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ABSTRACT.The paper presents a survey of author’s results on definakée fpoints in modal,
temporal, and intuitionistic propositional logics. The lisenown Fixed Point Theorem consid-
ers the modalized case, but here we investigate the posiise. \We give a classification of
fixed point theorems, describe some classes of models ittalle least fixed points of pos-
itive operators, special positive operators, and give s@xamples of undefinable least fixed
points. Some other interesting phenomena are discoveredinrathility by formulas that do not
preserve positivity of parameters and definability by fisiés of formulas. We also consider
negative operators, graded modalities, construct undbfen@flationary fixed points, and put
some problems.

KEYwoRDsfixed point, modal logic, temporal logic, definability.

1. Introduction

It is well-known that many predicates can be defined as th& feeed points of
positive operators. Such a definition is implicit, but if fleast fixed point is formula-
definable, an explicit definition also exists. Usually an licipdefinition is much
shorter than an explicit one, and to obtain an explicit définj we need an algorithm
for its construction. This paper identifies some classesafahand temporal models,
in which the least fixed points of positive operators are @dfi@. \We also consider
special positive operators and classes of modal modelsgewhe least fixed points of
negative operators are definable. For every definabilitprigra stated in this paper,
there exists an algorithm constructing the correspondimgnfila (or a finite set of
formulas). All algorithms and detailed proofs can be foumthie cited papers. Thesis
(Mardaev, 2001b) and the papers (Mardaev, 2006; Mardaé4,)20so contain proofs
and numerous examples.
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Let us first recall some standard definitionslodal propositional formulasre
constructed from propositional variablgsg, r ...and the constant (falsity) using
the binary connectives, Vv, and the unary connectivesand(J. We introduce the
following abbreviations:

0 =-0n, T=-1,
Lo = a A Oa, Qa=aV Qa,
a—f=-aVp, ac=f=(a=p)A(B—a).

A modal Kripke fram& W, R) consists of a non-empty sBt with a binary rela-
tion R. A Kripke model basedn a frame{ W, R) is a triple( W, R, v ), wherev is a
valuation functiorassigning a subset &F (the value) to every propositional variable.
This function is extended to formulas in the usual way aofed: the value of the
constantL is always the empty set; the connectives\, V respectively correspond to
the complement, the intersection, and the unidmnd¢ correspond to the following
operations on sets:

OA={z|Vy(zRy =y € A)}, OA={z|Fy(zRy Ay € A)}.

The value of a variable is denoted by the corresponding uppercase |éptefThe
notationa(qu, . .., g,) Means that all variables occurring in the formulaare in
the list ¢1,...,¢,. Hencefortha(Q,...,Q,) denotes the value of the formula
a(q1s .-y qn)-

A formulaa(qy, ..., g,) is true at a pointz € W in a model( W, R,v) if z €
a(Q1,...,Q,). Aformulaa istruein a model( W, R,v) if «is true at eachr € W
in the model. A formulax is valid in a frame( W, R) if « is true in all models based
on (W, R).

DEFINITION 1. — Consider a formulap(p, g1, - ..,¢,) in variablesp, g1, ..., qn
and a Kripke mode{ W, R, v ) with valuesQ, ..., Q, of variablesq, ..., q,. De-
fine the operato¥, by the equality’,, (P) = ¢(P, Q1, ..., Q). This operator sends
every PCW to the valuep(P, @1, ...,Q.,) of the formulap. A setP is called a
fixed point(of F,) if P = F,(P). A fixed pointP is called theleast fixed poinif
P C P’ holds for every fixed poir®’. A formulaw(qi, ..., g,) definesa fixed point
PifP=w(Q1,...,Qn).

DEFINITION 2. — A modal formulap(p, ¢1, - . ., ¢, ) is called modalized ip if every
occurrence op in ¢ is within the scope df] or ¢.

DerINITION 3. — A frame( W, R) satisfies th@scending chain conditidhthere is
no infinite sequence; Rxo Rxs . .. such thate; # «; forall ¢ # j.

The well-known Fixed Point Theorem (Bernardi, 1975; Bednarl976;
Smonyski, 1975; Sambin, 1976; Sambéh al,, 1982; Smomski, 1985; Reidhaar-
Olson, 1990) states that fixed points are unique and definable
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FIXED POINT THEOREM (DE JONGH, SAMBIN, BERNARDI, SMORYNSKI). — For
any formulay(p, ¢1, ..., g») Modalized inp, there exists a unique fixed point of the
operator F, in every strictly partially ordered (i.e., irreflexive anchnsitive) model
with the ascending chain condition and there is a formu(ay , ..., ¢, ), which defines
the fixed point in every model of this kind.

Recall that modal propositional calculéShas the following axioms:
(1) classical tautologies,
(2)O(g — s) — (Og — DOs)
and inference rules:
(1) Modus ponens «, a — 3/ 0,
(2) substitution of modal formulas for variables,
(3) the rule of necessitationy/Cav.

Modal logicK consists of all formulas derivable ii§. By a (normal) modal logic
we mean an arbitrary s&tof modal formulas containink and closed under the rules

(1)-@).

A modal logicL is characterizedy a clas¥ of frames ifL consists of all formulas
a valid in every frame W, R) € C. Itis well-known (Chagroet al, 1997; Rybakov,
1997) thatK is characterized by the class of all frames.

If L is a normal modal logic and is a modal formula, theil. & « denotes the
least normal modal logic containidgand«. The following notations of formulas and
logics are standard:

4 : Op— O0p, w : O(0p — p) — Op, t:Op—p,
K4=K & 4, GL=K4 w, S4=K4ot.

It is well-known (Segerberg, 1971; Chagret al, 1997; Rybakov, 1997) that
modal logicGL is characterized by the class of all strictly partially arteframes
with the ascending chain condition. So we can reformulated-Point Theorem.

FIXED POINT THEOREM. — For any formulay(p, ¢1, ..., g,) modalized inp, there
exists a formulav(qs, ..., ¢, ) such that logiadGL contains the formula

U< p) < Opow).
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2. Modal positive operators
2.1. The least fixed points

An occurrence of a variable in a formula is callgakitiveif it is within the scope
of an even number of negations. A formuylép, ¢1,. .., ¢,) is calledpositive inp if
all occurrences gp are positive.

The positive case can be reduced to the modalized one. Indaetformulay be
positive inp. Transform the formula as follows: replace all occurrencesothat are
not within the scope df] or {, with L. The resulting formulg is positive, modalized
in p and has the following property.

ProPOsSITION4. —In every Kripke model the least fixed points of operafdrsand
F¢ coincide.

Fixed Point Theorem does not hold for strictly partially ereld Kripke models
without the ascending chain condition or for partially aetk(i.e., reflexive, transitive,
and antisymmetric) models. For example, consider a Kripgdehbased on the frame
(N, <), whereN is the set of natural numbers. 4f = Op, then the operataF,, has
two fixed points@ andN.

