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Abstract
We prove that the logarithm of the number of binary n-variable bent functions is asymptot-
ically less than 11

322
n as n → ∞. We also prove an asymptotic upper bound on the number

of s-plateaued functions.
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1 Introduction

Bent functions are maximally nonlinear Boolean functions with an even number of variables
and are optimal combinatorial objects. In cryptography, bent functions are used in block
ciphers.Moreover, bent functions havemany theoretical applications in discretemathematics.
Full classification of bent functions would be useful for combinatorics and cryptography.
But constructive classifications and enumerations of bent functions in n variables are likely
impossible for large n. The numbers of n-variable bent functions are only known for n ≤ 8.
There exist 8 bent functions for n = 2, 896 for n = 4, approximately 232.3 for n = 6
and 2106.3 for n = 8 [8]. Thus, lower and upper asymptotic bounds of the number of bent
functions are very interesting (see [10, Chapter 4.4], [18, Chapter 13]).

Currently, there exists a drastic gap between the upper and lower bounds on the number of
bent functions. LetN (n) = log2 |B(n)|, where B(n) is the set of Boolean bent functions in n
variables. New asymptotic lower bounds on the number of bent functions is recently proven
in the binary case [14] and in the case of finite fields of odd characteristic [15]. In the binary
case it is N (n) ≥ 3n

4 2
n/2(1 + o(1)) as n is even and n → ∞. This bound is slightly better

than the boundN (n) ≥ n
2 2

n/2(1+ o(1)) based on the Maiorana–McFarland construction of
bent functions. It is well known (see e.g. [2, 4, 10]) that the algebraic degree of a binary bent

function in n variables is not greater than n/2. Therefore,N (n) ≤
n/2∑

i=0

(n
i

) = 2n−1 + 1
2

( n
n/2

)
.

There are some nontrivial upper bounds of |B(n)|. But, bounds from [3] and [1] are of the
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same type N (n) ≤ 2n−1(1 + o(1)) up to the asymptotic of logarithm. An upper bound
N (n) ≤ 3

4 · 2n−1(1 + o(1)) is proven in [12]. In this paper we improved latter bound and
obtained that N (n) < 11

16 · 2n−1(1 + o(1)) (Theorem 2). Note that Tokareva’s conjecture
(see [17] and [10]) on the decomposition of Boolean functions into sums of bent functions
implies that N (n) ≥ 1

22
n−1 + 1

4

( n
n/2

)
.

The new bound mentioned above is asymptotic. One can use the proposed method to find
a non-asymptotic upper bound on the number of bent functions. But for the fixed n = 6
and n = 8 such bound is greater than 11

32 · 2n approximately twice. The main reason of this
difference lies in the cardinality of the middle layer of the n-dimensional Boolean cube. This
cardinality is asymptotically negligible, but that is not in the case for n = 6 and n = 8.

The new upper bound on the number of bent functions is based on new asymptotic upper
bound on the number of s-plateaued Boolean functions in n variables. s-Plateaued functions
are a generalization of bent functions which are the same as 0-plateaued functions. Plateaued
functions can combine important cryptographic properties of nonlinearity and correlation
immunity (see e.g. [6]). Let N (n, s) be the logarithm of the number of such functions. In
Theorem 1 (a) we prove that

N (n, s) ≤
(

b

(

n − 2,

⌈
n − s

2

⌉

+ 1

) (

1 + 3

8
log 6

)

+ 2n−2
(

�

(
1

2s

)

+ 1

2s

))

(1+o(1))

as n → ∞, where � is Shannon’s entropy function and b(n, r) is the cardinality of balls with
radius r in the n-dimensional Boolean cube. This bound is not tight but sufficient to disprove
the following conjecture on derivatives of bent functions. Tokareva (see [19, 21]) conjectured
that each balanced Boolean function f in an even number of variables n of algebraic degree
at most n/2− 1 is a derivative of some bent function if f (x) = f (x ⊕ y) for every vector x
and some nonzero vector y. It is true for n ≤ 6 [21, Theorem 4] but based on Theorem 1 (b)
it is proved that this conjecture is false when n is large enough (see [16]).

