formula
ω(q1, ..., qn) preserving the positivity of parameters such that the logicS4E contains
the formulas

ω↔ϕ(ω, q1, . . . , qn),

�(ϕ→ p)→ (ω→ p).

Recall that the language ofµ-calculus (Kozen, 1982; Dawaret al., 2001; Dawar
et al., 2004) extends the modal language byµ-operator, with the following rule for
building formulas: if formulaψ(q, q1, . . . , qn) is positive inq, thenµq.ψ (q1, . . . , qn)
is a formula. The value of this formula in a Kripke model〈W,R, v 〉 with values
Q1, . . . , Qn of variablesq1, . . . , qn is the least fixed point of the operatorFψ(Q) =
ψ(Q,Q1, . . . , Qn).

If we have the preservation of positivity of parameters within some class of models,
then every formula ofµ-calculus is equivalent to a modal formula (i.e., to a formula
without occurrences ofµ-operator) within this class of models.

The preservation of positivity also allows us to find the least fixed points of the
positive system















P1 = ϕ1(P1, . . . , Pm, Q1, . . . , Qn)

. . .

Pm = ϕm(P1, . . . , Pm, Q1, . . . , Qn)

using the method of eliminating unknowns.
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2.3. SE-frames

A strictly partially ordered Kripke frame with the weak cofinality condition for
infinite ascending chains is called anSE-frame. Here are some examples: a strictly
partially ordered Kripke frame with the ascending chain condition, the natural num-
bers〈N,< 〉; the integers〈Z,< 〉. If 〈W,6 〉 is anE-frame, then〈W,< 〉 is an
SE-frame.

THEOREM 12 (MARDAEV, 2002B). — For any formulaϕ(p, q1, ..., qn) positive in
p, there is a formulaω(q1, ..., qn) preserving the positivity of parameters and defining
the least fixed point of the operatorFϕ in everySE-model.

EXAMPLE . — if ϕ = �(p ∨ q), thenω is equivalent to�♦·�q in SE-models. �

Let us introduce the following notation:

se : �(�p→ p)→ (�♦·�p→�p),

K4Se = K4⊕ se .

PROPOSITION13. —The logicK4Se is characterized by the class of allSE-frames.
It is also characterized by the class of all finite transitiveframes satisfying the condi-
tion: if a cluster is non-maximal, then it consists of a single irreflexive element.

COROLLARY 14. —For any formulaϕ(p, q1, ..., qn) positive inp, there is a formula
ω(q1, ..., qn) preserving the positivity of parameters such that the logicK4Se contains
the formulas

ω↔ϕ(ω, q1, . . . , qn),

⊡(ϕ→ p)→ (ω→ p).

In some cases we cannot construct a defining formula preserving the positivity
of parameters that is suitable both forE- andSE-models. For example, consider
ϕ = �(p ∨ q) and two models: anE-model〈Z,6〉 and anSE-model〈Z,<〉, where
Z is the set of integers. LetQ = {n ∈ Z |n > 0} in both models. There does not
exist a formula positive inq defining the least fixed points of the operatorFϕ in both
models. Note that although the formula⊡(�q→ q)→ q defines the least fixed points
in these two models, it contains a negative occurrence ofq.

But under the ascending chain condition these two cases can be joined:

THEOREM 15. —For any formulaϕ(p, q1, ..., qn) positive inp, there is a formula
ω(q1, ..., qn) preserving the positivity of parameters and defining the least fixed point
of the operatorFϕ in every partially ordered or strictly partially ordered model with
the ascending chain condition.
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2.4. IRE-frames

A subsetK ⊆W is called anupper conein a frame〈W,R 〉 if ∀x, y ((xRy & x ∈
K)⇒ y ∈ K).

DEFINITION 16. —A transitive antisymmetric frame with the weak cofinality con-
dition for infinite ascending chains is called anIRE-frame if the set of its reflexive
elements is an upper cone.

Clearly,E-frames are reflexiveIRE-frames, andSE-frames are irreflexiveIRE-
frames. It is easy to construct otherIRE-frames containing irreflexive and reflexive
elements.

THEOREM 17 (MARDAEV, 2002A). — For any formulaϕ(p, q1, ..., qn) positive in
p, there is a formulaω(q1, ..., qn) defining the least fixed point of the operatorFϕ in
everyIRE-model.

The positivity of parameters is not always preserved in theIRE-case. Here is
a counterexample: ifϕ = �(p ∨ q), thenω is equivalent to�(⊡(�q→ q)→ q) in
IRE-models. InIRE-models the formulaω = �(⊡(�q→ q)→ q) is monotonic in
q (i.e., ifQ1 ⊆ Q2, thenω(Q1) ⊆ ω(Q2)), but non-equivalent to any formula positive
in q.

Let us introduce the following notation:

tae : �(�(p→�p)→ p)→ (�♦·�p→�p),

ir : ⊡(�(p ∨ q)→ p)→ (�(⊡(�q→ q)→ q)→ p),

K4Ire = K4⊕ tae ⊕ ir .

PROPOSITION18. —The logicK4Ire is characterized by the class of allIRE-
frames. It is also characterized by the class of all finite transitive frames satisfying
two conditions:

1) if a cluster is non-maximal, then it is a singleton;
2) the set of reflexive elements is an upper cone.

COROLLARY 19. —For any formulaϕ(p, q1, ..., qn) positive inp, there is a formula
ω(q1, ..., qn) such thatK4Ire contains the formulas

ω↔ϕ(ω, q1, . . . , qn),

⊡(ϕ→ p)→ (ω→ p).