If ¢ = O-p, then the operataF,, does not have fixed points. So theorems from
this paper (except for Theorem 28) do not follow from Fixed®®heorem.

For a positive operatoF,, in a Kripke model, consider the ordinal sequence of
sets:

PO =g, petl = F(PY), P* = |J PPif ais alimit ordinal.
B<a

Then obviouslyF,, is monotonigi.e.,
VPl,PQ - W(P1 - Pg = F@(Pl) - F(P(PQ))

From the general theory of monotonic operators (Aczel, 19%7i8 known that the
sequencé>® reaches the least fixed point Bf.

Let us give some examples of undefinable least fixed point®sitipe operators
in partially ordered models.

EXAMPLE 5. — Letp =0(p V ¢) VO(p V —q). Consider a linearly ordered model

of typew + *w; its frame consists of two copig§ and N’ of the natural numbers
0<1 <2< - <2 <1 <0 (see Fig. 1, left; the models in Fig. 1 are ordered
“upwards"). Let(@ be the set of even numbers (marked by bullets). Then the set
N' = P¢ (marked by double circles) is the least fixed point of the afmetF,,. This

set is undefinable. O

ExAaMPLE 6. — The next model is an infinite partially ordered tree (Rigmiddle).
The set) is marked by bullets. Itis easy to show that the least fixedtget (marked
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by double circles) of the operat®i, is the tree without its trunk. This point is unde-
finable. Analogous examples can be constructed for styctyially ordered models.
O

EXAMPLE 7. — In Fig. 1 (right) irreflexive elements - < 2’ < 1’ < 0’ are above
the reflexive element (marked by a bullet). Lep = Clp. The setN' = P¥ (marked
by double circles) is the least fixed point of the operaipr This point is also unde-
finable. O

@ 0 0’
N ©1 Q N ©1
® o’ o9
. Q) o]
| /
° 3
N ©\O/
‘o 0 o/ e a

Figure 1. The least fixed points are undefinable

2.2. E-frames

A subsetACW is calledcofinalin a frame(W, R) if for any € W there is
y € A such thateRy.

For a frame( W, R ) theweak cofinality condition for infinite ascending chaias
the following:

Letz; Rzo R . .. be aninfinite chain such that for alt~ j, z; # x;; then for some
i, the chainz; 1 Rz; 12 Rx; 13 . .. is cofinal in the subframéy € W | z; Ry} (Fig. 2).

An E-frameis a partially ordered Kripke frame with the weak cofinaligndition
for infinite ascending chains. Here are some examples: @astially ordered Kripke
frame with the ascending chain condition; the natural nusb#’, < ); the integers
(Z,<).

Here is another example. Take a finite partially ordered &amd attachy-chains
to some its elements. Then we obtain/atirame (Fig. 3).

A Kripke model based on afR-frame is called ari’-model



322 JANCL - 17/2007. Modal logic in Russia

Y
o./. ;32 W
0/331
N /

Figure 2. Weak cofinality condition for infinite ascending chains

finite
p. o. frame

Figure 3. Example of an-frame

DEFINITION 8. —A formulaw(qs, . .., ¢,) (defining the least fixed point) preserves
the positivity of parameters fas(p, ¢1, . . ., g5, if for every variabley;, the following
condition holds: ifo(p, g1, - . ., q») is positive ing;, thenw is also positive iny;.

THEOREM 9 (MARDAEV, 20038). — For any formulap(p, g1, ..., gn) positive
in p, there is a formulaw(qi, ..., ¢,) preserving the positivity of parameters for
©(p, q1, ..., ¢n) and defining the least fixed point of the operakrin everyE-model.

Examples: ifp = O(p V ¢) vV O(p V —q), thenw is equivalent tdJO(Cg vV O—q)
in E-models. Ifp = O(p V ¢), thenw is equivalent tdJq in E-models.
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Let us introduce the following notation:

e |:|(|:](p—>|:|p)—>p)—>(|:|<>|:|p—>p)7
S4E = S4 o e.

Let (W, R) be a transitive frame. Define an equivalence relatioon W by
puttingz ~ y iff either z = y or z Ry andy Rx. The equivalence classes with respect
to ~ are callectlusters Then the quotient relation

(& R/N Cy iff 2z € C; dy € Cs xRy

is transitive and antisymmetric.

ProPOSITION10. —The logicS4E is characterized by the class of dl-frames.

S4E is also characterized by the class of all finite preordereel. (ireflexive and tran-
sitive) frames, in which every non-maximal cluster (witbpect toR/ ~) consists of
a single element.

COROLLARY 11. —For any formulap(p, 1, ..., ¢, ) positive inp, there is a formula
w(q1, ---, qn) preserving the positivity of parameters such that the IG& contains
the formulas

wH(p(w7q17 .- 'aq’n);
O(p—p) = (w—p).

Recall that the language g@fcalculus (Kozen, 1982; Dawait al., 2001; Dawar
et al, 2004) extends the modal language /pypperator, with the following rule for
building formulas: if formula)(q, ¢1, - . ., ¢») is positive ing, thenug.vp (g1, ..., qn)
is a formula. The value of this formula in a Kripke modéW, R, v) with values
Q1,...,Q, of variablesq,, . .., ¢, is the least fixed point of the operatby, (Q) =

Q/J(Q, Qla DRI Qn)-

If we have the preservation of positivity of parameters imigtome class of models,
then every formula ofi-calculus is equivalent to a modal formula (i.e., to a foraul
without occurrences qgi-operator) within this class of models.

The preservation of positivity also allows us to find the tdased points of the
positive system

Pl:wl(Pla'"7P77L3Q1)"')Q7L)

Pm:Sam(le-me;Ql;”-;Qn)

using the method of eliminating unknowns.



324 JANCL - 17/2007. Modal logic in Russia

2.3. SE-frames

A strictly partially ordered Kripke frame with the weak cddiity condition for
infinite ascending chains is called &’-frame Here are some examples: a strictly
partially ordered Kripke frame with the ascending chainditian, the natural num-
bers( N, <); the integers( Z, <). If (W, <) is an E-frame, then(W, <) is an
SE-frame.

THEOREM 12 (MARDAEV, 2002). — For any formulay(p, ¢1, ..., ¢») positive in
p, there is a formulav(qa, ..., ¢,,) preserving the positivity of parameters and defining
the least fixed point of the operatsi, in everySE-model.

ExamMPLE. —if ¢ = O(p V q), thenw is equivalent td1¢Oq in SE-models. O

Let us introduce the following notation:

se : O(0p—p)— (O60p— Op),
K4Se = K4 & se.

