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1. INTRODUCTION
By an n-quasigroup of order k we mean an algebra with the universe Σ = {0, 1, . . . , k − 1} and

a function f : Σn → Σ that is invertible in each variable. The function f will be sometimes referred as
an n-quasigroup, n-ary quasigroup, or quasigroup too. The value table of an n-quasigroup of order k is
called a Latin n-cube of order k. If n = 2 then we call it a Latin square.

A (distance 2) MDS-code is a subset M ⊂ Σn of cardinality |Σ|n−1 such that different elements
of M differ in at least two coordinates. For a function f : Σn → Σ, put

M〈f〉 �
{(

x, f(x)
)

: x ∈ Σn
}

, Ma〈f〉 �
{
x ∈ Σn : f(x) = a

}
, a ∈ Σ.

For an MDS-code M ⊂ Σn+1 put

Fi〈M〉(x1, . . . , xi−1, xi+1, . . . , xn+1) = xi

if and only if (x1, . . . , xn+1) ∈ M . It is immediate obvious that the mapping M〈·〉 establishes a one-to-
one correspondence between the set of n-quasigroups and the set of MDS-codes of length n + 1. For
every a ∈ Σ, the mapping Ma〈·〉 takes each n-quasigroup into an MDS-code of length n. For every i
with 1 ≤ i ≤ n, the mapping Fi〈·〉 establishes a one-to-one correspondence between the set of MDS-
codes of length n + 1 and the set of n-quasigroups.

Put [n] � {1, . . . , n}. Assume that S ⊂ Σn and, for every v ∈ S and i ∈ [n], there exists a unique
u ∈ S such that u and v differ in the i-th coordinate only. Then S is called a 2-code. By a 2-MDS-code
we mean a 2-code S ⊂ Σn of cardinality 2|Σ|n−1. A 2-MDS-code is said to be prime if it contains no
proper 2-subcodes. If MDS-codes M1 and M2 are disjoint then S = M1 ∪ M2 is a 2-MDS-code. A 2-
MDS-code admitting such a representation is said to be splittable. The definition of a (splittable) l-fold
MDS-code is similar. As is proven in [10], for n ≥ 3 and k ≥ 4, there exist 2-MDS-codes (and multifold
codes) that are not splittable.

We say that n-quasigroups f and g are compatible if f(x) 
= g(x) for every x ∈ Σ. It is clear that
n-quasigroups f and g are compatible if and only if M〈f〉 ∩M〈g〉 = ∅. We say that n-quasigroups f
and g form an extendable pair if there exists an (n + 1)-quasigroup h such that f = h

∣∣
xn+1=0

and

g = h
∣∣
xn+1=1

. For a collection of m quasigroups of order k, where 1 ≤ m < k, the definition is similar.

The questions on extension of a collection of n-quasigroups and splitting a multifold MDS-code are
equivalent. In particular, the following proposition is immediate from the definitions.
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Proposition 1. Compatible n-quasigroups f and g of order |Σ| = 4 form an extendable pair if
and only if the 2-MDS-code Σn+1

∖ (
M〈f〉 ∪M〈g〉

)
is splittable.

A collection f0, . . . , fm−1 of pairwise compatible n-quasigroups with m < |Σ| can be regarded as
a partial (n + 1)-ary quasigroup such that

F : Σn × {0, . . . ,m − 1} → Σ, F
∣∣
xn+1=i

= fi for i ∈ {0, . . . ,m − 1}.

The value table of a partial (n + 1)-ary quasigroup is called an (n + 1)-dimensional Latin paral-
lelepiped. It is clear that an (n + 1)-dimensional Latin parallelepiped can be extended to a Latin
(n + 1)-cube if and only if the corresponding partial (n + 1)-ary quasigroup (collection of pairwise
compatible n-quasigroups) is extendable.

By the classical König–Hall Theorem [3], every Latin (n×m)-rectangle with m ≤ n can be extended
to a Latin (n × n)-square, i.e., every collection of pairwise compatible 1-quasigroups (permutations) of
an arbitrary order k can be extended to a 2-quasigroup of order k.

In the sequel, well-known facts will be called assertions. The proof of the following assertion can be
found, for example, in [5].

Assertion 2.

(a) Every collection of k − 1 pairwise compatible n-quasigroups of order k is extendable.
(b) Every n-quasigroup forms an extendable singleton collection.

Thus, if k ≤ 3 then every collection of pairwise compatible n-quasigroups of order k is extendable.
In the present article, we prove the following

Theorem. Every pair of compatible n-quasigroups of order 4 is extendable.
By this theorem and Assertion 2, every collection of pairwise compatible n-quasigroups of order 4 is

extendable. The following assertion is proven in [4, 5].

Assertion 3. Let k ≥ 5 and k/2 < l < k − 1. There exists a collection of l pairwise compatible
2-quasigroups of order k that is not extendable.

In [13], collections are constructed of l pairwise compatible 2-quasigroups of order k that are not
extendable, where k = 5, 6, 7, 8 and l = 2, 2, 3, 4 respectively. If n ≥ 3, k ≥ 5, and k/2 < l < k − 1 then
there exists a collection of l pairwise compatible n-quasigroups of order k that is not extendable. This
fact can be obtained from Assertion 3, see also [10]. Thus, every collection of pairwise compatible n-
quasigroups of order k is extendable only if k = 2, 3, 4.

In [8], a method is discussed for constructing codes possessing parameters of doubly-shortened
perfect codes that cannot be obtained by shortening a perfect code. This method uses pairs of compatible
n-quasigroups of order 4 that are not extendable. By our main theorem, such a construction is
impossible.

2. DEFINITIONS AND PRELIMINARY RESULTS

An isotopy in Σn is an n-tuple of permutations θi : Σ → Σ, i ∈ [n]. For an isotopy θ̄ = (θ1, . . . , θn)
and a set S ⊆ Σn, we put

θ̄S �
{
(θ1x1, . . . , θnxn) : (x1, . . . , xn) ∈ S

}
.

Sets S1 ⊆ Σn and S2 ⊆ Σn are isotopic if there exists an isotopy θ̄ with θ̄S1 = S2. Sets S1 ⊆ Σn and
S2 ⊆ Σn are equivalent if there exist a permutation of coordinates τ : [n] → [n] and an isotopy θ̄ such
that

χ
S1

(x1, . . . , xn) ≡ χ
θ̄S2

(
xτ(1), . . . , xτ(n)

)
,

where χ
B

is the characteristic function of B. n-Quasigroups f and g are equivalent (isotopic) if
the MDS-codes M〈f〉 and M〈g〉 are equivalent (isotopic). It is immediate from the definitions that
the n-quasigroups Fi〈M〉, i ∈ [n], are pairwise equivalent for every MDS-code M . An isotopy θ̄
between n-quasigroups f and g is said to be principal if f(θ̄x) ≡ g(x).
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EXTENSIONS OF PARTIAL n-QUASIGROUPS 137

Let M ⊂ Σn be an MDS-code. For every a ∈ Σ, the set

M
∣∣
xi=a

=
{
x ∈ M : xi = a

}

is called a retract of dimension n − 1 of M . Fixing the values of m variables, we obtain a retract of
dimension n − m, 1 ≤ m ≤ n − 2. By definition, each retract of an MDS-code is an MDS-code of
a lower dimension.

Let f be an n-quasigroup and let M ′ be a retract of dimension m, m ≤ n, of the MDS-code
M〈f〉 ⊂ Σn+1. Then each (m − 1)-quasigroup Fi〈M ′〉 is called a retract of f .

An n-quasigroup f is said to be reducible (decomposable) if there exist an integer m, 2 ≤ m < n,
an (n − m + 1)-quasigroup h, an m-quasigroup g, and a permutation σ ∈ Sn such that

f(x1, . . . , xn) ≡ h
(
g
(
xσ(1), . . . , xσ(m)

)
, xσ(m+1), . . . , xσ(n)

)
.