From Proposition 18 it follows thatK4Ire is decidable, therefore monotonicity is
decidable within the class of allIRE-models. But monotonicity is not equivalent to
positivity overIRE-models.
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EXAMPLE 20. — In some cases we cannot construct a defining formula preserving
the positivity of parameters in strictly partially orderedmodels (and partially ordered
models). For example, letϕ = �(p∨q). Consider a strictly partially ordered model in
Fig. 4. This is not anSE-model. LetQ be marked by bullets. Then the set marked by
double circles is the least fixed point of the operatorFϕ. The defining formula in this
model is�(⊡(�q→ q)→ q). Are the least fixed points of positive operators definable
in models based on the frame in Fig. 4? �

p pp

p pp cc c c c c c c c

c c c s s s s

0′
1′

0

1

hhhhhhhh

Figure 4. Defining formula does not preserve the positivity of parameters

We can also find defining formulas for the least fixed points of the positive system















P1 = ϕ1(P1, . . . , Pm, Q1, . . . , Qn)

. . .

Pm = ϕm(P1, . . . , Pm, Q1, . . . , Qn)

in the class ofIRE-models, although the positivity of parameters is not preserved.

Note, thatE-, SE-, andIRE-models differ only in the way how reflexive and
irreflexive elements are arranged. As for definability, there may be four options.

(1) If all elements are reflexive (i.e., in the case ofE-models), we can construct a
defining formula preserving the positivity of parameters.
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(2) If all elements are irreflexive (i.e., in the case ofSE-models), we can also
construct a defining formula preserving the positivity of parameters. However it is not
always possible to construct a single formula for cases (1) and (2).

(3) For the case ofIRE-models (i.e. if reflexive elements are above irreflexive), a
defining formula exists, but the positivity of parameters isnot always preserved.

(4) If irreflexive elements may be above reflexive, a defining formula does not
always exist (Example 7).

2.5. Switches of truth values

Consider a model〈W,R, v 〉 and the value of a formulaα in this model. For a finite
chainx1Rx2R . . .Rxn consider the number of thosei, for which the truth values of
α are different atxi andxi+1. The maximum of these numbers over all finite chains
is called thenumber of switches (of the truth values) forα. This maximum may be
equal to infinity. If the chains are taken from a certain modelM , the corresponding
maximum is called thenumber of switches forα in M .

For a formulaϕ(p, q1, . . . , qn). Let us introduce the following notation:

ϕ0(q1, . . . , qn) = ⊥,

ϕm+1(q1, . . . , qn) = ϕ(ϕm(q1, . . . , qn), q1, . . . , qn).

THEOREM 21 (MARDAEV, 2001A). — For any natural numberk and a formula
ϕ(p, q1, ..., qn) positive inp, there is a natural numberm such thatϕm defines the
least fixed point of the operatorFϕ in every preordered Kripke model with the number
of switches forϕ not greater thank.

An upper bound form (depending onk andϕ) can be extracted from the proof.

Note thatϕm(q1, . . . , qn) preserves the positivity of parameters.

Since in a transitive model�q changes its truth value at most once, we obtain the
following

COROLLARY 22. —For any formulaϕ(p,�q1, ...,�qn) positive inp (in which every
occurrence ofqi is within a subformula�qi) there is a natural numberm such that
the formulaϕm(�q1, ...,�qn) defines the least fixed point of the operatorFϕ in every
preordered Kripke model.

It is well known (Segerberg, 1971; Chagrovet al., 1997; Rybakov, 1997) that the
logic S4 is characterized by the class of all preordered frames.

COROLLARY 23 (MARDAEV, 1994). — For any formulaϕ(p,�q1, . . . ,�qn) posi-
tive inp, there is a numberm such thatS4 contains the formula

ϕm+1(�q1, . . . ,�qn)↔ϕm(�q1, . . . ,�qn).
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The next corollary is proved by applying a translation from intuitionistic to modal
formulas.

COROLLARY 24 (MARDAEV, 1994). — For any intuitionistic propositional formula
ϕ(p, q1, . . . , qn) positive inp, there is a numberm such that intuitionistic proposi-
tional logicInt contains the formulaϕm+1↔ϕm.

This corollary also follows from Ruitenburg’s theorem (Ruitenburg, 1984).
Namely, for a formulaϕ(p, q1, . . . , qn) let us introduce the following notation:

ϕ(0)(p, q1, . . . , qn) = p,

ϕ(k+1)(p, q1, . . . , qn) = ϕ(ϕ(k)(p, q1, . . . , qn), q1, . . . , qn).

Note thatϕ(k) differs fromϕk defined above.

THEOREM 25 (RUITENBURG, 1984). — For any intuitionistic propositional for-
mulaϕ(p, q1, . . . , qn), there is a numberm such thatInt contains the formula

ϕ(m+2)(p, q1, . . . , qn)↔ϕ(m)(p, q1, . . . , qn).

3. Subclasses of positive operators

3.1. Σ- andΠ-formulas

Modal Σ-formulasare constructed from propositional variables, their negations,
the constants⊥, ⊤ using the connectives∧, ∨, and♦. Examples:p, ⊥, ♦♦p, ♦(q ∨
♦(p ∨ ¬q)).

THEOREM 26 (MARDAEV, 1992). — For anyΣ-formulaϕ(p, q1, ..., qn) positive in
p, there is a natural numberm such thatϕm(q1, . . . , qn) defines the least fixed point
of the operatorFϕ in every transitive Kripke model.

An upper bound form can be extracted from the proof.

It is well known (Chagrovet al., 1997; Rybakov, 1997) that the logicK4 is char-
acterized by the class of all transitive frames.

COROLLARY 27. —For anyΣ-formulaϕ(p, q1, ..., qn) positive inp, there is a natu-
ral numberm such thatK4 contains the formulaϕm+1↔ϕm.

Modal Π-formulasare constructed from propositional variables, their negations,
the constants⊥, ⊤ using the connectives∧, ∨, and�. The examples arep, ⊥, ��p,
�(q ∨�(p ∨ ¬q)).

The positive case can be reduced to the modalized case (Proposition 4), and there
are constructions of defining formulas for Fixed Point Theorem (for example, Sam-
bin’s construction (Sambinet al., 1982; Reidhaar-Olson, 1990)) preserving the posi-
tivity of parameters and the property of being aΠ-formula. Therefore the following
theorem is a corollary of Fixed Point Theorem.
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THEOREM 28 (MARDAEV, 1993A). — For anyΠ-formulaϕ(p, q1, ..., qn) positive
in p, there is aΠ-formulaω(q1, ..., qn) preserving the positivity of parameters and
defining the least fixed point of the operatorFϕ in every strictly partially ordered
model with the ascending chain condition.