PropPOsSITION13. —ThelogicK4Se is characterized by the class of &lF-frames.
It is also characterized by the class of all finite transitfv@nes satisfying the condi-
tion: if a cluster is non-maximal, then it consists of a segleflexive element.

COROLLARY 14. —For any formulay(p, q1, ..., ¢, ) positive inp, there is a formula
w(q, -, qn) preserving the positivity of parameters such that the I&gitSe contains
the formulas

w(_)cp(wvfhv" 'aqn>a
B(p—p) = (w—p).

In some cases we cannot construct a defining formula pregethie positivity
of parameters that is suitable both f&r and.SE-models. For example, consider
¢ = 0O(p V q) and two models: afy-model(Z, <) and anS E-model(Z, <), where
7 is the set of integers. L&) = {n € Z|n > 0} in both models. There does not
exist a formula positive i defining the least fixed points of the operafgy in both
models. Note that although the formi& g — ¢) — ¢ defines the least fixed points
in these two models, it contains a negative occurrenge of

But under the ascending chain condition these two casesepined:

THEOREM 15. —For any formulay(p, ¢1, ..., ¢,) positive inp, there is a formula
w(q1, .-, qn) preserving the positivity of parameters and defining thetéiaed point
of the operatorF, in every partially ordered or strictly partially ordered rdel with

the ascending chain condition.
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2.4. IRE-frames

Asubsetk’ C W is called arupper conén a frame{ W, R ) if Va,y ((xRy & = €
K)=yecK).

DEFINITION 16. —A transitive antisymmetric frame with the weak cofinalitp-co
dition for infinite ascending chains is called dik E-frameif the set of its reflexive
elements is an upper cone.

Clearly, E-frames are reflexivé R E-frames, ands E-frames are irreflexivé R F-
frames. It is easy to construct otheR E-frames containing irreflexive and reflexive
elements.

THEOREM 17 (MARDAEV, 20020). — For any formulap(p, g1, ..., ¢,) positive in
p, there is a formulav(qs, ..., g») defining the least fixed point of the operaigy in
everyl RE-model.

The positivity of parameters is not always preserved in kRdv-case. Here is
a counterexample: ip = O(p V ¢), thenw is equivalent tdJ((Hg — q) —q) in
IRE-models. In RE-models the formulay = O(E(0q — q) — ¢) is monotonic in
q(i.e.,ifQ1 C Q2, thenw(Q1) C w(Q2)), but non-equivalent to any formula positive
ing.

Let us introduce the following notation:

tae : O0(p—0p) —p)— (Bo0Op—0Op),
ir : BO(0(pVe—p — (OE0g—q) —q —p),
K4lIre = K4 @ tae @ ir.

PrROPOSITION18. —The logic K4Ire is characterized by the class of allRE-
frames. It is also characterized by the class of all finitesitive frames satisfying
two conditions:

1) if a cluster is non-maximal, then it is a singleton;
2) the set of reflexive elements is an upper cone.

COROLLARY 19. —For any formulap(p, g1, ..., ¢,) positive inp, there is a formula
w(q1, -, qn) such thatK4Ire contains the formulas

w(_)cp(wvfhv cee aqn>a

B(e—p) = (w—p).

From Proposition 18 it follows thd 41Ire is decidable, therefore monotonicity is
decidable within the class of allR E-models. But monotonicity is not equivalent to
positivity over/ R E-models.
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ExXAMPLE 20. — In some cases we cannot construct a defining formulapieg

the positivity of parameters in strictly partially ordenembdels (and partially ordered
models). For example, let=O(pV q). Consider a strictly partially ordered modelin
Fig. 4. This is not arb £-model. LetQ) be marked by bullets. Then the set marked by
double circles is the least fixed point of the operatpr The defining formula in this
model is0(H(0qg — ¢q) — q). Are the least fixed points of positive operators definable
in models based on the frame in Fig. 4? O

Figure 4. Defining formula does not preserve the positivity of pararset

We can also find defining formulas for the least fixed pointhefgositive system

Pl:wl(Pla'"7P77L3Q1)"')Q7L)

Pm:Sam(P17~-~7Pm;Q1;-~-;Qn)

in the class of R E-models, although the positivity of parameters is not pres

Note, thatE-, SE-, andI RE-models differ only in the way how reflexive and
irreflexive elements are arranged. As for definability, ¢y be four options.

(1) If all elements are reflexive (i.e., in the casel¥models), we can construct a
defining formula preserving the positivity of parameters.
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(2) If all elements are irreflexive (i.e., in the case $f-models), we can also
construct a defining formula preserving the positivity ofgraeters. However it is not
always possible to construct a single formula for casesr{d)3).

(3) For the case of RE-models (i.e. if reflexive elements are above irreflexive), a
defining formula exists, but the positivity of parametersas always preserved.

(4) If irreflexive elements may be above reflexive, a definiogrula does not
always exist (Example 7).

2.5. Switches of truth values

Consider amodélW, R, v ) and the value of a formulain this model. For a finite
chainz;RxoR ... Rx, consider the number of thosefor which the truth values of
« are different ate; andx; 1. The maximum of these numbers over all finite chains
is called thenumber of switches (of the truth values) fer This maximum may be
equal to infinity. If the chains are taken from a certain matlglthe corresponding
maximum is called theumber of switches fax in M.

For a formulap(p, ¢1, . . ., ¢ ). Let us introduce the following notation:

900((]17 .. 'aq’n) = J~7

m+1(q17 .. 'aq'rb) = (p((pm(qh .. '7qn)aq17 .. -J]n)-

¥
THEOREM 21 (MARDAEYV, 2001a). — For any natural numbefk and a formula
o(p,q1,-..,qn) POSIitive inp, there is a natural numbem such thaty™ defines the
least fixed point of the operatd?, in every preordered Kripke model with the number
of switches forp not greater thark.

An upper bound fomn (depending otk andy) can be extracted from the proof.
Note thaty™ (q1,. . ., gn) preserves the positivity of parameters.

Since in a transitive modélq changes its truth value at most once, we obtain the
following

COROLLARY 22. —For any formulap(p, Oqu, ..., Ogy,) positive inp (in which every
occurrence ofy; is within a subformuldlg;) there is a natural number: such that
the formulay™ (Ogy, ..., Og, ) defines the least fixed point of the operakgrin every
preordered Kripke model.

It is well known (Segerberg, 1971; Chagrewal., 1997; Rybakov, 1997) that the
logic S4 is characterized by the class of all preordered frames.

COROLLARY 23 (MARDAEV, 1994). — For any formulap(p, g, . . ., Og,) posi-
tive inp, there is a numbem such thatS4 contains the formula

cpmH(Dql, oo 0gn) <™ (qa, - -, Ogn).-
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The next corollary is proved by applying a translation frartuitionistic to modal
formulas.