Themethodof proving the above bounds implies a storage algorithm for bent and plateaued
functions. Essentially we calculate the number of bits needed to define all the values of the
function. A quantity of bits required by the algorithm is equal to the corresponding upper
boundN (n, s). In practiceweneed bent and plateaued functionswith some special properties.
See, for example, some recent constructions from [5, 9] and [22]. Therefore, methods of
compact storage of n-variable bent and plateaued functions may be useful for large n.

2 Fourier transform

Let F = {0, 1}. The set Fn is called a Boolean hypercube (or a Boolean n-cube). Fn equipped
with coordinate-wise modulo 2 addition ⊕ can be considered as an n-dimensional vector
space. Functions φx (y) = (−1)〈x,y〉 are called characters. Here 〈x, y〉 = x1y1⊕· · ·⊕xn yn is
the inner product. Let G be a function that maps from the Boolean hypercube to real numbers.
The Fourier transform ofG is defined by the formula Ĝ(y) = (G, φy) = ∑

x∈Fn
G(x)(−1)〈x,y〉,

i.e., Ĝ(y) are the coefficients of the expansion of G with respect to the basis of characters.
We can define the Walsh–Hadamard transform of a Boolean function f : F

n → F by the

formula W f (y) = (̂−1) f (y), i.e.,

W f (y) =
∑

x∈Fn

(−1) f (x)⊕〈x,y〉.
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A Boolean function b is called a bent function if Wb(y) = ±2n/2 for all y ∈ F
n . So,

Wb = 2n/2(−1)g for some Boolean function g. It is well known (see e.g. [2, 10]) that g is
also a bent function and Wg = 2n/2(−1)b. Such bent functions b and g are called dual. It
is easy to see that n-variable bent functions exist only if n is even. A Boolean function p is
called an s-plateaued function if Wp(y) = ±2(n+s)/2 or Wp(y) = 0 for all y ∈ F

n . So, bent
functions are 0-plateaued functions. 1-Plateaued functions are called near-bent.

From Parseval’s identity
∑

y∈Fn

Ĥ2(y) = 2n
∑

x∈Fn

H2(x),

where H : F
n → R, it follows straightforwardly:

Proposition 1 For every s-plateaued function, a part of nonzero values of its Walsh–
Hadamard transform is equal to 1

2s .

It is well known (see e.g. [2],[20]) that for any function H , G : F
n → R it holds

Ĥ ∗ G = Ĥ · Ĝ and ̂(Ĥ) = 2n H ,

where H ∗ G(z) = ∑

x∈Fn
H(x)G(z ⊕ x) is a convolution. Consequently, it holds

2n H ∗ G = ̂̂H · Ĝ and Ĥ ∗ Ĝ = 2n Ĥ · G. (1)

Let � be a subspace of the hypercube.
Denote by �⊥ a dual subspace, i.e., �⊥ = {y ∈ F

n : ∀x ∈ �, 〈x, y〉 = 0}. Let 1S

be an indicator function for S ⊂ F
n . It is easy to see that for every subspace � it holds

1̂�⊥ = 2n−dim �1� . By (1) we have

H ∗ 1�⊥ = 2−dim � ̂̂H · 1� (2)

for any subspace � ⊂ F
n . When we substitute vector a ∈ F

n in (2) we obtain
∑

x∈a⊕�⊥
H(x) = 2−dim �

∑

y∈�

Ĥ(y)(−1)y⊕a . (3)

Denote by supp(G) = {x ∈ F
n : G(x) �= 0} the support of G. Without any confusion,

we will consider the support of a real-valued function as a Boolean function. We need the
following known property of bent functions (see e.g. [10]).

Proposition 2 Let f be an n-variable bent function and let � be a hyperplane obtained by
fixing one coordinate to 0. Consider h = f · 1� as an (n − 1)-variable function. Then h is a
1-plateaued function.

Proof By the definition we have 2n/2(−1) f = (̂−1)g , where a bent function g is dual of f .
By (2)

2
n
2 −1(−1)g ∗ 1�⊥ = ̂(−1) f · 1�.

For a nonzero a ∈ �⊥ and any x ∈ � we obtain

(−1)g ∗ 1�⊥(x) = (−1)g(x) + (−1)g(x ⊕ a) = ±2 or 0.