COROLLARY 29. —For any Π-formulaϕ(p, q1, ..., qn) positive inp, there is aΠ-
formulaω(q1, ..., qn) preserving the positivity of parameters such that the logicGL

contains the formulas

ω↔ϕ(ω, q1, . . . , qn),

⊡(ϕ→ p)→ (ω→ p).

3.2. Partial orders with the ascending chain condition

Fixed Point Theorem does not hold for partially ordered Kripke models, but still
there is the following result:

THEOREM 30 (MARDAEV, 1993B). — For anyΠ-formulaϕ(p, q1, ..., qn) positive
in p, there is aΠ-formulaω(q1, ..., qn) preserving the positivity of parameters and
defining the least fixed point ofFϕ in every partially ordered model with the ascending
chain condition.

The following notation is standard:

grz : �(�(p→�p)→ p)→ p,

Grz = S4⊕ grz .

It is well known (Segerberg, 1971; Chagrovet al., 1997; Rybakov, 1997) that the
logicGrz is characterized by the class of all partially ordered frames with the ascend-
ing chain condition.

COROLLARY 31. —For any Π-formulaϕ(p, q1, ..., qn) positive inp, there is aΠ-
formulaω(q1, ..., qn) preserving the positivity of parameters such thatGrz contains
the formulas

ω↔ϕ(ω, q1, . . . , qn),

�(ϕ→ p)→ (ω→ p).

Sometimes there does not exist a definingΠ-formula common for strictly partially
ordered models with the ascending chain condition and partially ordered models with
the ascending chain condition. For example, considerϕ = �p and two models on
natural numbers with reverse orders,〈N,>〉 and〈N,>〉; then there does not exist a
Π-formula defining the least fixed point ofFϕ in both models.
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3.3. C-frames

A frame〈W,R 〉 hascofinal ascending chainsif every infinite chainx1Rx2R . . .
with different elements is a cofinal subset in〈W,R 〉.

Clearly, frames with the ascending chain condition have cofinal ascending chains.

A partially ordered frame with cofinal ascending chains is called aC-frame. Here
are some examples: partially ordered frames with the ascending chain condition, the
natural numbers〈N,6 〉, and the integers〈Z,6 〉. Note that the class ofC-frames is
contained in the class ofE-frames.

THEOREM 32 (MARDAEV, 1997B). — For anyΠ-formulaϕ(p, q1, ..., qn) positive
in p, there is a finite set ofΠ-formulas such that in everyC-model the least fixed point
of the operatorFϕ is defined by a formula from this set. All these formulas preserve
the positivity of parameters.

Generally speaking, one formula may be insufficient. For example, considerϕ =
�(p ∨ q) ∨ �(p ∨ ¬q) and two models on the frame〈Z,6〉, with Q = {n ∈
Z |n is even or n > 0} in the first model andQ = {n ∈ Z |n is even} in the sec-
ond model. The least fixed point ofFϕ is defined by constant⊤ in the first model and
by⊥ in the second model, but there is noΠ-formula defining the least fixed points of
Fϕ in both models. One can be prove that in everyC-model the least fixed point of this
operator is defined by either⊤ or⊥. Note that the defining formula�♦(�q ∨ �¬q)
mentioned earlier, involves♦.

Let us now consider the logicDum = S4⊕�(�(p→�p)→ p)→ (♦�p→ p).

PROPOSITION33 (SEGERBERG, 1971). — The logicDum is characterized by the
class of allC-frames.

COROLLARY 34. —For anyΠ-formulaϕ(p, q1, ..., qn) positive inp, there is a finite
set ofΠ-formulasωi(q1, . . . , qn) preserving positivity of parameters such thatDum

contains the formula
∨

i

(�(ωi↔ϕ(ωi, q1, . . . , qn)) ∧ (�(ϕ→ p)→ (ωi→ p))).

Theorem 2.7 can be extended to positive systems.

THEOREM 35. —For any positive system

(1)















P1 = ϕ1(P1, . . . , Pm, Q1, . . . , Qn)

. . .

Pm = ϕm(P1, . . . , Pm, Q1, . . . , Qn),

there is a finite set of collections ofΠ-formulas such that in everyC-model the least
fixed point of (1) is defined by a collection from this set. All these formulas preserve
the positivity of parameters.
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So Corollary 2.9 also can be generalized.

COROLLARY 36. —For anyΠ-formulas

ϕ1(p1, . . . , pm, q1, . . . , qn), . . . , ϕm(p1, . . . , pm, q1, . . . , qn)

positive inp1, . . . , pm, there is a finite set of collections

〈ω1
1(q1, . . . , qn), . . . , ω

1
m(q1, . . . , qn) 〉,

. . .

〈ωk1 (q1, . . . , qn), . . . , ω
k
m(q1, . . . , qn) 〉

of Π-formulas preserving the positivity of parameters such that Dum contains the
formula
∨

j

(�
∧

i

(ωji ↔ϕi(ω
j
1, . . . , ω

j
m, q1, . . . , qn)) ∧ (�

∧

i

(ϕi→ pi)→
∧

i

(ωji → pi))).

3.4. SC-frames

An SC-frame is a strictly partially ordered frame with cofinal ascendingchains.
Here are some examples: strictly partially ordered frames with the ascending chain
condition, the natural numbers〈N,< 〉, and the integers〈Z,< 〉. The class ofSC-
frames is contained in the class ofSE-frames.

THEOREM 37 (MARDAEV, 1997B). — For anyΠ-formulaϕ(p, q1, ..., qn) positive
in p, there is a finite set ofΠ-formulas such that in everySC-model the least fixed
point of the operatorFϕ is defined by a formula from this set. All these formulas
preserve the positivity of parameters.