The following assertion is immediate from a theorem in [2].

Assertion 1. Each reducible n-quasigroup f admits a representation

f(x) ≡ q0

(
q1(x̃1), . . . , qm(x̃m)

)
, (2.1)

where each qj is an nj -quasigroup, 1 ≤ j ≤ m, q0 is an irreducible m-quasigroup, and each
x̃j is a tuple of variables xi, i ∈ Ij , where {Ij}j=1,...,m is a partition of [n] and n1, . . . , nm are
the cardinalities of its blocks. Moreover, if m ≥ 3 then the partition {Ij}j=1,...,m is uniquely
determined.

If m ≥ 3 then (2.1) is called a canonical decomposition of f . Reducible quasigroups among
q1, . . . , qm can be represented as superpositions of quasigroups of lower arities, etc. It is clear that
the arity of an irreducible retract of f cannot exceed the arities of all irreducible quasigroups occurring in
the representation of f by a repeated superposition. Therefore, from Assertion 1 we obtain the following

Corollary 5. Assume that a reducible n-quasigroup f possesses an irreducible retract of arity
m ≥ 2 that is contained in no irreducible retract of greater arity. Then the MDS-code M〈f〉
admits the following representation:

M〈f〉 =
{

x ∈ Σn+1 : qm+1(xn+1, x̃m+1) = q0

(
q1(x̃1), . . . , qm(x̃m)

)}
. (2.2)

Here each qj is an nj -quasigroup, 1 ≤ j ≤ m + 1, q0 is an irreducible m-quasigroup, and each
x̃j is a tuple of variables xi, i ∈ Ij , where {Ij}j=1,...,m+1 is a partition of [n] and n1, . . . , nm are
the cardinalities of its blocks.

By a canonical decomposition of an MDS-code M〈f〉 we mean a representation (2.2) such
that the maximum of the dimensions of irreducible retracts of the MDS-code is equal to m + 1 and
the cardinality of Im+1 is minimal.

By definition, all 2-quasigroups are irreducible. A reducible n-quasigroup f is said to be completely
(commutative) reducible if every retract of arity greater than 2 is reducible and every binary retract is
isotopic to a commutative group.

In the sequel, we assume that Σ = {0, 1, 2, 3}, i.e., we consider n-quasigroups of order 4 only. As is
known [1], each 2-quasigroup of order 4 is isotopic to either group Z2 ×Z2 or group Z4. Therefore, every
reducible n-quasigroup of order 4 possessing no retract of arity greater than 2 is completely reducible. In
the sequel, we assume that 0 ∈ Σ is the neutral element. If a 2-quasigroup is isotopic to Z2 ×Z2 then we
may assume that the corresponding isotopy is principal. For 2-quasigroups that are isotopic to Z4, there
exist three equivalence classes with respect to principal isotopy. The equivalence class is determined by
the element of the group of order 2. In the sequel, by a group operation on Σ we mean one of the four
operations mentioned above.

The following assertion is immediate from a theorem in [2].
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Assertion 6. Each completely reducible n-quasigroup f : Σn → Σ admits a representation

f(x̃1, . . . , x̃k) ≡ q1(x̃1) ∗ · · · ∗ qk(x̃k), (2.3)

where ∗ denotes a suitable group operation, each qj is an nj -quasigroup, 1 ≤ j ≤ k, admitting no
representation of the form qj(x̃j) = q′(x̃′

j) ∗ q′′(x̃′′
j ), and each x̃j is a tuple of variables xi, i ∈ Ij ,

where {Ij}j=1,...,k is a partition of [n] and n1, . . . , nm are the cardinalities of its blocks. Moreover,
the operation ∗ and the partition {Ij}j=1,...,k are uniquely determined.

In (2.3), the nj -quasigroups qj and the n-quasigroup f are completely reducible. We call the opera-
tion ∗ in (2.3) the principal operation of f .

Let f be a completely reducible n-quasigroup admitting a representation of the form (2.3). We
construct a rooted tree T (f). The inner vertices of T (f) are labeled with operations. The leafs of T (f)
are labeled with variables. If Tj is constructed for qj , 1 ≤ j ≤ k, then T (f) consists of the root and k
edges that are incident to the root. The root is labeled with ∗. The tree Tj is attached to the j-th edge.
See the figure below for the tree constructed from a 9-quasigroup.
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Fig. 1. The tree T (f) with
f(x1, . . . , x9) =

(
x1 ∗ x2 ∗

(
x3 � x4)

)
�

(
(x5 ∗ x6) � (x7 ∗ (x8 � x9)

))
.

A pair {xi, xj} of variables is said to be inner with respect to an n-quasigroup f if f(x) ≡
g
(
ϕ(xi, xj), x̃

)
, where g is an (n − 1)-quasigroup, ϕ is a 2-quasigroup, and xi and xj do not occur

in x̃. Each of the variables xi, xj is said to be inner too. For example, the pairs {x1, x2} and {x3, x4} are
inner with respect to the 9-quasigroup f , see Fig. 1. If a pair {xi, xj} of variables is inner with respect to
an n-quasigroup f then this pair is inner with respect to each retract of f containing xi and xj . Using
Assertions 1 and 6 and induction on the number of variables, we easily obtain the following

Proposition 7. Let
{
(x, y) : f(x) = g(y)

}
=

{
(x̃, ỹ) : f ′(x̃) = g′(ỹ)

}
,

where f , g, f ′, and g′ are reducible quasigroups (in many variables), x, y and x̃, ỹ are two partitions
of the set of variables. If a pair of variables occurring in x̃ is inner with respect to f then this pair
is inner with respect to f ′ too.

The following assertion [14] shows that the notions of reducibility and complete reducibility can be
naturally defined for MDS-codes.

Assertion 8. Let M ⊂ Σn+1 be an MDS-code. Assume that Fi〈M〉 is a reducible (completely
reducible) n-quasigroup for some i ∈ [n + 1]. Then, for every j ∈ [n + 1], the n-quasigroup Fj〈M〉
is reducible (completely reducible) too.
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EXTENSIONS OF PARTIAL n-QUASIGROUPS 139

Let an MDS-code be defined by the equation f(x) = g(y), i.e., let

M =
{
(x, y) : f(x) = g(y)

}
,

where f is either completely reducible or depends on two variables. A pair {xi, xj} of variables is said to
be inner with respect to M if this pair is inner with respect to either f or g. Let I(M) denote the set of
all pairs of inner variables of M and let Ĩ(M) =

⋃
I(M) denote the set of all inner variables of M .

The following three propositions are immediate from the definition of a pair of inner variables of
an MDS-code.

Proposition 9. If n ≥ 4 then each completely reducible MDS-code M ⊂ Σn possesses at least
two disjoint pairs of inner variables.

Proposition 10. A pair {xi, xj} of variables is inner with respect to a reducible MDS-code
M ⊂ Σn if and only if M =

{
ϕ(xi, xj) = q(x̃)

}
, where q is an (n − 1)-quasigroup, ϕ is a 2-

quasigroup, and xi and xj do no occur in x̃.

Proposition 11. If a pair {xi, xj} of variables is inner with respect to a completely reducible
MDS-code M ⊂ Σn then, for every a ∈ Σ and k ∈ [n] \ {i, j}, this pair is inner with respect to
the retract M

∣∣
xk=a

.

For a completely reducible MDS-code M =
{
(x, y) : f(x) = g(y)

}
, we construct a tree T (M). This

tree need not be rooted. If the principal operations of f and g coincide then we identify the roots of T (f)
and T (g). We add an edge between these roots if the principal operations of f and g are different.
In T (M), we preserve all labels of leafs (variables) and remove all labels of inner vertices (operations).
Using induction on the number of variables and Proposition 7, it is easy to prove that this construction
is independent of the equation defining the MDS-code M .