COROLLARY 24 (MARDAEV, 1994). — For any intuitionistic propositional formula
o(p,q1,-..,qn) positive inp, there is a numbem such that intuitionistic proposi-
tional logic Int contains the formulg™ ! « ™.

This corollary also follows from Ruitenburg’s theorem (Ruburg, 1984).
Namely, for a formulap(p, ¢1, . . . , ¢, ) let us introduce the following notation:
99(0)(])7 qiy-- -, qn) =D,
99<k+1)(p7 qiy-- -, q'rL) = (p((p“f)(p, qiy-- -, qn)a qi,-. -, qn)-

Note thaty(*) differs fromy* defined above.

THEOREM 25 (RUITENBURG, 1984). — For any intuitionistic propositional for-
mulay(p, g1, - - -, qn), there is a numbem such thaflnt contains the formula

P (pyqrs ) = @™ (0,01, )

3. Subclasses of positive operators
3.1. ¥- andII-formulas

Modal ¥-formulasare constructed from propositional variables, their negat
the constantd, T using the connectives, Vv, and¢. Examplesyp, L, 0Op, O(q V
O(pV —q)).

THEOREM 26 (MARDAEV, 1992). — For anyX-formulay(p, q1, ..., ¢, ) positive in
p, there is a natural number such thaty™ (¢, .. ., ¢,) defines the least fixed point
of the operatot, in every transitive Kripke model.

An upper bound forn can be extracted from the proof.

It is well known (Chagroet al,, 1997; Rybakov, 1997) that the logi€4 is char-
acterized by the class of all transitive frames.

COROLLARY 27. —For anyX-formulay(p, q1, ..., g») positive inp, there is a natu-
ral numberm such thatiK4 contains the formulg™ ! « ¢™.

Modal I1-formulasare constructed from propositional variables, their negat
the constantd,, T using the connectives, v, andlJ. The examples arg, L, Cp,
O(g vO( Vv —q)).

The positive case can be reduced to the modalized case @#iopat), and there
are constructions of defining formulas for Fixed Point Ttemor(for example, Sam-
bin’s construction (Sambist al, 1982; Reidhaar-Olson, 1990)) preserving the posi-
tivity of parameters and the property of beindlaformula. Therefore the following
theorem is a corollary of Fixed Point Theorem.
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THEOREM 28 (MARDAEV, 1993). — For anylIl-formulay(p, 1, ..., ¢, ) positive
in p, there is all-formulaw(q1, ..., ¢,) preserving the positivity of parameters and
defining the least fixed point of the operatby, in every strictly partially ordered
model with the ascending chain condition.

COROLLARY 29. —For anyII-formula ¢(p, g1, ..., g») positive inp, there is all-
formulaw(q, ..., g, ) preserving the positivity of parameters such that the Idgic
contains the formulas

w(_)cp(wvfhv e 'aqn>a
B(e—p) = (w—p).

3.2. Partial orders with the ascending chain condition

Fixed Point Theorem does not hold for partially ordered Keipnodels, but still
there is the following result:

THEOREM 30 (MARDAEV, 1993). — For anyIl-formulay(p, ¢1, ..., ¢, ) positive

in p, there is all-formulaw(qu, ..., g,) preserving the positivity of parameters and
defining the least fixed point &f, in every partially ordered model with the ascending
chain condition.

The following notation is standard:
grz : O@O((p—0p)—p)—p,
Grz = S4@ grz.

It is well known (Segerberg, 1971; Chagrewal,, 1997; Rybakov, 1997) that the
logic Grz is characterized by the class of all partially ordered framith the ascend-
ing chain condition.

COROLLARY 31. —For anyII-formula¢(p, q1, ..., ¢, ) positive inp, there is all-
formulaw(qs, ..., ¢, ) preserving the positivity of parameters such tiatz contains
the formulas

wH(p(w7q17 .- 'aq’n);
O(p—p) = (w—p).

Sometimes there does not exist a defirlikfprmula common for strictly partially
ordered models with the ascending chain condition andgilgrordered models with
the ascending chain condition. For example, consjder [Jp and two models on
natural numbers with reverse ordef8], >) and (N, >); then there does not exist a
[I-formula defining the least fixed point &f, in both models.
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3.3. C-frames

A frame (W, R) hascofinal ascending chaini§every infinite chainz; Rxo R . . .
with different elements is a cofinal subset(i, R ).

Clearly, frames with the ascending chain condition havenebfiscending chains.

A partially ordered frame with cofinal ascending chains ifedea C-frame Here
are some examples: partially ordered frames with the agogmtiain condition, the
natural numberg N, < ), and the integer§Z, < ). Note that the class af-frames is
contained in the class di-frames.

THEOREM 32 (MARDAEV, 1997). — For anyIl-formulay(p, ¢1, ..., ¢,) positive
in p, there is a finite set dfi-formulas such that in eveil-model the least fixed point
of the operatorFy, is defined by a formula from this set. All these formulas prese
the positivity of parameters.

Generally speaking, one formula may be insufficient. Forngxa, considerp =
O(p VvV ¢) vV O(p vV =¢q) and two models on the framgZ, <), with @ = {n €
Z|nisevenor n > 0} in the first model and) = {n € Z|niseven} in the sec-
ond model. The least fixed point &1, is defined by constant in the first model and
by L in the second model, but there is Hieformula defining the least fixed points of
F, in both models. One can be prove that in ex€rynodel the least fixed point of this
operator is defined by eithér or L. Note that the defining formul@¢(Oq v O—q)
mentioned earlier, involves.

Let us now consider the logiPum = S4 & O(0(p — Op) — p) — (O0p — p).

PROPOSITION33 (SEGERBERG 1971). — The logicDum is characterized by the
class of allC-frames.

COROLLARY 34. —For anyIl-formulay(p, g1, ..., gn) positive inp, there is a finite
set oflI-formulasw;(q¢1, . - ., ¢, ) preserving positivity of parameters such tiatim
contains the formula

V Bwi = ewisars---,4a)) A (O = p) = (w5 = p))).
Theorem 2.7 can be extended to positive systems.
THEOREM 35. — For any positive system
Pr=pi(P1,...,Ppn,Q1,...,Qn)
(1)
Py =om(Pry..., Py, Q1,...,Qun),

there is a finite set of collections df-formulas such that in everg/-model the least
fixed point of (1) is defined by a collection from this set. Adlde formulas preserve
the positivity of parameters.
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So Corollary 2.9 also can be generalized.

COROLLARY 36. —For anyIl-formulas

Sal(pla-"apmaqlv"'aqn>;-~-7<Pm(p17~-~7pm;q1;-~-7Qn)

positive inpy, . .., p,,, there is a finite set of collections

<w%(q17" 'aq’n)7" '7wlr1n(qla' "7q7L)>a

<w]1€((h;---;qn)v--'7wfn(q17---7Qn)>

of II-formulas preserving the positivity of parameters such aim contains the
formula

7 7 % 7

3.4. SC-frames

An SC-frameis a strictly partially ordered frame with cofinal ascendaimins.
Here are some examples: strictly partially ordered framiéls the ascending chain
condition, the natural numbetsV, <), and the integer$Z, < ). The class ofSC-
frames is contained in the class®f-frames.