In general one formula is not sufficient for definability.

Now consider the logicK4Z = K4⊕ �(�p→ p)→ (♦�p→�p) introduced in
(Segerberg, 1971).

PROPOSITION38 (SEGERBERG, 1971). — K4Z is characterized by the class of all
SC-frames.

COROLLARY 39. —For any Π-formulaϕ(p, q1, ..., qn) positive inp, there is a fi-
nite set ofΠ-formulasωi(q1, . . . , qn) preserving the positivity of parameters such that
K4Z contains the formula

∨

i

(⊡(ωi↔ϕ(ωi, q1, . . . , qn)) ∧ (⊡(ϕ→ p)→ (ωi→ p))).

Theorem 37 and Corollary 39 can be extended to positive systems.
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So we have three types of definability of the least fixed pointsfor positiveΠ-
operators.

(1) Definability by oneΠ-formula; this happens in strictly partially ordered models
with the ascending chain condition (Theorem 28) or partially ordered models with the
ascending chain condition (Theorem 30).

(2) Definability by a finite set ofΠ-formulas; this happens inC-models (Theorem
32) or inSC-models (Theorem 37).

(3) Definability by an infinite set ofΠ-formulas. For example, consider all finite
models. For anyΠ-formulaϕ and a finite model, there isk such thatΠ-formulaϕk

defines the least fixed point ofFϕ in this model. Obviously, for some formulasϕ there
is no finite set of defining formulas within the class of all finite models.

DefiningΠ-formulas preserve positivity of parameters for all mentioned classes of
models.

4. Negative operators

DEFINITION 40. —An occurrence ofp is callednegativeif it is within the scope of
an odd number of negation. A formulaϕ(p, q1, . . . , qn) is callednegative inp if all
occurrences ofp are negative.

A negative operator may not have fixed points in a given model.The following
example shows that a fixed point of a negative operator is not necessarily unique.
Consider the formulaϕ = (q ∨ �(¬p ∨ ¬q)) ∧ (¬q ∨ �(¬p ∨ q)) and the frame
〈N,6 〉. The valueQ of q is the set of all even numbers. ThenQ and¬Q are the fixed
points ofFϕ.

Now let a formulaϕ be negative inp. Transformϕ by replacing all occurrences of
p that are not within the scope of� or ♦, with⊥. The resulting formulaζ is negative
and modalized inp.

PROPOSITION41 (CF. PROPOSITION4). — In every Kripke model〈W,R, v 〉 every
fixed point of the operatorFϕ is a fixed point of the operatorFζ .

Now consider the case when a fixed point of a negative operatoris unique.

DEFINITION 42. —A frame〈W,R 〉 satisfies thestrong ascending chain conditionif
there does not exist infinite sequencex1Rx2Rx3 . . . such thatxi 6= xi+1 for all i.

Let us denote the formulaϕ(ϕ(p, q1, . . . , qn), q1, . . . , qn) by ψ(p, q1, . . . , qn). If
ϕ is negative inp, thenψ is positive inp.

THEOREM 43 (MARDAEV, 1998). — A negative operatorFϕ has a fixed point in a
Kripke model with the strong ascending chain condition if and only if the correspond-
ing positive operatorFψ has a unique fixed point in this model. These two fixed points
coincide.
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COROLLARY 44. —A fixed point of a negative operator in a Kripke model with the
strong ascending chain condition is unique if it exists.

Consider the above mentioned formulaϕ = (q∨�(¬p∨¬q))∧ (¬q ∨�(¬p∨ q))
and finite linearly ordered models with the worlds0 6 1 6 · · · 6 n and withQ =
{i | i is even}. If n is even, thenQ is a fixed point ofFϕ. If n is odd, then¬Q is a
fixed point.

Note that uniqueness does not transfer to negative systems.For example, consider
the system

{

P = ¬S

S = ¬P.

Obviously, it has many solutions, with arbitraryP andS = ¬P .

The following notation is standard:

grz1 : �(�(p→�p)→ p)→�p,
Grz1 = K4⊕ grz1.

PROPOSITION45. —The logicGrz1 is characterized by the class of all transitive
frames with the strong ascending chain condition. It is alsocharacterized by the class
of all finite transitive and antisymmetric frames.

If R is transitive, then the strong ascending chain condition isequivalent to two
conditions: antisymmetry and the ascending chain condition.

THEOREM 46 (MARDAEV, 1998). — For any formulaϕ(p, q1, ..., qn) negative in
p, there is a formulaω(q1, ..., qn) defining the fixed point of the operatorFϕ in every
transitive model with the strong ascending chain condition, whereFϕ has fixed points.

Let L be a modal logic,Γ a set of formulas ,α a formula. The notationΓ ⊢L α
means thatα is derivable fromΓ ∪ L by rules of necessitation andmodus ponens.

We can prove Theorem 3.5 using Theorem 1 from (Maksimova, 1992), which as-
serts that every normal modal logic containingK4 has Beth property. The latter means
that for every formulaα(p, q1, . . . , qn), if

α(p, q1, . . . , qn), α(s, q1, . . . , qn) ⊢L p↔ s,

then there is a formulaβ(q1, . . . , qn), for which

α(p, q1, . . . , qn) ⊢L p↔β(q1, . . . , qn).

But the proof of Theorem 1 from (Maksimova, 1992) does not construct a defin-
ing formula in an explicit form. So we give another proof (without applying Beth
property). Let us describe Sambin’s construction (Sambinet al., 1982; Reidhaar-
Olson, 1990) of a defining formula for Fixed Point Theorem.
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Let ϕ(p, q1, . . . , qn) = α(�β1(p, q1, . . . , qn), . . . ,�βm(p, q1, . . . , qn), q1, . . . ,
qn) where the modal formulaα(s1, . . . , sm, q1, . . . , qn) is in variablesq1, . . . , qn and
new variabless1, . . . , sm. For the sake of brevity, we writeβi for βi(p, q1, . . . , qn).
We construct a defining formulaω by induction onm.