Let W ⊂ V (T ) be an arbitrary set of vertices of a tree T . We say that a vertex w ∈ W is extreme
in W if no path between two vertices from W \ {w} passes through w. Let M ⊂ Σn+1 be a completely
reducible MDS-code and let S ⊂ [n + 1]. Let w(s) be the vertex of T (M) that is adjacent to the vertex
labeled by xs. We say that xt, t ∈ S, is an extreme variable (in the set of variables with subscripts from S)
if w(t) is an extreme vertex in

{
w(s)

∣∣ s ∈ S
}

. We say that xt and xs are neighbors if the vertices w(s)
and w(t) are adjacent. For example, the variables x7 and x8 on Fig. 1 are neighbors.

Let M ⊂ Σn+1 be a completely reducible MDS-code. Considering subtrees of T (M), we obtain
the following propositions.

Proposition 12.

(a) If the degree of w(s) in T (M) is greater than three then I
(
M

∣∣
xs=a

)
⊂ I(M) for every a ∈ Σ.

(b) If xs /∈ Ĩ(M) and {xp, xq} ∈ I
(
M

∣∣
xs=a

)
\ I(M) then the variables xp and xs are neighbors

as well as xq and xs, but the variables xp and xq are not.

(c) If xs /∈ Ĩ(M) and xs is an extreme variable in S then
{
{xp, xq}

∣∣ p, q ∈ S
}
∩

(
I
(
M

∣∣
xs=a

)
\ I(M)

)
= ∅

for every a ∈ Σ.

Proposition 13. Let M ⊂ Σn+1, n ≥ 5, be a completely reducible MDS-code, xs ∈ Ĩ(M), a ∈ Σ,
and M ′ = M

∣∣
xs=a

. We have {xp, xq} ∈ I(M ′) \ I(M) if and only if the MDS-code M can be
represented (up to isotopy) in the form

M =
{
x : xp ∗1 (xs ∗2 xq) = f(x̃)

}
, (2.4)

where xs, xp, and xq do not occur in x̃, f is an (n − 2)-quasigroup, and the group operations ∗1

and ∗2 do not coincide. Moreover, if xp /∈ Ĩ(M) then I(M ′) \ I(M) = {xp, xq}.
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A 2-code S ⊂ Σn+1 is said to be linear if

χ
S
(x1, . . . , xn) ≡ χ

S1
(x1) ⊕ χ

S2
(x2) ⊕ · · · ⊕ χ

Sn
(xn), (2.5)

where ⊕ denotes addition modulo 2 and each Si, 1 ≤ i ≤ n + 1, is a two-element subset of Σ. It is
obvious that every linear 2-code is a 2-MDS-code.

In (2.5), we may replace each χ
Sj

(xj) by χ
Σ \ Sj

(xj)⊕ 1. This allows us to choose the set containing 0

among Sj and Σ \ Sj . Therefore, every linear 2-code S ⊂ Σn+1 with χ
S
(x) ≡ δ ⊕

n+1⊕
j=1

χ{0, αj}
(xj) is

determined by the parity δ ∈ {0, 1} and the tuple (α1, . . . , αn+1) ∈ Σn+1. This tuple is called the char-
acteristic of the 2-code S.

We say that an MDS-code M〈f〉 is

• semilinear if it is contained in a linear 2-code;
• (0, a)-semilinear if it is contained in a linear 2-code of characteristic (a, . . . , a), i.e., M〈f〉 ⊂ S,

where χ
S
(x) = 1 ⊕

n+1⊕
i=1

χ{0, a}(xi);

• anti-(0, a)-semilinear if M〈f〉 ⊂ S, where χ
S
(x) =

n+1⊕
i=1

χ{0, a}(xi);

• linear if there exist at least two linear 2-codes containing M〈f〉.
The corresponding n-quasigroup f is said to be semilinear, (0, a)-semilinear, anti-(0, a)-semi-

linear, and linear respectively.
Let + denote the operation on Σ that is equivalent to the addition of the group Z2 × Z2. It is

convenient to represent elements of Σ as two-dimensional boolean vectors
(
μ1, μ2

)
, μσ ∈ {0, 1}, via

the natural identification

0 = (0, 0), 1 = (1, 0), 2 = (1, 1), 3 = (0, 1).

Moreover, we have

(μ1, μ2) + (ν1, ν2) = (μ1 ⊕ ν1, μ2 ⊕ ν2).

Let S ⊂ Σn+1 be a linear 2-code of characteristic (1, . . . , 1). Then

S =

{((
μ1

1, μ
2
1

)
, . . . ,

(
μ1

n, μ2
n

))
:

n+1⊕
i=1

μ2
i = δ

}
,

where δ ∈ {0, 1}. Each (0, 1)-semilinear MDS-code M ⊂ S can be represented as follows:

M=

{((
μ1

1, μ
2
1

)
, . . . ,

(
μ1

n+1, μ
2
n+1

))
:

n+1⊕
i=1

μ2
i =δ,

n+1⊕
i=1

μ1
i =λM

(
μ2

1, . . . , μ
2
n+1

)
}

, (2.6)

where λM is a boolean function defined on the set

En+1
δ =

{
(
μ2

1, . . . , μ
2
n+1

)
:

n+1⊕
i=1

μ2
i = δ

}

of boolean vectors of parity δ, see [7].
Semilinear n-quasigroups f and g are said to be opposite if there exist a, b ∈ Σ such that Sa,b〈f〉 =

Ma〈f〉 ∪Mb〈f〉 is a linear 2-code and χSa,b〈f〉
= χSa,b〈g〉

⊕ 1. In particular, if f is (0, a)-semilinear

and g is anti-(0, a)-semilinear then f and g are opposite. Conversely, if f is opposite to a (0, a)-
semilinear but not linear n-quasigroup then f is anti-(0, a)-semilinear.

The following assertions are immediate from the definitions and can be found in [11, 14].
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EXTENSIONS OF PARTIAL n-QUASIGROUPS 141

Assertion 14.
(a) Each retract of a semilinear n-quasigroup is semilinear too.
(b) Each retract of a (0, a)-semilinear n-quasigroup is either (0, a)-semilinear or anti-(0, a)-

semilinear.
(c) If Fi〈M〉 is a semilinear (linear) n-quasigroup for some i ∈ [n + 1] then, for every j ∈

[n + 1], the n-quasigroup Fj〈M〉 is semilinear (linear) too.

Assertion 15.
(a) An n-quasigroup f is semilinear if and only if there exist a, b ∈ Σ such that the 2-code

Sa,b〈f〉 is linear.

(b) The 2-code Sa,b〈f〉 is linear for every a, b ∈ Σ with a 
= b if there exist distinct a, b, c ∈ Σ such
that the 2-codes Sa,b〈f〉 and Sa,c〈f〉 are linear.

(c) An n-quasigroup f is linear if and only if, for every a, b ∈ Σ with a 
= b, the 2-code Sa,b〈f〉
is linear.

(d) Each linear n-quasigroup is isotopic to the n-quasigroup �(x) = x1 + x2 + · · · + xn.

In the sequel, we will need the following assertions from [6, 7, 14].

Assertion 16 [6, Theorem 4.1 (c)]. Let a 2-MDS-code S ⊂ Σn+1 satisfy the equality χ
S

=
χ

S1
⊕ χ

S2
, where S1 and S2 are 2-MDS-codes of lower dimensions. Then S is splittable if and

only if both S1 and S2 are splittable.

Assertion 17 [14, on a unique extension of a 2-code]. Let S1, S2 ⊂ Σn be 2-MDS-codes. Assume
that there exists a 2-code S0 with S0 ⊆ S1 \ S2. Then S1 = Σn \ S2.

Assertion 18 [6, Theorem 4.1 (b)]. Each 2-MDS-code can be represented as the union of a fam-
ily of disjoint prime 2-codes.