THEOREM 37 (MARDAEV, 1997). — For anyIl-formulay(p, ¢1, ..., ¢, ) positive

in p, there is a finite set ofl-formulas such that in everyC-model the least fixed
point of the operatotF,, is defined by a formula from this set. All these formulas
preserve the positivity of parameters.

In general one formula is not sufficient for definability.

Now consider the logi&4Z = K4 ¢ O(Op — p) — (O0p — Op) introduced in
(Segerberg, 1971).

PROPOSITION38 (SEGERBERG 1971). — K4Z is characterized by the class of all
SC-frames.

COROLLARY 39. —For any II-formula ¢(p, ¢1, ..., ¢,) positive inp, there is a fi-
nite set oflI-formulasw; (q1, . . ., ¢») preserving the positivity of parameters such that
K4Z contains the formula

V(@i = @wi, a1, ) A (B — p) = (wi —p)))-

%

Theorem 37 and Corollary 39 can be extended to positive sgste
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So we have three types of definability of the least fixed padiatspositive I1-
operators.

(1) Definability by ondI-formula; this happens in strictly partially ordered madel
with the ascending chain condition (Theorem 28) or paytiattlered models with the
ascending chain condition (Theorem 30).

(2) Definability by a finite set ofI-formulas; this happens i-models (Theorem
32) or inSC-models (Theorem 37).

(3) Definability by an infinite set ofl-formulas. For example, consider all finite
models. For anyI-formulay and a finite model, there #s such thafil-formula”
defines the least fixed point &, in this model. Obviously, for some formulasthere
is no finite set of defining formulas within the class of all fanmodels.

DefiningII-formulas preserve positivity of parameters for all memndid classes of
models.

4. Negative operators

DEFINITION 40. —An occurrence op is callednegativeif it is within the scope of
an odd number of negation. A formuldp, q1, ..., qy) is callednegative inp if all
occurrences op are negative.

A negative operator may not have fixed points in a given modak following
example shows that a fixed point of a negative operator is aoessarily unique.
Consider the formulgp = (¢ vV O(—p V ~¢)) A (=g vV O(—p V ¢)) and the frame
(N, <). The valueQ of ¢ is the set of all even numbers. Th@mand—(Q are the fixed
points of F,.

Now let a formulap be negative irp. Transformy by replacing all occurrences of
p that are not within the scope @f or ¢, with L. The resulting formulg is negative
and modalized im.

PROPOSITION41 (CF. PROPOSITION4). — In every Kripke modelW, R, v ) every
fixed point of the operatafF,, is a fixed point of the operatdry.

Now consider the case when a fixed point of a negative opdgsatmique.

DEFINITION 42. —A frame( W, R) satisfies thestrong ascending chain conditidn
there does not exist infinite sequeng&z, Rxs . .. such thate; # x4 forall 4.

Let us denote the fOfmUl@(g&(pv iy -+ Qn>a q1y -+ Qn) by 1/)(177 qiy-- -, qn) If
v is negative irp, theny is positive inp.

THEOREM43 (MARDAEYV, 1998). — A negative operatoF,, has a fixed pointin a
Kripke model with the strong ascending chain condition ifl @nly if the correspond-

ing positive operatol’, has a unique fixed point in this model. These two fixed points
coincide.
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COROLLARY 44. —A fixed point of a negative operator in a Kripke model with the
strong ascending chain condition is unique if it exists.

Consider the above mentioned formula= (¢ VvV O(—pV —=q)) A (g VO(=pV q))
and finite linearly ordered models with the worldls< 1 < --- < n and with@ =
{i]iisever}. If nis even, therq is a fixed point ofF,. If n is odd, then-Q is a
fixed point.

Note that uniqueness does not transfer to negative systemsxample, consider

the system
P=-5
S =P

Obviously, it has many solutions, with arbitraB/andS = —P.

The following notation is standard:

grz: :  0O0(p—Op)—p)—Up,
Grz; = K4 grz;.

PrROPOSITION45. —The logicGrz, is characterized by the class of all transitive
frames with the strong ascending chain condition. It is alsaracterized by the class
of all finite transitive and antisymmetric frames.

If R is transitive, then the strong ascending chain conditioggigivalent to two
conditions: antisymmetry and the ascending chain conditio

THEOREM 46 (MARDAEV, 1998). — For any formulay(p, g1, ..., ¢,) negative in
p, there is a formulav(q1, ..., g») defining the fixed point of the operatél, in every
transitive model with the strong ascending chain conditwinereF, has fixed points.

Let L be a modal logicI” a set of formulas ¢ a formula. The notatiol +1, «
means thatv is derivable froml” U L by rules of necessitation amdodus ponens

We can prove Theorem 3.5 using Theorem 1 from (Maksimova2) ®¢hich as-
serts that every normal modal logic containldg has Beth property. The latter means
that for every formulax(p, ¢1, . . ., gn), if

Oé(p, qi, - - 'aq’n)7a(saqla e aqn) l_L P S,
then there is a formul&(q, . . ., ¢, ), for which

a(paqla' --7qn) I_L pHﬁ(qh -J]n)-

But the proof of Theorem 1 from (Maksimova, 1992) does notstautt a defin-
ing formula in an explicit form. So we give another proof (waut applying Beth
property). Let us describe Sambin’s construction (Sangbial., 1982; Reidhaar-
Olson, 1990) of a defining formula for Fixed Point Theorem.
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Let ‘P(pv qiy-- -, qn) = Oé(':lﬁl(]L qiy-- -, q’n)7 ey Dﬁm(pv qi,. .- aq’n)7 qiy- -,
¢n) Where the modal formula(sy, ..., Sm,q1,--.,qn) IS in variablesy, . .., ¢, and
new variables, ..., s,,. For the sake of brevity, we writg; for 5;(p, q1, ..., qn).
We construct a defining formula by induction onm.

If m =0, thenw(qr,...,qn) = ©(q1, ..., qn).

Atstep(m+1) we havep(p, g1, ..., qn) = (0B, ...,08m+1,q1,- -, qn). FOr
eachiwith1 <i<m+1,let

901(2?, q1y- -+, Qn) = Oé([lﬂlv ) Dﬂifla Ta Dﬂi+1) ) Dﬁmﬂrlv qis--- aqn)

By induction hypothesis, for everywe have a formulas;(q1, . . ., g,), which defines
the fixed point ofF,,. Put

w(qla .. aq’n) = a(Dﬁl(wla qiy-- -, q’n)a sy Dﬁm-{—l(wm—kla qiy-- -, Qn)a qiy-. -, (Jn)-
Thenw defines the fixed point of,.