If m = 0, thenω(q1, . . . , qn) = ϕ(q1, . . . , qn).

At step(m+1) we haveϕ(p, q1, . . . , qn) = α(�β1, . . . ,�βm+1, q1, . . . , qn). For
eachi with 1 6 i 6 m+ 1, let

ϕi(p, q1, . . . , qn) = α(�β1, . . . ,�βi−1,⊤,�βi+1, . . . ,�βm+1, q1, . . . , qn).

By induction hypothesis, for everyi we have a formulaωi(q1, . . . , qn), which defines
the fixed point ofFϕi

. Put

ω(q1, . . . , qn) = α(�β1(ω1, q1, . . . , qn), . . . ,�βm+1(ωm+1, q1, . . . , qn), q1, . . . , qn).

Thenω defines the fixed point ofFϕ.

The proof in (Mardaev, 2003) based on a special version of Sambin’s construction,
gives a defining formula for Theorem 3.5. The only differencefrom the original Sam-
bin’s construction is the condition that everyβi must contain at least one occurrence
of p. For example, ifϕ = (q ∨�(¬p∨¬q))∧ (¬q ∨�(¬p∨ q)), thenω is equivalent
to (q ∨�(♦¬q ∨ ¬q)) ∧ (¬q ∨�(♦q ∨ q)).

(Mardaev, 1998) gives another explicit construction for Theorem 3.5, but it is more
complicated.

COROLLARY 47. —For any formulaϕ(p, q1, ..., qn) negative inp, there is a formula
ω(q1, ..., qn) such that the logicGrz1 contains the formula

⊡(p↔ϕ)→ (p↔ω).

Now let us consider subclasses of negative operators.

Let ψ, θ1, . . . , θm, τ be formulas in variablesp, q1, . . . , qn, and assume that all
occurrences ofp in ψ, θ1, . . . , θm, τ are negative. Also assume that there are no
occurrences ofp in ψ within the scope of� or ♦.

We consider the formulaϕ(p, q1, . . . , qn) = ψ ∨�θ1 ∨ . . . ∨�θm ∨ ♦τ . Let

ψ′(q1, . . . , qn) = ψ(⊥, q1, . . . , qn),

ϕ′(p, q1, . . . , qn) = ψ′ ∨�θ1 ∨ . . . ∨�θm ∨ ♦τ,

ω(q1, . . . , qn) = ϕ′(ϕ′(⊤, q1, . . . , qn), q1, . . . , qn).

THEOREM 48 (MARDAEV, 1997A). — If a fixed point of the operatorFϕ exists in
a transitive Kripke model, then a fixed point is unique and defined byω.

COROLLARY 49. —The logicK4 contains the formula

⊡(p↔ϕ)→ (p↔ω).
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Finally we consider the formula

η(p, q1, . . . , qn) = ψ ∧ ♦θ1 ∧ . . . ∧ ♦θm ∧�τ.

COROLLARY 50. — If a fixed point of the operatorFη exists in a transitive Kripke
model, then a fixed point is unique and definable.

5. Temporal positive operators

Temporal formulasare constructed from propositional variablesp, q, r . . . and the
constant⊥ (falsity) using the connectives∧, ∨, ¬, �L, and�R. We use the following
abbreviations:

♦L = ¬�L¬, ♦R = ¬�R¬,

�α = �Lα ∧�Rα, ⊡α = α ∧�Lα ∧�Rα,

♦α = ♦Lα ∨ ♦Rα, ♦· α = α ∨ ♦Lα ∨ ♦Rα.

Recall that in a Kripke model〈W,R, v 〉, we can extend the valuationv to all
temporal formulas in the same way as for the modal case (Section 1), but now�L,
�R, ♦L, and♦R correspond to the following operations on sets:

�LA = {x | ∀y (yRx⇒ y ∈ A)}, �RA = {x | ∀y (xRy ⇒ y ∈ A)},

♦LA = {x | ∃y (yRx ∧ y ∈ A)}, ♦RA = {x | ∃y (xRy ∧ y ∈ A)}.

In this section pictures of frames represent accessibilityrelationsR from the left to the
right on pictures. So the subscriptsL andR (there should be no confusion with the
notation of the binary relation) mean “left" and “right" (orin temporal terms, “past"
and “future").

The temporal case differs from the modal case. The least fixedpoints of a temporal
positive operators may be undefinable on some classes of linear models. For example,
consider the formulaϕ = q ∧ �L�L(p ∨ ♦Rp) and finite strictly linearly ordered
models0 < 1 < · · · < 4n (the upper model in Fig. 5). The value ofq consists of odd
numbers from1 to 2n− 1 and even numbers from2n+ 2 to 4n (marked by bullets).
The least fixed point (marked by double circles) of the operator Fϕ consists of odd
numbers from1 to 2n− 1. These sets are undefinable on the class of these models.

For another example, consider the formulaϕ = s∧�L(�L(�L(�L(♦Rp∨¬q)∨
q)∨¬q)∨q) and finite linearly ordered models with the worlds0 6 1 6 · · · 6 8n+5
(the lower model in Fig. 5) such that the value ofq consists of all odd numbers (marked
by bullets), the value ofs consists of odd numbers3, 7, 11,. . . from3 to 4n − 1 and
4n + 5, 4n + 9, 4n + 11,. . . from4n + 5 to 4n + 5 + 4n = 8n + 5 (marked bys).
The least fixed point (marked by double circles) of the operator Fϕ consists of odd
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Figure 5. The least fixed points are undefinable

numbers3, 7, 11,. . . from3 to 4n− 1. These sets are undefinable on the class of these
models.

Nevertheless the linear temporal case is similar to the general modal case as far as
Σ- andΠ-formulas are concerned. Similarly to the modal case,temporalΣ-formulas
are constructed from propositional variables, their negations, the constants⊥, ⊤ and
the connectives∧, ∨, ♦L, ♦R. TemporalΠ-formulasare constructed from proposi-
tional variables, their negations, the constants⊥,⊤ and the connectives∧, ∨, �L, and
�R.