Assertion 19 [14, on a linear anti-layer]. Let f be an n-quasigroup of order 4, let f ′ = f
∣∣
xi=c

be
a semilinear (n− 1)-dimensional retract of f , and let S = S0,1〈f ′〉 be a linear set. Then there exists
d ∈ Σ such that the retract f ′′ = f

∣∣
xi=d

is opposite to the retract f ′, i.e., S0,1〈f ′′〉 = Σn \ S0,1〈f ′〉.
Assertion 20 [7, Lemma 1]. Let an MDS-code M satisfy (2.6). Then M is reducible if and only

if the function λM can be represented in the form λM (μ′, μ′′) = λ′(μ′) ⊕ λ′′(μ′′), where at least two
variables occur in each of the tuples μ′, μ′′.

The following description of n-quasigroups of order 4 was obtained in [11].

Assertion 21. Each n-quasigroup of order 4 is either reducible or semilinear.
The proof of the main theorem is based on this description.

3. PROOF OF THE MAIN THEOREM

We use induction on the arity of a quasigroup. The induction hypothesis (IH) is as follows: For every
natural m with m ≤ n − 1, every pair of compatible m-quasigroups of order 4 is extendable.

By Proposition 1, assumption (IH) is equivalent to the following condition: For every natural m with
m ≤ n, the complement of each splittable 2-MDS-code in Σm is a splittable 2-MDS-code too.

In the following auxiliary propositions and lemmas, we assume that Σ = {0, 1, 2, 3} and each
quasigroup is of order 4.

From Assertions 14 and 21 and the definitions of semilinear quasigroups and MDS-codes we obtain
the following

Proposition 22. Assume that f is an irreducible n-quasigroup.

(a) Each retract f
∣∣
x1=a

, a ∈ Σ, is semilinear.

(b) For every a ∈ Σ, there exist two elements b ∈ Σ \ {a} such that the retracts f
∣∣
x1=b

and

f
∣∣
x1=a

are opposite and one element c ∈ Σ \ {a} such that the retracts f
∣∣
x1=c

and f
∣∣
x1=a

are isotopic, i.e., f
∣∣
x1=c

= τf
∣∣
x1=a

, where τ is a permutation.
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(c) The retracts f
∣∣
x1=a

and f
∣∣
x1=b

can be extended only to an irreducible n-quasigroup that is
isotopic to f if and only if the retracts are opposite to each other.

Proposition 23. Assume that semilinear MDS-codes M〈f〉 and M〈g〉 are disjoint and
the characteristics of linear 2-codes containing these codes coincide in no coordinate. Then either
M〈f〉 or M〈g〉 is linear.

Proof. The conditions of the proposition are equivalent to the following condition: There exist
a, b ∈ Σ \ {0}, a 
= b, such that the sets S0,a〈f〉 and S0,b〈g〉 are linear and consist of prime 2-codes
whose pairwise intersections are nonempty. Without loss of generality, we may assume that M〈f〉 is
contained in a linear 2-code of characteristic (1, 1, . . . , 1). Then a = 1 and the set S0,1〈f〉 consists

of pairwise disjoint prime codes of the form Sσ =
n⊗

i=1
{0, 1}σi , where σi ∈ {0, 1}, {0, 1}1 = {0, 1}, and

{0, 1}0 = {2, 3}.
Let b = 2 (the case in which b = 3 is similar). If f(S0,1〈f〉 ∩ S0,2〈g〉) = {1} then f is a linear n-

quasigroup. Assume that f is not linear and f
(
{0, 1}n ∩ S0,2〈g〉

)

= {1}. Since the characteristics of

the linear 2-codes coincide in no coordinate, the set P = {0, 1}n ∩ S0,2〈g〉 consist of either all even or all
odd boolean vectors. Hence, f is a constant function on P . We find that f(P ) = {0} and g(P ) = {2};
moreover, f

(
{0, 1}n \ P

)
= {1}. Hence, g

(
{0, 1}n \ P

)
= {3}. Therefore, S0,3〈g〉 is a linear 2-code. By

Assertion 15 (b, c), we conclude that g is a linear n-quasigroup.

Proposition 24. Let a semilinear MDS-code M ⊂ Σn satisfy (2.6). Assume that a semilinear
MDS-code M ′ ⊂ Σn is contained in a linear 2-code of characteristic (α1, . . . , αn), where α1 = 1,
αn−1 
= 1, and αn 
= 1. If M ∩ M ′ = ∅ then the function λM (μ) does not depend essentially on
the variables μn−1 and μn.

Proof. If n > 3 then we fix the values of the variables μi with i 
= 1, n − 1, n. Hence, we may assume
that n = 3. It suffices to check all possible cases.

The following proposition is immediate from Propositions 23 and 24 and Assertion 20.

Proposition 25. Consider two nonlinear disjoint MDS-codes. Assume that at least one of
them is irreducible. Then the characteristics of linear 2-MDS-codes containing these MDS-codes
either coincide of differ in one coordinate.

The following proposition is immediate from the definition of an irreducible n-quasigroup.

Proposition 26 (on four retracts). Let n ≥ 3 and let 2 ≤ m ≤ n − 1. Then every n-quasigroup
possessing only four different (n − m)-dimensional retracts is reducible.

Proposition 27. Let f and g be compatible n-quasigroups. Assume that one of the following
conditions holds:

(a) Sa,b〈f〉 = Σn \ Sa,b〈g〉,
(b) Sa,b〈f〉 = Sa,c〈g〉 for pairwise distinct a, b, c ∈ Σ.

Then f and g form an extendable pair of n-quasigroups. Moreover, if condition (b) holds then
g = σf for a suitable permutation σ.

Proof. Let {c, d} = Σ \ {a, b}.
(a) Put τ=(a, b)(c, d). The n-quasigroups f and g are extended to an (n + 1)-quasigroup by the n-

quasigroups τf and τg.
(b) It is easy to see that g = σf , where σ = (acdb). By the König–Hall Theorem [3], the identity

permutation Id and the permutation σ are extended to a Latin square by suitable permutations (for
example, by σ′ = (abdc) and σ′′ = (ad)(bc)). Hence, the n-quasigroups f and g are extended by the n-
quasigroups σ′f and σ′′f .

Proposition 28. Let M1,M2 ⊂ Σn+1 be (0, 1)-semilinear but not linear MDS-codes with

M1 ∩ (θ1, θ2, Id, . . . , Id)M2 = ∅, M1 ∩ (θ1, Id, . . . , Id)M2 = ∅,where
θ1 /∈ Ω =

{
Id, (0, 1), (2, 3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)

}
, θ2 
= Id.

Then M1 and M2 are isotopic and reducible.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 22 No. 2 2012



EXTENSIONS OF PARTIAL n-QUASIGROUPS 143

Proof. Let S be a linear 2-code containing the MDS-code M2. Then the characteristic of S
is (1, . . . , 1). Let ξ̄ be an isotopy. It is easy to see that the characteristic of ξ̄S is (1, . . . , 1) if and only if
ξi ∈ Ω for each i = 1, . . . , n + 1. By Proposition 25, we have θ2 ∈ Ω.

Consider the n-quasigroups

f = F1〈M1〉, g1 = F1

〈
(θ1, θ2, Id, . . . , Id)M2

〉
, g2 = F1

〈
(θ1, Id, . . . , Id)M2

〉
.

By Proposition 27 (b), we have g1 = σ1f and g2 = σ2f for suitable permutations σ1 and σ2 with σ1 
= σ2.
We obtain

χ
M1

(
σ−1

2 σ1x1, x2, x3, . . . , xn+1

)
≡ χ

M1
(x1, x2, x3, . . . xn+1). (3.1)

Since there exists a unique linear 2-code of characteristic (1, . . . , 1) containing M1, we have σ−1
2 σ1 ∈ Ω.

By (3.1), we have

λM1(x1 ⊕ 1, x2, . . . , xn+1) ≡ λM1(x1, x2, x3, . . . , xn+1).

Hence, the function λM1 is defined on boolean vectors of the same parity and essentially depends on n− 1
variables only. By Assertion 20, the MDS-code M1 is reducible.