The proof in (Mardaev, 2003) based on a special version ot#@sconstruction,
gives a defining formula for Theorem 3.5. The only differefroen the original Sam-
bin’s construction is the condition that evey must contain at least one occurrence
of p. For example, ifo = (¢ VO(—=pV —q)) A (—gVO(—pV q)), thenw is equivalent
to (¢ VO(0=gV =q)) A (=g VO(Ogq V q)).

(Mardaev, 1998) gives another explicit construction foeditem 3.5, but it is more
complicated.

COROLLARY 47. —For any formulap(p, g1, ..., g, ) negative irp, there is a formula
w(q1, ..., ¢n) such that the logi&rz, contains the formula

Blp e p) = (pow).
Now let us consider subclasses of negative operators.

Let,0y,...,0,,7 be formulas in variableg, ¢, ..., q,, and assume that all
occurrences op in ¢, 64,...,60,,, 7 are negative. Also assume that there are no
occurrences of in ¢ within the scope of] or ¢.

We consider the formula(p, ¢1,...,¢,) =¥ Vv 06, V...V O, V OT. Let

1/1/((]1;---7%) = 7/1(1—7(]1a---;%)7
¢ (D1, qn) = VOOV VO, V0T,
W@, qn) = PP (Toqrs s qn) iy ).
THEOREM 48 (MARDAEV, 1997A). — If a fixed point of the operataF, exists in

a transitive Kripke model, then a fixed point is unique andreefibyw.

COROLLARY 49. —The logicK4 contains the formula

Hpee)—peow).
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Finally we consider the formula

77(197(117---,%)Zw/\<>91/\---/\<>9m/\DT-

CoROLLARY 50. —If a fixed point of the operatoF;, exists in a transitive Kripke
model, then a fixed point is unique and definable.

5. Temporal positive operators
Temporal formulasire constructed from propositional variableg, » ...and the

constantl (falsity) using the connectives, v, -, Oy, andC k. We use the following
abbreviations:

Ua =UOra A Oga, Lo =a AUpa A UOga,
Oa=0raV Ora, Qa=aVdraV Qra.

Recall that in a Kripke mode{W, R,v), we can extend the valuatianto all
temporal formulas in the same way as for the modal case (®et}i but now ],
Og, O, and{ g correspond to the following operations on sets:

OLA={z|Vy(yRx =y e A)}, OrA={z|Vy(zRy =y € A)},
OrA={z|3y(yRxAyec A)}, OrA={z|Iy(xRy ANy e A)}.

In this section pictures of frames represent accessildigtionsR from the left to the
right on pictures. So the subscriptsand R (there should be no confusion with the
notation of the binary relation) mean “left" and “right" (or temporal terms, “past”
and “future").

The temporal case differs from the modal case. The leastfizgds of a temporal
positive operators may be undefinable on some classes af linedels. For example,
consider the formule = ¢ A O,0.(p V Orp) and finite strictly linearly ordered
models) < 1 < -+ < 4n (the upper model in Fig. 5). The value @tonsists of odd
numbers fronl to 2n — 1 and even numbers fron + 2 to 4n (marked by bullets).
The least fixed point (marked by double circles) of the omerat, consists of odd
numbers froml to 2n — 1. These sets are undefinable on the class of these models.

For another example, consider the formula- s A0, (O (O (O (OrpV —q) V
q)V —q) V q) and finite linearly ordered models with the worldlst 1 < -+ - < 8n+5
(the lower modelin Fig. 5) such that the valugaonsists of all odd numbers (marked
by bullets), the value of consists of odd numbefs 7, 11,...from3 to 4n — 1 and
dn +5,4n 4+ 9, 4n + 11,...fromdn + 5 t0 4n + 5 4+ 4n = 8n + 5 (marked bys).
The least fixed point (marked by double circles) of the omerat, consists of odd
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Figure 5. The least fixed points are undefinable

numbers3, 7, 11,...from3 to 4n — 1. These sets are undefinable on the class of these
models.

Nevertheless the linear temporal case is similar to thergénedal case as far as
Y- andII-formulas are concerned. Similarly to the modal céasmporalX-formulas
are constructed from propositional variables, their niegat the constants, T and
the connectives\, Vv, O, Or. Temporalll-formulasare constructed from proposi-
tional variables, their negations, the constants” and the connectives, v, (0, and
Or.

The basic normal bimodal logic is denoted By*. The following notation for
formulas and logics is standard (Segerberg, 1970):

cr : O0rp —p, cr: OrOLp—p,

4 :Up—0r0cp, 4 r :Urp—OrOgp,

I : Bp—0Or0rgp, lr : Up—UOrOLp,

ty:Up—p, tr:Urp—p,

grzy, : Oo(0Oc(p—ULp) —p) —p, grzg : Or(Or(p—Urp) —p) —p,

mr : O (Orp—Orp), mg : Or(Orp— Orp),

wr U (Hep—p)—0wp, wr : Or(Orp—p) — Orp,

zr :Op(Orp—p) — (Or0p— DOrp), zgr : Or(Orp—p) — (OrOrp— Orp),
dr :QLT, dr:ORrT,

er : o0 L, er: OUgrL,
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dumy : Op(Or(p—0Orp)—p)— (00p—p),
dump : Ogr(Ogr(p—0Orp) —p)— (OrOrp—p),
Lin = K°®c,®cr®4, D4 ® 1L D lg,
LinTGrz = Lin®t; ®tr®grz; © grzp,
LinTDum = Lin®t; ®tr® dumy ® dump,
LinTDumM; = Lin®t; ®tr® dumy @ dump ® my,

LinW = Lin® w; ® wg,

LinZD = Lin®z;®zrddr &dp,
LinZDRE;, = Lin®z;, ®2zrPdr®er.

Now let us study the least fixed point in these logics

5.1. Lin

It is well known (Segerberg, 1970) that the lodiin is characterized by the class
of all transitive linear frames.

THEOREM 51 (MARDAEV, 2004). — For any temporal-formulay(p, g1, .., gn)
positive inp, there is a natural number such that the formula™ (¢, . . . , ¢,,) defines
the least fixed point of the operatéi, in every transitive linear Kripke model.

An upper bound forn can be extracted from the proof.

COROLLARY 52. —For any temporak-formulap(p, ¢1, ..., ¢,) positive inp, there
is a natural numbern such thatLin contains the formulg™ ! « ™.

5.2. LinTGrz

Itis well known (Segerberg, 1970) that the lodilmT Grz is characterized by the
class of all finite linearly ordered frames.