The basic normal bimodal logic is denoted byK2. The following notation for
formulas and logics is standard (Segerberg, 1970):

cL : ♦L�Rp→ p, cR : ♦R�Lp→ p,

4
L

: �Lp→�L�Lp, 4
R

: �Rp→�R�Rp,

lL : ⊡p→�L�Rp, lR : ⊡p→�R�Lp,

tL : �Lp→ p, tR : �Rp→ p,

grz
L

: �L(�L(p→�Lp)→ p)→ p, grz
R

: �R(�R(p→�Rp)→ p)→ p,

mL : ♦L(♦Lp→�Lp), mR : ♦R(♦Rp→�Rp),

wL : �L(�Lp→ p)→�Lp, wR : �R(�Rp→ p)→�Rp,

zL : �L(�Lp→ p)→ (♦L�Lp→�Lp), zR : �R(�Rp→ p)→ (♦R�Rp→�Rp),

dL : ♦L⊤, dR : ♦R⊤,

eL : ♦· �L⊥, eR : ♦· �R⊥,
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dumL : �L(�L(p→�Lp)→ p)→ (♦L�Lp→ p),

dumR : �R(�R(p→�Rp)→ p)→ (♦R�Rp→ p),

Lin = K2 ⊕ cL ⊕ cR ⊕ 4L ⊕ 4R ⊕ lL ⊕ lR,

LinTGrz = Lin⊕ tL ⊕ tR ⊕ grzL ⊕ grzR,

LinTDum = Lin⊕ tL ⊕ tR ⊕ dumL ⊕ dumR,

LinTDumML = Lin⊕ tL ⊕ tR ⊕ dumL ⊕ dumR ⊕mL,

LinW = Lin⊕wL ⊕wR,

LinZD = Lin⊕ zL ⊕ zR ⊕ dL ⊕ dR,

LinZDREL = Lin⊕ zL ⊕ zR ⊕ dR ⊕ eL.

Now let us study the least fixed point in these logics

5.1. Lin

It is well known (Segerberg, 1970) that the logicLin is characterized by the class
of all transitive linear frames.

THEOREM 51 (MARDAEV, 2004). — For any temporalΣ-formulaϕ(p, q1, ..., qn)
positive inp, there is a natural numberm such that the formulaϕm(q1, . . . , qn) defines
the least fixed point of the operatorFϕ in every transitive linear Kripke model.

An upper bound form can be extracted from the proof.

COROLLARY 52. —For any temporalΣ-formulaϕ(p, q1, ..., qn) positive inp, there
is a natural numberm such thatLin contains the formulaϕm+1↔ϕm.

5.2. LinTGrz

It is well known (Segerberg, 1970) that the logicLinTGrz is characterized by the
class of all finite linearly ordered frames.

THEOREM 53 (MARDAEV, 1999). — For any temporalΠ-formulaϕ(p, q1, ..., qn)
positive inp, there is aΠ-formulaω(q1, ..., qn) preserving the positivity of parameters
and defining the least fixed point of the operatorFϕ in every finite linearly ordered
model.

COROLLARY 54. —For any temporalΠ-formula ϕ(p, q1, ..., qn) positive in p,
there is aΠ-formula ω(q1, ..., qn) preserving the positivity of parameters such that
LinTGrz contains the formulas

ω↔ϕ(ω, q1, . . . , qn),

�(ϕ→ p)→ (ω→ p).
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5.3. LinW

It is well known (Segerberg, 1970) that the logicLinW is characterized by the
class of all finite strictly linearly ordered frames.

THEOREM 55 (MARDAEV, 1999). — For any temporalΠ-formulaϕ(p, q1, ..., qn)
positive inp, there is aΠ-formulaω(q1, ..., qn), which preserves the positivity of pa-
rameters and defines the least fixed point of the operatorFϕ in every finite strictly
linearly ordered model.

COROLLARY 56. —For any temporalΠ-formulaϕ(p, q1, ..., qn) positive inp, there
is a Π-formulaω(q1, ..., qn) preserving the positivity of parameters such thatLinW

contains the formulas

ω↔ϕ(ω, q1, . . . , qn),

⊡(ϕ→ p)→ (ω→ p).

5.4. LinTDum

It is well known (Segerberg, 1970) that the logicLinTDum is characterized by
the frame〈Z,6 〉.

THEOREM 57 (MARDAEV, 1999). — For any temporalΠ-formulaϕ(p, q1, ..., qn)
positive inp, there is a finite set ofΠ-formulas such that in every model〈Z,6, v 〉 the
least fixed point of the operatorFϕ is defined by a formula from this set. All these
formulas preserve the positivity of parameters.

COROLLARY 58. —For any temporalΠ-formulaϕ(p, q1, ..., qn) positive inp, there
is a finite set ofΠ-formulasωi(q1, . . . , qn) preserving the positivity of parameters such
thatLinTDum contains the formula

∨

i

(�(ωi↔ϕ(ωi, q1, . . . , qn)) ∧ (�(ϕ→ p)→ (ωi→ p))).

Theorem 57 and Corollary 58 can be extended to positive systems.

COROLLARY 59. —For any temporalΠ-formulas

ϕ1(p1, . . . , pm, q1, . . . , qn), . . . , ϕm(p1, . . . , pm, q1, . . . , qn)

positive inp1, . . . , pm, there is a finite set of collections

〈ω1
1(q1, . . . , qn), . . . , ω

1
m(q1, . . . , qn) 〉,

. . .

〈ωk1 (q1, . . . , qn), . . . , ω
k
m(q1, . . . , qn) 〉
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of Π-formulas preserving the positivity of parameters such that LinTDum contains
the formula

∨

j

(�
∧

i

(ωji ↔ϕi(ω
j
1, . . . , ω

j
m, q1, . . . , qn)) ∧ (�

∧

i

(ϕi→ pi)→
∧

i

(ωji → pi))).

5.5. LinZD,LinTDumML,LinZDREL

Consider other temporal models based on the integers and thenatural numbers.