Proposition 29. Let S ⊂ Σn+1 be a splittable 2-MDS-code and let χ
S

= χ
S1

⊕ χ
S2

, where S1

and S2 are 2-MDS-codes of lower dimensions. Then the 2-MDS-code S′ = Σn+1 \ S is splittable
too.

Proof. Let S1 ⊂ Σm and let S2 ⊂ Σn−m+1, 1 ≤ m ≤ n. Put S′
1 = Σm \ S1 and S′

2 = Σn−m+1 \ S2.
We have χ

S
= χ

S1
⊕ χ

S2
= χ

S′
1

⊕ χ
S′

2

. By Assertion 16, the 2-MDS-codes S1, S2, S′
1, and S′

2 are

splittable. It is obvious that χ
S′ = χ

S1
⊕ χ

S′
2

. By Assertion 16, the 2-MDS-code S′ is splittable too.

Proposition 30. Let

Ω =
{
Id, (0, 1), (2, 3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)

}

and let g and f be n-quasigroups. For every u ∈ Σn−1 and i ∈ [n], define a permutation ξi,u by
the equality g(zu) = ξi,uf(zu), where the variable z occurs in the i-th coordinate. If ξi,u ∈ Ω for all
u ∈ Σn−1 and i ∈ [n] then either S0,1〈f〉 = S0,1〈g〉 or S0,1〈f〉 = S2,3〈g〉.

Proof. Using induction, we prove that S0,1〈f〉 ∩ S0,1〈g〉 
= ∅ implies S0,1〈f〉 = S0,1〈g〉. If n = 1, 2
then it suffices to check all possible cases. Let n ≥ 3. Since no face of dimension n − 2 is disjoint from
the 2-MDS-code S0,1〈f〉, it remains to consider the hyperfaces of Σn.

Proposition 31. Let disjoint MDS-codes M1,M2 ⊂ Σn be defined by the equalities f1(x̃1) =
g1(x̃2) and f2(x̃1) = g2(x̃2), where the tuples x̃1 and x̃2 have no common variables. Let n1 ≥ 2.
Assume that one of the n1-quasigroups f1, f2 is (0, 1)-semilinear and the other is anti-(0, 1)-
semilinear. If (IH) holds then Σn+1 \ (M1 ∪ M2) is a splittable 2-MDS-code.

Proof. We have M0〈f1〉 ∪M1〈f1〉 = M2〈f2〉 ∪M3〈f2〉. Assume that, for every a ∈ Σ, there exists
τ(a) ∈ Σ with Ma〈f1〉 = Mτ(a)〈f2〉. Then τf1 = f2. By (IH) for g1 and τg2, we obtain the required
assertion.

Assume the contrary, i.e., let either

M0〈f1〉 ∩M2〈f2〉 
= ∅ and M0〈f1〉 ∩M3〈f2〉 
= ∅

or (by symmetry)

M2〈f1〉 ∩M0〈f2〉 
= ∅ and M2〈f1〉 ∩M1〈f2〉 
= ∅.

Let the first condition hold. We have

M1〈f1〉 ∩M2〈f2〉 
= ∅, M1〈f1〉 ∩M3〈f2〉 
= ∅.

Since M1 ∩ M2 = ∅, we obtain

M0〈f1〉 ∩M2〈f2〉 
= ∅ ⇒ M0〈g1〉 ∩M2〈g2〉 = ∅,

M0〈f1〉 ∩M3〈f2〉 
= ∅ ⇒ M0〈g1〉 ∩M3〈g2〉 = ∅,
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M1〈f1〉 ∩M2〈f2〉 
= ∅ ⇒ M1〈g1〉 ∩M2〈g2〉 = ∅,

M1〈f1〉 ∩M3〈f2〉 
= ∅ ⇒ M1〈g1〉 ∩M3〈g2〉 = ∅.

We conclude that S0,1〈g1〉 = S0,1〈g2〉. Therefore, the MDS-code
{
(x̃1, x̃2) : f1(x̃1) = τg1(x̃2)

}
, where τ = (0, 1)(2, 3),

is disjoint from the MDS-codes M1 and M2.

Proposition 32. If f and g are compatible and irreducible n-quasigroups then they form
an extendable pair.

Proof. By Assertion 21 and Proposition 25, the n-quasigroups f and g are semilinear; moreover,
the characteristics of 2-MDS-codes containing the MDS-codes M〈f〉 and M〈g〉 either coincide
or differ in exactly one coordinate. The required assertion follows from either Proposition 27 (a) or
Proposition 27 (b).

Proposition 33. Assume that an n-quasigroup f is not anti-(0, 1)-semilinear. Then at most
one (0, 1)-semilinear n-quasigroup g is compatible with f .

Proof. Let g be a (0, 1)-semilinear n-quasigroup. Assume that S′ ⊂ S01〈g〉 \ S01〈f〉, where S′ is
a 2-code. By Assertion 17, we have S01〈f〉 = Σn \ S01〈g〉, i.e., the n-quasigroup f is anti-(0, 1)-
semilinear, a contradiction. Hence, no prime 2-code S′ with S′ ⊂ S01〈g〉 is disjoint from S01〈f〉. If an n-
quasigroup g is compatible with f , then the values of g on S′ are uniquely determined. By Assertion 18,
there exists a unique partition of S01〈g〉 into prime codes. Hence, the values of g on S01〈g〉 are uniquely
determined. By similar arguments, the values of g on S23〈g〉 are uniquely determined too.

Lemma 34. Let a reducible n-quasigroup f be compatible with a semilinear n-quasigroup g,
n ≥ 3. Then either g is reducible or f is semilinear and opposite to g.

Proof. Without loss of generality, we may assume that f is an n-quasigroup of the form f(x, y) ≡
f ′(x, f ′′(y)

)
, where f ′ is an n1-quasigroup, f ′′ is an irreducible n2-quasigroup, n1 + n2 = n + 1, and

1 < n2 < n (see Assertions 1 and 6). Moreover, we may assume that f ′′(00) = 0 and f ′′(10) = 1. To
simplify the arguments, we assume without loss of generality that g is a (0, 1)-semilinear n-quasigroup.
Consider the retracts f ′

a = f ′∣∣
xn1=a

, a ∈ Σ. By Assertion 19 (on a linear anti-layer), three cases are

possible:

(1) there are no (0, 1)-semilinear and no anti-(0, 1)-semilinear retracts,
(2) there is exactly one (0, 1)-semilinear retract and exactly one anti-(0, 1)-semilinear retract,
(3) there are two (0, 1)-semilinear retracts and two anti-(0, 1)-semilinear retracts.

We consider each of these cases.
(1) Assume that the number of different retracts of the form g

∣∣
y=v

, v ∈ Σn2 , is greater than four.

By Assertion 14 (b), each of these retracts is either (0, 1)-semilinear or anti-(0, 1)-semilinear. We may
assume that there exist at least three different (0, 1)-semilinear retracts of the form g

∣∣
y=v

(the case

of three anti-(0, 1)-semilinear retracts is similar). Put τ = (0, 1)(2, 3). Let v ∈ Σn2 and let g
∣∣
y=v

be

(0, 1)-semilinear. Since g is (0, 1)-semilinear, there exists u ∈ Σn2 such that g
∣∣
y=u

is (0, 1)-semilinear

and g
∣∣
y=v

= τg
∣∣
y=u

. This equality holds if the tuples v and u differ in exactly one coordinate. Hence,

the number of different (0, 1)-semilinear retracts of the form g
∣∣
y=v

is even. By Proposition 33, each

of the four (n1 − 1)-quasigroups f ′
a, a ∈ Σ, is compatible with at most one (0, 1)-semilinear retract.