THEOREM 53 (MARDAEV, 1999). — For any temporall-formulay(p, g1, .., gn)
positive inp, there is all-formulaw(qs, ..., ¢, ) preserving the positivity of parameters
and defining the least fixed point of the operaidy in every finite linearly ordered
model.

COROLLARY 54. —For any temporalII-formula ¢(p, g1, ..., ¢,) poOSitive in p,
there is all-formulaw(qs, ..., ¢,) preserving the positivity of parameters such that
LinTGrz contains the formulas

WHQO(M,Ql, .- 'aq’n);
O(p—p) = (w—p).
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5.3. LinW
It is well known (Segerberg, 1970) that the lodien W is characterized by the
class of all finite strictly linearly ordered frames.

THEOREM 55 (MARDAEV, 1999). — For any temporall-formulay(p, g1, .., gn)
positive inp, there is all-formulaw(gs, ..., ¢, ), which preserves the positivity of pa-
rameters and defines the least fixed point of the operatoin every finite strictly
linearly ordered model.

COROLLARY 56. —For any temporall-formulay(p, ¢1, ..., ¢, ) positive inp, there
is all-formulaw(qs, ..., ¢, ) preserving the positivity of parameters such thah'W
contains the formulas

WHQO(M,Ql, R aq’n);

B(p—p) = (w—p).

5.4. LinTDum

It is well known (Segerberg, 1970) that the loditnTDum is characterized by
the frame( Z, < ).

THEOREM 57 (MARDAEV, 1999). — For any temporall-formulay(p, g1, ..., ¢n)
positive inp, there is a finite set dil-formulas such that in every model, <, v ) the
least fixed point of the operatdr, is defined by a formula from this set. All these
formulas preserve the positivity of parameters.

COROLLARY 58. — For any temporall-formulay(p, g1, ..., g, ) positive inp, there
is a finite set ofI-formulasw; (¢1, . . . , ¢, ) preserving the positivity of parameters such
that LinTDum contains the formula

\/(D(Wi A @(Wiv qis--- aqn)) A (D((p—>p) - (wi _)p)))

Theorem 57 and Corollary 58 can be extended to positive sgste
COROLLARY 59. —For any temporall-formulas

901(]?1,- -y Pms 41, - - 'aqn)a' "780'm(pl7" -3 Pm, 41, - "7qn)

positive inpy, . .., p,,, there is a finite set of collections

<w:1l(q17""qn)7"'7w’}n(q1""7qn>>)

<w]1€(q1""’qn)7"'7w’icn(q17"'7qn>>
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of I1-formulas preserving the positivity of parameters such ItimTDum contains
the formula

VOA! <@l i o) A O N\pi=p) = N\w! =pi)).

7 [ [

5.5. LinZD, LinTDumM, LinZDrE

Consider other temporal models based on the integers amétheal numbers.
THEOREM 60 (MARDAEV, 1999). —

1) For any temporall-formula¢(p, g1, ..., ¢,) positive inp, there is a finite set
of II-formulas such that in every modg¥, <, v ) the least fixed point of the operator
F, is defined by a formula from this set. All these formulas presthe positivity of
parameters.

2) The same holds for the modély’, <, v).

3) The same holds for the modely, <, v ).

It is well known (Segerberg, 1970) that

(1) the logicLinZD is characterized by the fram{eZ, < ),
(2) the logicLinTDumM, is characterized by the frameV, <),
(3) the logicLinZD rE, is characterized by the franjeV, < ).

Similarly to the above examples, we can obtain appropriatellaries for these
logics and versions for positive systems.

6. Inflationary fixed points

The modal language with inflationary fixed points MIC was stigated in (Dawar
et al, 2001; Dawaet al, 2004). Speaking informally, MIC is a propositional multi-
modal language, augmented with simultaneous inflationgeglfpoints.

Fix a setA of actions Multi-modal propositional formulasre constructed from
propositional variables, ¢, ... and the constant (falsity) using the binary connec-
tives A, Vv, and the unary connectivesand[a] for all a« € A. A multi-modal Kripke
frame(W,{R,|a € A}) consists of a non-empty sBt and binary relationg?, on
W for all a € A. A Kripke modelconsists of a frame and a valuation functianA
connectivga] corresponds to the following operation on sets:

[a]A ={z|Vy (xR.y = y € A)}.
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MIC extends the propositional multi-modal language by tokofving rule for

building formulas: if1 (g1, .-, @ns S1, -+« Sm)s s Un(q1y -« s Gny S1y -+ -, S) @FE
formulas of MIC, then

@ —
U o=
Gn — tn
is a system of rules, arifip ¢; : ¥ (s1, ..., s,,) is a formula of MIC.
On every Kripke model, the systef of rules defines a tupl&Q¢, ..., Q%) of
zge(}sjcg each ordinal, by the following inflationary induction (for=1, ..., n):

Q?+1:Q?Uwi( %,...,Qg,Sl,...,Sm),
Q¢ = U Qif ais alimit ordinal.
B<a

As the sequence of tuples is increasing (i.€5 C Qf foranya < ), it
reaches thanflationary fixed poinf@Q?°, ..., Q>°). Then we put the value dfp g; :
U (s1,...,S5m) equal toQse.

In this section danguageis a subset of the set of all finite words over an alphabet.
Consider a finite alphabet,...,q;. Let A = a;...a, be a finite word. For our
purposes, we regard this word as a Kripke model With= {1,...,n}, the binary
successor relation?(: + 1), wherel < i < n — 1, and the valuation: if g; is
a letter of the alphabet, ther(qg;) = {i € W | a; = ¢;}. A formulaa of MIC
(respectively, of theu-calculus) istrue in a modelA = (W, R,v) if « is true at
eachi € W. A languageL is expressibldn MIC (respectively, in theu-calculus)
if there is a formul&d(q1, . . ., 1) of MIC (respectively, of the:-calculus) such that
L={A]0istrueinA}.

MIC is more expressive thgm-calculus. In the papers (Dawar al, 2001; Dawar
et al, 2004) (with Martin Otto) a language is constructed, whgbxpressible in MIC
but not in theu-calculus.

Let us give another proof showing that MIC is more exprestiam ui-calculus.
Recall examples from (Mardaev, 2004) of inflationary fixednp®for the class of
all finite strictly linearly ordered modal models and for ttlass of all finite linearly
ordered models that are undefinable (in modal logic). Th& keeed points of positive
operators are definable within these classes (Theoremg 8yX@rmulas preserving
the positivity of parameters. Therefore if we consider thieguage ofu-calculus,
the p-operator can be eliminated in these classes. So the imftatidixed points are
undefinable in the-calculus.

Consider the modal (not multi-modal) language, modal nedehd non-
simultaneous inflationary fixed points. Consider a modeh\wit arbitrary operator
F, and a sequence of sets
PO =g,
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Figure 6. Undefinable inflationary fixed points

potl = pay F(PY),
P> = |J PPif ais alimit ordinal.
B<a
This sequence reaches the inflationary fixed poinf'oflf F' is monotonic, the
inflationary fixed point coincides with the least fixed point.