THEOREM 60 (MARDAEV, 1999). —

1) For any temporalΠ-formulaϕ(p, q1, ..., qn) positive inp, there is a finite set
of Π-formulas such that in every model〈Z,<, v 〉 the least fixed point of the operator
Fϕ is defined by a formula from this set. All these formulas preserve the positivity of
parameters.

2) The same holds for the models〈N,6, v 〉.
3) The same holds for the models〈N,<, v 〉.

It is well known (Segerberg, 1970) that

(1) the logicLinZD is characterized by the frame〈Z,< 〉,
(2) the logicLinTDumML is characterized by the frame〈N,6 〉,
(3) the logicLinZDREL is characterized by the frame〈N,< 〉.

Similarly to the above examples, we can obtain appropriate corollaries for these
logics and versions for positive systems.

6. Inflationary fixed points

The modal language with inflationary fixed points MIC was investigated in (Dawar
et al., 2001; Dawaret al., 2004). Speaking informally, MIC is a propositional multi-
modal language, augmented with simultaneous inflationary fixed points.

Fix a setA of actions. Multi-modal propositional formulasare constructed from
propositional variablesp, q, r . . . and the constant⊥ (falsity) using the binary connec-
tives∧, ∨, and the unary connectives¬ and[a] for all a ∈ A. A multi-modal Kripke
frame〈W, {Ra | a ∈ A} 〉 consists of a non-empty setW and binary relationsRa on
W for all a ∈ A. A Kripke modelconsists of a frame and a valuation functionv. A
connective[a] corresponds to the following operation on sets:

[a]A = {x | ∀y (xRay ⇒ y ∈ A)}.
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MIC extends the propositional multi-modal language by the following rule for
building formulas: ifψ1(q1, . . . , qn, s1, . . . , sm), . . . ,ψn(q1, . . . , qn, s1, . . . , sm) are
formulas of MIC, then

Ψ : =















q1 ← ψ1

. . .

qn ← ψn

is a system of rules, andifp qi : Ψ (s1, . . . , sm) is a formula of MIC.

On every Kripke model, the systemΨ of rules defines a tuple(Qα1 , . . . , Q
α
n) of

sets for each ordinalα, by the following inflationary induction (fori = 1, . . . , n):
Q0
i = ∅,

Qα+1
i = Qαi ∪ ψi(Q

α
1 , . . . , Q

α
n, S1, . . . , Sm),

Qαi =
⋃

β<α

Qβi if α is a limit ordinal.

As the sequence of tuples is increasing (i.e.Qαi ⊆ Qβi for any α < β), it
reaches theinflationary fixed point(Q∞

1 , . . . , Q
∞

n ). Then we put the value ofifp qi :
Ψ (s1, . . . , sm) equal toQ∞

i .

In this section alanguageis a subset of the set of all finite words over an alphabet.
Consider a finite alphabetq1, . . . , qk. Let A = a1 . . . an be a finite word. For our
purposes, we regard this word as a Kripke model withW = {1, . . . , n}, the binary
successor relationiR(i + 1), where1 6 i 6 n − 1, and the valuationv: if qj is
a letter of the alphabet, thenv(qj) = {i ∈ W | ai = qj}. A formula α of MIC
(respectively, of theµ-calculus) istrue in a modelA = 〈W,R, v 〉 if α is true at
eachi ∈ W . A languageL is expressiblein MIC (respectively, in theµ-calculus)
if there is a formulaθ(q1, . . . , qk) of MIC (respectively, of theµ-calculus) such that
L = {A | θ is true inA }.

MIC is more expressive thanµ-calculus. In the papers (Dawaret al., 2001; Dawar
et al., 2004) (with Martin Otto) a language is constructed, which is expressible in MIC
but not in theµ-calculus.

Let us give another proof showing that MIC is more expressivethanµ-calculus.
Recall examples from (Mardaev, 2004) of inflationary fixed points for the class of
all finite strictly linearly ordered modal models and for theclass of all finite linearly
ordered models that are undefinable (in modal logic). The least fixed points of positive
operators are definable within these classes (Theorems 9, 12) by formulas preserving
the positivity of parameters. Therefore if we consider the language ofµ-calculus,
theµ-operator can be eliminated in these classes. So the inflationary fixed points are
undefinable in theµ-calculus.

Consider the modal (not multi-modal) language, modal models and non-
simultaneous inflationary fixed points. Consider a model with an arbitrary operator
F , and a sequence of sets
P 0 = ∅,
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Figure 6. Undefinable inflationary fixed points

Pα+1 = Pα ∪ F (Pα),
Pα =

⋃

β<α

P β if α is a limit ordinal.

This sequence reaches the inflationary fixed point ofF . If F is monotonic, the
inflationary fixed point coincides with the least fixed point.

EXAMPLE 61. — Consider the formulaϕ = (q ∧ �p) ∨ (��p ∧ ¬�p) and finite
strictly linearly ordered models over the frame0 < 1 < · · · < 2n (the upper model in
Fig. 6). Note that unlike Fig. 1, modal models in Fig. 6 are shown "from the left to
the right". The value ofq consists of all nonzero even numbers (marked by bullets).
The inflationary fixed point of the operatorFϕ (marked by double circles) consists of
all nonzero elements. It is undefinable on the class of all these models. �

EXAMPLE 62. — Consider the formula

ϕ = (s ∧�(p ∨ q))∨

∨ (r ∧�(�(p ∨ q) ∨ ¬q) ∧ ¬�(p ∨ q))∨

∨ (u ∧�(�(�(p ∨ q) ∨ ¬q) ∨ q) ∧ ¬�(�(p ∨ q) ∨ ¬q))∨

∨ (v ∧�(�(�(�(p ∨ q) ∨ ¬q) ∨ q) ∨ ¬q) ∧ ¬�(�(�(p ∨ q) ∨ ¬q) ∨ q))

and the models over the finite linearly ordered frame0 6 1 6 · · · 6 4n−1 (the lower
model in Fig. 6). The value ofq consists of all odd numbers (marked by bullets). The
values of variabless, r, u, andv are indicated in Fig. 6. The corresponding sequence
of true variables begins withrsvu, then it becomes periodic, with the periodvurs.
The inflationary fixed point of the operatorFϕ (marked by double circles) consists of
all elements≥ 4. It is undefinable on the class of our models. �

EXAMPLE 63. — There are simpler examples in the temporal case. Consider the
formulaϕ = p ∨ (�L�L(p ∨ ♦Rp) ∧ ¬�L(p ∨ ♦Rp)) and models over the finite
strictly linearly ordered frame0 < 1 < · · · < n. The inflationary fixed point ofFϕ
consists of all odd elements. This point is undefinable. �

EXAMPLE 64. — Consider the formulaϕ = p ∨ (�L(ψ ∨ q) ∧ ¬ψ), whereψ =
�L(�L(�L(♦Rp ∨ ¬q) ∨ q) ∨ ¬q) and models over the finite linearly ordere frame
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0 6 1 6 · · · 6 n, in which the value ofq consists of all odd numbers. Then the
inflationary fixed point ofFϕ consists of all numbers of the form4k+ 3. This point is
undefinable. �

7. Graded modalities

Modal graded propositional formulasare constructed from propositional variables
p, q, r . . . and the constant⊥ (falsity) using the binary connectives∧, ∨, and the unary
connectives¬ and�k for all naturalk. We introduce abbreviations♦k = ¬�k¬.
Connectives�k and♦k (graded modalities) correspond to the following operations
on sets:

�kA = {x | the number ofy such thatxRy andy /∈ A is less thank},

♦kA = {x | there are at leastk y’s such thatxRy andy ∈ A}.

Clearly,�0 and♦0 are trivial,�1 = � and♦1 = ♦.

The following theorem generalizes the Fixed Point Theorem.The proof uses Sam-
bin’s construction.

THEOREM65 (MARDAEV, 2006). — For any graded formulaϕ(p, q1, ..., qn) moda-
lized in p, there is a unique fixed point of the operatorFϕ in every strictly partially
ordered model with the ascending chain condition and there is a graded formula
ω(q1, ..., qn), which defines the fixed point in every model of this kind. The formulaω
contains only those graded modalities, which are containedin ϕ.

So Sambin’s construction works in two cases:

(1) for modalized operators in strictly partially ordered frames with the ascending
chain condition (Fixed Point Theorem, Theorem 65),

(2) for negative operators in transitive antisymmetric frames with the ascending
chain condition (Theorem 46).

In models based on the frame〈N,<〉, whereN is the set of natural numbers,♦kα
is equivalent to♦(α∧♦(α∧ . . .∧♦(α∧♦α) . . .)) with k occurrences of♦. The frame
〈N,<〉 is SE-frame. From Theorem 12 we obtain

THEOREM 66 (MARDAEV, 2006). — For any graded formulaϕ(p, q1, ..., qn) posi-
tive inp, there is a modal formulaω(q1, ..., qn) preserving the positivity of parameters
and defining the least fixed point of the operatorFϕ in every model based on the frame
〈N,<〉.

8. Problems

PROBLEM 67. — Find lower bounds for complexity of defining formulas (in terms
of length or modal depth). �
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PROBLEM 68. — Investigate definability of the least fixed points of monotonic oper-
ators. �

PROBLEM 69. — When does monotonicity coincide with positivity? �

PROBLEM 70. — Find syntactic proofs. �

PROBLEM 71. — Find proofs using Sambin’s construction. �

PROBLEM 72. — Find proofs using automata. �

PROBLEM 73. — Investigate the case when negative operator has finitely (infinitely)
many definable fixed points. How many fixed points can a negative operator have?�

PROBLEM 74. — Is the problem of fixed points existence for negative operators in
finitely presented models algorithmically decidable? �

PROBLEM 75. — Investigate definability of the least fixed points of squares of nega-
tive operators. �

PROBLEM 76. — A transitive antisymmetric frame is called anIRF -frame if the
following conditions holds: �

1. there does not exist an antichainy1, y2, . . . (finite or infinite) and an infinite
chainx1 < x2 < . . . such that for anyxi there isyj such thatxi < yj ;

2. the set of reflexive elements is an upper cone.

The frame in Example 20 is anIRF -frame. Investigate definability of the least
fixed points of positive (monotonic) operators inIRF -models.

PROBLEM 77. — Do these logics capture some classes of finite or cellular automata
in these models (Janinet al., 1995)? �

PROBLEM 78. — How many definingΠ-formulas may be necessary forΠ-operators?
�

PROBLEM 79. — Investigate definability of inflationary fixed points. �

PROBLEM 80. — Investigate definability of the least fixed points of positive (mono-
tonic) operators in models with finite chains of bounded length attached to some ele-
ments. �

PROBLEM 81. — Investigate definability of fixed points in multi-modallanguages.
�

PROBLEM 82. — Does defining formula exist in theorems 57, 60? �

PROBLEM 83. — Investigate definability of the least fixed points of graded operators.
�

PROBLEM 84. — Describe frames and models with definable fixed points. �

PROBLEM 85. — How is Theorem 65 related to arithmetic? �

PROBLEM 86. — Investigate definability of fixed points in non-transitive models.�
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PROBLEM 87. — Obtain the reflexive case from the irreflexive one by replacing�

with ⊡. �

PROBLEM 88. — Theµ-operator is trivially definable in theµ-calculus. So there is
an analogy between theµ-calculus and logics with definable least fixed points. What
properties ofµ-calculus can be transferred to these logics and vice versa?For example,
how about the uniform interpolation property (D’Agostinoet al., 1996)? �

PROBLEM 89. — Adding the least fixed point operator for monotonic formulas to
syntax is natural when monotonicity is decidable. But if thecomplexity of syntax
increases, this is not so natural. �

PROBLEM 90. — Does Theorem 66 hold for〈N,6〉 and a graded formulaω? �

And so on ...
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