Hence, there exists exactly four different (0, 1)-semilinear retracts of the form g
∣∣
y=v

; moreover, there

exists a one-to-one correspondence between these retracts and the retracts f ′
a, a ∈ Σ. For every

(0, 1)-semilinear n-quasigroup g, there exist only two different retracts of the form g
∣∣
y=v

, v ∈ {0, 1}n2 .
The permutation τ takes each of them into the other one. Hence, there exist only two different retracts of
the form f

∣∣
y=v

, v ∈ {0, 1}n2 , i.e., the n2-quasigroup f ′′ takes only two values on the set v ∈ {0, 1}n2 . By

Assertion 17, the n2-quasigroup f ′′ is (0, 1)-semilinear. Indeed, it suffices to notice that f ′′(00) = 0 and
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f ′′(10) = 1. We have f ′′(v) ∈ {0, 1} if and only if the retract g
∣∣
y=v

is (0, 1)-semilinear. Therefore, every

(0, 1)-semilinear retract of the form g
∣∣
y=v

, v ∈ Σn2 , is compatible with either f ′
0 or f ′

1. By Proposition 33,

there exist exactly two different (0, 1)-semilinear retracts of the form g
∣∣
y=v

. We arrive at a contradiction.

Hence, there exist only four different retracts of the form g
∣∣
y=v

, v ∈ Σn2 . By Proposition 26 (on four
retracts), we obtain the required assertion.

(2) Assume that f ′
0 is (0, 1)-semilinear and f ′

2 is anti-(0, 1)-semilinear (the remaining cases are
similar). Consider the four retracts of the form g′a = g

∣∣
y=a0

, a ∈ Σ. By Assertion 14 (b), the retracts g′0
and g′1 are (0, 1)-semilinear and the retracts g′2 and g′3 are anti-(0, 1)-semilinear. The retract f ′

1 is
compatible with the (0, 1)-semilinear (n1 − 1)-quasigroups g′1 and f ′

0. By Proposition 33, we have
g′1 = f ′

0. The proof of the equality g′3 = f ′
2 is similar. Since g is a (0, 1)-semilinear n-quasigroup, we

have g′0 = τg′1 = τf ′
0 and g′2 = τg′3 = τf ′

2. Similar arguments are valid for every tuple u ∈ Σn2−1 and
the retracts g

∣∣
y=au

, a ∈ Σ. Hence, there exist only four different retracts of the form g
∣∣
y=au

. Each of

these retracts coincides with one of the (n1 − 1)-quasigroups f ′
0, f ′

2, τf ′
0, τf ′

2. By Proposition 26 (on
four retracts), the n-quasigroup g is reducible.

(3) Assume that, for every v ∈ Σn2 , the retract g
∣∣
y=v

is (0, 1)-semilinear and the retract f
∣∣
y=v

is anti-

(0, 1)-semilinear. Then f is opposite to g; hence, f is semilinear. Otherwise, there exists v ∈ Σn2 such
that the retracts g

∣∣
y=v

and f
∣∣
y=v

are (0, 1)-semilinear. Without loss of generality, we may assume that

v = 00. We have

τg
∣∣
y=10

= g
∣∣
y=00

= τf
∣∣
y=00

, i.e., g
∣∣
y=10

= f
∣∣
y=00

= f ′
0.

We conclude that {g′0, g′1, g′2, g′3} = {f ′
0, f

′
1, f

′
2, f

′
3}. By Assertion 17, no prime subcode of the 2-MDS-

code S0,1

〈
g
∣∣
x=0

〉
is disjoint from the set S0,1

〈
f
∣∣
x=0

〉 (
the case in which S0,1

〈
f
∣∣
x=0

〉
= Σn \ S0,1

〈
g
∣∣
x=0

〉
was considered above

)
. Similar arguments show that every prime 2-subcode of S0,1

〈
g
∣∣
x=0

〉
contains

v ∈ Σn2 such that the retract g
∣∣
y=v

coincides with one of the four (n1 − 1)-quasigroups f ′
0, f ′

1, f ′
2, f ′

3.
The same conclusion is valid for every v ∈ Σn2 . Indeed, if v ∈ Σn2 and v belongs to a prime 2-subcode of
S0,1

〈
g
∣∣
x=0

〉
then there exist only two different retracts of the form g

∣∣
y=v

. The permutation τ takes them
into each other. By Proposition 26 (on four retracts), the n-quasigroup g is reducible.

Proposition 35. Let f and g be reducible and compatible n-quasigroups and let

f(x) ≡ f0

(
q1(x̃1), . . . , qm(x̃m)

)
,

g(x) ≡ g0

(
q′1(x̃

′
1), . . . , q

′
m′(x̃′

m′)
)
,

where f0 and g0 are irreducible quasigroups, m ≥ 3, m ≥ m′, and {Ij}j=1,...,m and {I ′j}j=1,...,m′ are
distinct partitions of [n]. Let f0 be a (0, 1)-semilinear m-quasigroup and let τ = (01)(23). Then
g(x) 
= τf(x) for every x ∈ Σn, i.e., f and g form an extendable pair of n-quasigroups.

Proof. In [n], we choose m numbers ij such that, for every j ∈ [m], we have ij ∈ Ij and some sets
of the form I ′j are not singletons. Without loss of generality, we may assume that [m] is the required col-
lection of numbers. Let y = (x1, . . . , xm) and let z = (xm+1, . . . , xn). By construction, the retract f

∣∣
z=u

is irreducible and the retract g
∣∣
z=u

is reducible for every u ∈ Σn−m. By Assertion 14 (b), S0,1

〈
f
∣∣
z=u

〉
is

a linear 2-code. By Lemma 34, we have

S0,1

〈
f
∣∣
z=u

〉
= Σm \ S0,1

〈
g
∣∣
z=u

〉
for every u ∈ Σn−m.

We conclude that

S0,1〈τf〉 = S0,1〈f〉 = Σn \ S0,1〈g〉.

By Assertion 2 (a), the n-quasigroups f and g form an extendable pair.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 22 No. 2 2012



146 POTAPOV

Proposition 36. Let disjoint MDS-codes M1 = M〈f〉 and M2 = M〈g〉 admit canonical repre-
sentations

qm+1

(
xn+1, x̃m+1

)
= q0

(
q1(x̃1), . . . , qm(x̃m)

)
,

q′m′+1

(
xn+1, x̃

′
m′+1

)
= q′0(q

′
1

(
x̃′

1), . . . , q
′
m′(x̃′

m′)
)
,

where m ≥ m′ ≥ 3 and the partitions {Ij}j=1,...,m+1 and {I ′j}j=1,...,m′+1 of [n] are distinct. If (IH)
holds then f and g form an extendable pair.

Proof. By Assertion 21, each irreducible m-quasigroup is semilinear; hence, it is equivalent to
a suitable (0, 1)-semilinear m-quasigroup. Without loss of generality, we may assume that q0 is a (0, 1)-
semilinear m-quasigroup.

Let τ denote the permutation (01)(23) and let N denote the set of solutions of the equation

qm+1

(
xn+1, x̃m+1

)
= τq0

(
q1(x̃1), . . . , qm(x̃m)

)
. (3.2)

Then N ⊂ Σn+1 and N is an MDS-code.
We fix the values of the variables x̃m+1, i.e., put x̃m+1 = ũ. By the definition of a canonical represen-

tation, the lengths of the tuples x̃m+1 and x̃′
m′+1 are minimal. Hence, the retracts Fn+1〈M1〉

∣∣
exm+1=eu

and Fn+1〈M2〉
∣∣
exm+1=eu

satisfy the conditions of Proposition 35. We conclude that the MDS-codes

M1

∣∣
exm+1=eu

, M2

∣∣
exm+1=eu

, and N
∣∣
exm+1=eu

are pairwise disjoint. Since the tuple ũ of values is arbitrary,

from Assertion 2 (a) we obtain the required assertion.

The proof of the following proposition is similar to that of Proposition 36.

Proposition 37. Let f and g be n-quasigroups. Assume that f is not completely reducible, g
is completely reducible, and (IH) holds. If f and g are compatible then they form an extendable
pair.