ExampLE 61. — Consider the formula = (¢ A Op) v (OOp A =Op) and finite
strictly linearly ordered models over the fraifiec 1 < - -- < 2n (the upper model in
Fig. 6). Note that unlike Fig. 1, modal models in Fig. 6 arevehdfrom the left to

the right". The value of; consists of all nonzero even numbers (marked by bullets).
The inflationary fixed point of the operatét, (marked by double circles) consists of
all nonzero elements. It is undefinable on the class of aflémeodels. O

EXAMPLE 62. — Consider the formula

e=(sAO(pVaq)V
vV (rAOOPVaq)V=g)A-OpVq)V
V(wADOOEYVaq) V-9 Ve A-00pVae) V-q)V
V(ADOE@O@EVe V-9 Ve Vg A-OO0([P Ve Vg V)

and the models over the finite linearly ordered fraime 1 < - - - < 4n — 1 (the lower
model in Fig. 6). The value af consists of all odd numbers (marked by bullets). The
values of variables, r, u, andv are indicated in Fig. 6. The corresponding sequence
of true variables begins withsvu, then it becomes periodic, with the periodrs.

The inflationary fixed point of the operatéi, (marked by double circles) consists of
all elements> 4. It is undefinable on the class of our models. O

EXAMPLE 63. — There are simpler examples in the temporal case. GCentie
formulay = p Vv (OL0OL(p vV Orp) A "Or(p vV Orp)) and models over the finite
strictly linearly ordered framé < 1 < --- < n. The inflationary fixed point of",
consists of all odd elements. This point is undefinable. O

ExAMPLE 64. — Consider the formula = p vV (0L (¥ V ¢) A —¢), wherey =
OO (OL(Orp VvV —q) V q) V —q) and models over the finite linearly ordere frame
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0 <1< -+ < n,inwhich the value of; consists of all odd numbers. Then the
inflationary fixed point ofF;, consists of all numbers of the fortit + 3. This point is
undefinable. O

7. Graded modalities

Modal graded propositional formulaare constructed from propositional variables
p, q,r ...and the constant (falsity) using the binary connectives v, and the unary
connectives- andJ;, for all naturalk. We introduce abbreviation;,, = —[J;—.
Connectived ], and, (graded modalities) correspond to the following operation
on sets:

Ok A = {z|the number ofy such thatzRy andy ¢ A is less thaik},

OrA = {x|there are at leadty’s such thatt Ry andy € A}.
Clearly,[dq and{g are trivial,[J; = O and(; = 0.

The following theorem generalizes the Fixed Point TheorEne proof uses Sam-
bin’s construction.

THEOREMG65 (MARDAEV, 2006). —For any graded formule(p, 1, ..., ¢,) moda-
lized inp, there is a unique fixed point of the operatBy, in every strictly partially
ordered model with the ascending chain condition and thera igraded formula
w(q1, ---, qn), Which defines the fixed point in every model of this kind. ®hadlaw
contains only those graded modalities, which are containegd

So Sambin’s construction works in two cases:

(1) for modalized operators in strictly partially orderedrhes with the ascending
chain condition (Fixed Point Theorem, Theorem 65),

(2) for negative operators in transitive antisymmetriarfess with the ascending
chain condition (Theorem 46).

In models based on the frani#’, <), whereN is the set of natural numbers; o
is equivalentta) (a AQ(an. . . AQ(aAOa)...)) with & occurrences of. The frame
(N, <) is SE-frame. From Theorem 12 we obtain

THEOREM 66 (MARDAEYV, 2006). — For any graded formula(p, ¢1, ..., ¢») pOSi-
tive inp, there is a modal formula(q, ..., ¢,,) preserving the positivity of parameters
and defining the least fixed point of the operakgrin every model based on the frame
(N, <).

8. Problems

PROBLEM 67. — Find lower bounds for complexity of defining formulas erms
of length or modal depth). O
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PROBLEM 68. — Investigate definability of the least fixed points of ratmmic oper-
ators. O
PROBLEM 69. — When does monotonicity coincide with positivity? O
PrROBLEM 70. — Find syntactic proofs. O
PrROBLEM 71. — Find proofs using Sambin’s construction. O
PrROBLEM 72. — Find proofs using automata. O
PROBLEM 73. — Investigate the case when negative operator has Virfitdinitely)
many definable fixed points. How many fixed points can a negaterator have?]
PrROBLEM 74. — |s the problem of fixed points existence for negativeragoes in
finitely presented models algorithmically decidable? O
PROBLEM 75. — Investigate definability of the least fixed points of @gps of nega-
tive operators. O

PROBLEM 76. — A transitive antisymmetric frame is called &R F-frameif the
following conditions holds: O

1. there does not exist an antichain yo, . .. (finite or infinite) and an infinite
chainz; < z2 < ... such that for any; there isy; such thate; < y;;

2. the set of reflexive elements is an upper cone.

The frame in Example 20 is ahR F-frame. Investigate definability of the least
fixed points of positive (monotonic) operatorsi/ik F’-models.

PrROBLEM 77. — Do these logics capture some classes of finite or cebuilbmata

in these models (Jangt al., 1995)? O
PROBLEM 78. — How many definin@l-formulas may be necessary fdroperators?
O
PROBLEM 79. — Investigate definability of inflationary fixed points. O
PrROBLEM 80. — Investigate definability of the least fixed points ofifiee (mono-
tonic) operators in models with finite chains of bounded terajtached to some ele-
ments. (]
PROBLEM 81. — Investigate definability of fixed points in multi-modahguages.
O
ProBLEM 82. — Does defining formula exist in theorems 57, 607 O
PrROBLEM 83. — Investigate definability of the least fixed points ofdgd operators.
O

PrROBLEM 84. — Describe frames and models with definable fixed points. [
PROBLEM 85. — How is Theorem 65 related to arithmetic? O

PROBLEM 86. — Investigate definability of fixed points in non-trangtmodels.[]
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PrROBLEM 87. — Obtain the reflexive case from the irreflexive one byaeipig]
with . O

PrROBLEM 88. — Thep-operator is trivially definable in the-calculus. So there is
an analogy between thecalculus and logics with definable least fixed points. What
properties ofi-calculus can be transferred to these logics and vice véisa&xample,
how about the uniform interpolation property (D’Agostiabal.,, 1996)? d

PROBLEM 89. — Adding the least fixed point operator for monotonic faftas to
syntax is natural when monotonicity is decidable. But if dmnplexity of syntax
increases, this is not so natural. O

PROBLEM 90. — Does Theorem 66 hold fé/V, <) and a graded formula? O

Andsoon...
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