Proposition 38. Let f and g be reducible and compatible n-quasigroups. Assume that m ≥ 4
and

M〈f〉 =
{
x ∈ Σn+1 : q1(x̃1) = f0

(
q2(x̃2), . . . , qm(x̃m)

)}
,

M〈g〉 =
{

x ∈ Σn+1 : q′1(x̃1) = g0

(
q′2(x̃2), . . . , q′m(x̃m)

)}
,

(3.3)

i.e., the canonical representations of these quasigroups correspond to the same partition of
the set of variables. If (IH) holds then f and g form an extendable pair.

Proof. If each x̃i, i = 1, . . . ,m, is a singleton tuple then the required assertion is immediate from
Proposition 32.

Varying the quasigroups qi in (3.3), we preserve the set M〈f〉 and transform the (m − 1)-quasi-
group f0 into an arbitrary isotopic (m − 1)-quasigroup. Hence, we may assume that the m-quasi-
groups f0 and g0 are (0, 1)-semilinear, i.e., we have

M〈f0〉,M〈g0〉 ⊂ S, where χ
S
(y) = 1 ⊕

m⊕
i=1

χ{0, 1}(yi).

Without loss of generality, we may assume that the variable xi occurs in x̃i for each i = 1, . . . ,m. To
simplify the arguments of the proof of the proposition, the variable x1 plays the role of the distinguished
variable xn+1 in the canonical decomposition.

We fix the values of the variables xm+1, . . . , xn+1. Assume that there exist i ∈ [m] and u ∈ Σni−1

with qi(zu) = ξq′i(zu), where

ξ /∈ Ω =
{
Id, (0, 1), (2, 3), (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)

}

and z may occur in every coordinate. If qj 
= σq′j for suitable j ∈ [m] \ {i} and permutation σ then the m-
quasigroups f0 and g0 are reducible by Proposition 28. We arrive at a contradiction.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 22 No. 2 2012



EXTENSIONS OF PARTIAL n-QUASIGROUPS 147

If qj is a 1-quasigroup for every j ∈ [m] with j 
= i then the required assertion is immediate from
Proposition 31. Let qj = σq′j and let the quasigroup qj depend essentially on at least two variables. We
replace coinciding functions qj in (3.3) by a new variable. We obtain MDS-codes of lower dimensions;
hence, we may use (IH). Replacing the new variable by qj , we obtain the required assertion.

Let

χ
eS
(x) = 1 ⊕

m⊕
j=1

χ{0, 1}
(
qj(x̃j)

)
.

It is clear that S̃ is a 2-MDS-code and M〈f〉 ⊂ S̃. For every i ∈ [m] and tuple u ∈ Σni−1, we define
a permutation ξ by the equality qi(zu) = ξq′i(zu). If ξ ∈ Ω for all i ∈ [m] and u ∈ Σni−1 then, by
Proposition 30, we find either

χ{0, 1}
(
qj(x̃j)

)
= χ{0, 1}

(
q′j(x̃j)

)
or χ{0, 1}

(
qj(x̃j)

)
= 1 ⊕ χ{0, 1}

(
q′j(x̃j)

)
.

We conclude that either M〈g〉 ⊂ S̃ or M〈g〉 ⊂ Σn+1 \ S̃. By Proposition 29 and (IH), the 2-MDS-
codes S̃ and Σn+1 \ S̃ are splittable. By Assertion 1, we obtain the required assertion.

Proposition 39. Let disjoint MDS-codes M1,M2 ⊂ Σn be defined by the equalities

ϕ1(x1, x2) = f1(x3, . . . , xn+1) and ϕ2(x1, x2) = f2(x3, . . . , xn+1),

where n ≥ 4. If (IH) holds then Σn+1 \ (M1 ∪ M2) is a splittable 2-MDS-code.

Proof. We check possible pairs of 2-quasigroups ϕ1, ϕ2. We distinguish four cases.

(1) The MDS-codes C1
a = Ma〈ϕ1〉 and C2

b = Mb〈ϕ2〉 are disjoint for no (a, b) ∈ Σ2.

(2) There exists a permutation π such that the MDS-codes C1
a and C2

b are disjoint if and only if
b = π(a).

(3) There exists a permutation π such that the MDS-codes C1
a and C2

b are disjoint if and only if
b 
= π(a).

(4) The quasigroups ϕ1 and ϕ2 are opposite but not equivalent.

Case (1) is impossible because the MDS-codes M1 and M2 are disjoint.
In case (2), we have f2 = πf1 because the MDS-codes M1 and M2 are disjoint. We transform

the equality defining M2 so that the occurrence of the permutation π is on the left-hand side. We find
that M2 is defined by the equality πϕ2(x1, x2) = f1(x3, . . . , xn+1). The required assertion reduces to
existence of extensions for compatible 2-quasigroups.

In case (3), we have ϕ1 = τϕ2 for a suitable permutation τ . The required assertion reduces to
existence of extensions for compatible (n − 1)-quasigroups.

In case (4), the required assertion follows from Proposition 31.

Proposition 40.

(a) Let an MDS-code M ⊂ Σn+1 be completely reducible. Then, for every i ∈ [n + 1], the re-
tracts M

∣∣
xi=a

, a ∈ Σ, possess a common pair of inner variables.

(b) Let an MDS-code M ⊂ Σn+1 be reducible but not completely reducible. If, for some i ∈
[n + 1], the retracts M

∣∣
xi=a

and M
∣∣
xi=b

with a, b ∈ Σ are completely reducible then M
∣∣
xi=a

and M
∣∣
xi=b

possess a common pair of inner variables.

Proof. (a) By Proposition 9, every completely reducible MDS-code of dimension at least 4 possesses
at least two pairs of inner variables. By Proposition 11, if xi does not occur in a pair of inner variable with
respect to M then this pair is inner for M

∣∣
xi=a

, a ∈ Σ.

(b) By Corollary 5, an equation of the form

q1(x̃1) = q0

(
q2(x̃2), . . . , qm(x̃m)

)

SIBERIAN ADVANCES IN MATHEMATICS Vol. 22 No. 2 2012



148 POTAPOV

defines M , where q0 is an irreducible (m− 1)-quasigroup and m ≥ 4. Without loss of generality, we may
assume that at least two variables occur in x̃1. Since the retract is completely reducible, the variable xi

does not occur in x̃1; moreover, the quasigroup q1 is either completely reducible or binary. Hence, no
retract with respect to a variable occurring in x̃1 is completely reducible and retracts with respect to
other variables preserve pairs of inner variables with respect to q1.

Proposition 41. Let completely reducible MDS-codes M1,M2 ⊂ Σn+1, n ≥ 5, be disjoint and
let

M1 =
{
(x̃1, x̃2)

∣∣ f1(x̃1) = g1(x̃2)
}
,

M2 =
{
(x̃1, x̃2)

∣∣ f2(x̃1) = g2(x̃2)
}
,

where at least two variables occur in each of the tuples x̃1, x̃2. If (IH) holds then Σn+1 \ (M1 ∪M2)
is a splittable 2-MDS-code.

Proof. If either f1 and f2 or g1 and g2 possess a common pair of inner variables then the required
assertion is immediate from Proposition 39. Otherwise, at least three variables occur in each of
the tuples x̃1, x̃2. Without loss of generality, we may assume that g1(0xn+1) = g2(0xn+1) = xn+1.
Consider the MDS-codes

M ′
1 =

{
(x̃1, y)

∣∣ f1(x̃1) = y
}
, M ′

2 =
{
(x̃1, y)

∣∣ f2(x̃1) = y
}
.

We have M ′
1 ∩ M ′

2 = ∅; moreover, M ′
1 and M ′

2 possess no common pair of inner variables of
the form {xi, xj}. Without loss of generality, we may assume that no common pair of the form {xi, y}
exists (if necessary, exchange f and g). By (IH), the quasigroups f1 and f2 form an extendable pair. By
Proposition 40, they can be extended to an irreducible quasigroup only. By Propositions 22 (c) and 31,
we obtain the required assertion.

Proposition 42. Assume that completely reducible n-quasigroups f and g are compatible
and, for every a ∈ Σ, the pair of retracts f

∣∣
x1=a

and g
∣∣
x1=a

can be extended to irreducible n-
quasigroups only. If (IH) holds then f and g form an extendable pair.

Proof. By Assertion 19 (on a linear anti-layer) and Proposition 22, the retracts f
∣∣
x1=a

and g
∣∣
x1=a

are semilinear and opposite to each other for every a ∈ Σ. At least one of f
∣∣
x1=a

, g
∣∣
x1=a

is nonlinear, for
otherwise the pair can be extended to a reducible n-quasigroup.

If the retract f
∣∣
x1=b

of a completely reducible n-quasigroup f is linear then, for every a ∈ Σ,

the retract f
∣∣
x1=a

is linear too. Hence, without loss of generality, we may assume that, for every a ∈ Σ,

the retract f
∣∣
x1=a

is semilinear but not linear.

Consider the characteristics of linear 2-codes containing the retracts M
〈
f
∣∣
x1=a

〉
, a ∈ Σ. By As-

sertion 19, opposite retracts are contained in linear 2-codes of the same characteristic. If retracts are
not opposite to each other then some coordinates of their characteristics coincide, for otherwise one of
these retracts is linear, see Proposition 23. Without loss of generality, we may assume that the (n + 1)-
th coordinates of the characteristics coincide, i.e., the sets S0,1

〈
f
∣∣
x1=a

〉
are linear. Since M

〈
f
∣∣
x1=a

〉
is

a nonlinear retract, the set S0,b

〈
f
∣∣
x1=a

〉
is nonlinear for b = 2, 3 and every a ∈ Σ, see Assertion 15.

By Proposition 22 (c), we have S0,1〈f〉 = Σn \ S0,1〈g〉 because the pairs of retracts are extended to
irreducible n-quasigroups only. The required assertion follows from Proposition 27 (a).

Lemma 43. Let completely reducible MDS-codes M1,M2 ⊂ Σn+1, n ≥ 5, be disjoint and let
I(M1) ∩ I(M2) = ∅. If (IH) holds then Σn+1 \ (M1 ∪ M2) is a splittable 2-MDS-code.

Proof. If I
(
M1

∣∣
xi=a

)
∩ I

(
M2

∣∣
xi=a

)
= ∅ for some i ∈ [n + 1] and all a ∈ Σ then M1

∣∣
xi=a

and

M2

∣∣
xi=a

cannot be obtained from a reducible MDS-code by a retraction with respect to one variable,
see Proposition 40. In this case, the required assertion follows from (IH) and Proposition 42. Assume
the contrary. Let (∗) denote the corresponding assumption. We consider two possible cases:

(1) xt ∈ Ĩ(M1) ∩ Ĩ(M2),

(2) Ĩ(M1) ∩ Ĩ(M2) = ∅.
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In the first case, let M ′
i = Mi

∣∣
xt=a

and {xp, xq} ∈ I(M ′
1) ∩ I(M ′

2). If

{xp, xq} ∈
(
I(M ′

1) \ I(M1)
)
∩

(
I(M ′

2) \ I(M2)
)

(i.e., the pair {xp, xq} is inner for none of M1, M2) then, by Proposition 13, the MDS-codes M1 and M2

are defined by equalities of the form g1(xp, xq, xt) = f1(y) and g2(xp, xq, xt) = f2(y). The required
assertion follows from Proposition 41.

If

{xp, xq} /∈
(
I(M ′

1) \ I(M1)
)
∩

(
I(M ′

2) \ I(M2)
)

then either

{xp, xq} ∈ I(M1) ∩
(
I(M ′

2) \ I(M2)
)

or the symmetric condition holds. By Proposition 13, we have either {xt, xq} ∈ I(M2) or {xt, xp} ∈
I(M2). Without loss of generality, we may assume that {xt, xq} ∈ I(M2).

Let c ∈ Σ be an arbitrary element. If xp ∈ Ĩ(M2) then, by Proposition 12 (a), we have I
(
M2

∣∣
xp=c

)
⊂

I(M2). By Proposition 13, the variable xq occurs in every pair of I
(
M1

∣∣
xp=c

)
\ I(M1). By (∗), there

exists b ∈ Σ such that the retracts M2

∣∣
xp=b

and M1

∣∣
xp=b

possess a common pair of inner variables. By

the above, this pair is {xt, xq}, see Fig. 2. By Proposition 13, the MDS-codes M1 and M2 are defined
by equalities of the form g1(xp, xq, xt) = f1(y) and g2(xp, xq, xt) = f2(y). The required assertion follows
from Proposition 41.

If xp /∈ Ĩ(M2) then I
(
M2

∣∣
xq=c

)
\ I(M2) =

{
{xp, xt}

}
in view of Proposition 13. As above, the com-

mon inner pair for M2

∣∣
xq=c

and M1

∣∣
xq=c

is {xp, xt}. The required assertion follows from Propositions 13

and 41.
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We now turn to the second case. In S = Ĩ(M1), we find an extreme variable xs with respect to
the tree T (M2). Let M ′′

i = Mi

∣∣
xs=b

, b ∈ Σ, and let {xp, xq} ∈ I(M ′′
1 ) ∩ I(M ′′

2 ). Since xs is an extreme
variable in S, from Proposition 12 (c) it follows that {xp, xq} /∈ I(M1). By Proposition 13, we obtain

{xp, xs} ∈ I(M1)
(
or {xq, xs} ∈ I(M1)

)
. We have xq /∈ Ĩ(M1), for otherwise xp, xq ∈ S, which con-

tradicts the fact that xs is an extreme variable. Put M ′′′
i = Mi

∣∣
xp=c

. By Proposition 13, there exists

a unique pair of I(M ′′′
1 ) containing xs; namely, {xq, xs}, see Fig. 3. By Proposition 12 (b), we have

{xq, xs} /∈ I(M ′′′
2 ) \ I(M2) but the variable xs /∈ Ĩ(M2) occurs in every pair of I(M ′′′

2 ) \ I(M2). Hence,
I(M ′′′

2 ) ∩ I(M ′′′
1 ) = ∅. Since b is an arbitrary element of Σ, we arrive at a contradiction.
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We turn to the proof of the main theorem. We use induction on n. For n = 1, 2, 3, it suffices to
check all possible cases, see [9]. For n = 4, a computer-assisted proof exists. Assume that the required
assertion is valid for every natural m with m < n, where n ≥ 5.

(1) Assume that f and g are compatible n-quasigroups and at least one of them admits an irreducible
retract of arity at least 3.

(1a) If f and g are irreducible then is suffices to use Proposition 32.
If f admits an irreducible retract of arity m, n > m > 2, then, by Corollary 5, the MDS-code M(f)

admits a canonical representation

qm+1(xn+1, x̃m+1) = q0

(
q1(x̃1), . . . , qm(x̃m)

)
,

where {Ij}j=1,...,m+1 is a partition of the set of variables.
Let the MDS-code M〈g〉 admit a canonical representation

q′m′+1

(
xn+1, x̃

′
m′+1

)
= q′0

(
q′1(x̃

′
1

)
, . . . , q′m′

(
x̃′

m′)
)
,

where {I ′j}j=1,...,m′+1 is a partition of the set of variables and n > m′ > 2.

(1b) If the partitions {Ij}j=1,...,m+1 and {I ′j}j=1,...,m′+1 of [n] are distinct then we use Proposi-
tion 36.

(1c) If the partitions {Ij}j=1,...,m+1 and {I ′j}j=1,...,m′+1 of [n] coincide then we use Proposition 38.

(1d) If g is a completely reducible n-quasigroup then we use Proposition 37.

(2) Let M〈f〉 and M〈g〉 be completely reducible MDS-codes. If I
(
M〈f〉

)
∩ I

(
M〈g〉

)
= ∅ then

the required assertion follows from Lemma 43; otherwise, it is immediate from Proposition 39.
This completes the proof of the theorem. �
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