Then ̂(−1) f · 1�(x) = ±2
(n−1)+1

2 or 0. It is easy to see that (̂−1)h(x) = ̂(−1) f · 1�(x) =
̂(−1) f · 1�(x ⊕ a). Consequently, h is a 1-plateaued function by the definition. ��
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Proposition 3 Suppose that f and g are Boolean functions in n variables. For any subspace
� ⊂ F

n if W f |� = Wg|� then
∑

x∈z⊕�⊥
(−1) f (x) = ∑

x∈z⊕�⊥
(−1)g(x) for any z ∈ F

n.

Proof It follows from (2). Indeed it holds (̂−1) f · 1� = (̂−1)g · 1� by the conditions of the
lemma.Then (−1) f ∗1�⊥ = (−1)g∗1�⊥ . It is clear that ((−1) f ∗1�⊥)(z) = ∑

x∈z⊕�⊥
(−1) f (x).

This completes the proof. ��

3 Möbius transform

Denote by wt(z) the number of units in z ∈ F
n . Every Boolean function f can be represented

in the algebraic normal form:

f (x1, . . . , xn) =
⊕

y∈Fn

M[ f ](y)x y1
1 · · · x yn

n , (4)

where x0 = 1, x1 = x , and M[ f ] : F
n → F is the Möbius transform of f . It is well known

that
M[ f ](y) =

⊕

x∈�y

f (x) (5)

where �y = {(x1, . . . , xn) ∈ F
n : xi = 0 if yi = 0} is a subspace of F

n . Note that
M[M[ f ]] = f for eachBoolean function (see [2, Theorem1]). The degree of this polynomial
is called the algebraic degree of f.

Denote by b(n, r) the cardinality of a ball Bn,r with radius r in F
n , i.e., b(n, r) = |{x ∈

F
n : wt(x) ≤ r}|. By properties of the Möbius transform, the number of n-variable Boolean

functions f such that deg f ≤ r is equal to 2b(n,r).

Lemma 1 Suppose that f and g are n-variable Boolean functions and
max{deg( f ), deg(g)} ≤ r . If f |Bn,r = g|Bn,r then f = g.

Proof By the hypothesis of the lemma and (4), we have M[ f ](y) = M[g](y) = 0 if
wt(y) > r . By (5) for any y ∈ F

n such that wt(y) = r + 1, we obtain

M[ f ](y) =
⊕

x∈�y

f (x) = f (y) ⊕
⊕

x∈�y∩Bn,r

f (x)

= f (y) ⊕
⊕

x∈�y∩Bn,r

g(x) = f (y) ⊕ M[g](y) ⊕ g(y).

Therefore, f (y) = g(y) for any y ∈ Bn,r+1. By induction on weights wt(y), we obtain that
f (y) = g(y) for all y ∈ F

n . ��
Lemma 2 ([2], Theorem 2) Let f be an n-variable Boolean function. Suppose for every

y ∈ F
n it holds (̂−1) f (y) = 2km(y), where m(y) is integer. Then deg( f ) ≤ n − k + 1.

Corollary 1 ([2], Proposition 96) The algebraic degree of n-variable s-plateaued functions
is not greater than n−s

2 + 1.

Note that algebraic degrees of bent (0-plateaued) functions is n/2 at most (see e.g. [2],
[4], [10]), but for 1-plateaued functions the upper bound n+1

2 is sharp.
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Proposition 4 Let f be an n-variable bent function. Then for any hyperplane � the algebraic

degree of the Boolean function h = supp( ̂(−1) f · 1�) is not greater than n/2.

Proof By (2) we obtain that h = supp((−1)g ∗ 1�⊥), where a bent function g is dual
of f . Let �⊥ = {0̄, a}. Then (−1)g ∗ 1�⊥(x) = (−1)g(x) + (−1)g(x⊕a). Consequently,
h(x) = g(x) ⊕ g(x ⊕ a) ⊕ 1. Thus, deg h ≤ deg g ≤ n

2 . ��

4 Subspace distribution

We will use the following well-known criterium (see, e.g. [2, Proposition 96]) which is also
true in the nonbinary case ([11, Theorem 2]).

Lemma 3 An n-variable Boolean function f is s-plateaued if and only if it holds
(−1) f ∗ (−1) f ∗ (−1) f = 2n+s(−1) f .

Consider an n-variable s-plateaued Boolean function f and any fixed x ∈ F
n . There are

V = [n
2

]
2 = (2n−1)(2n−2)

6 2-dimensional affine subspaces such that any of them contains
x . Let S(x) be the number of subspaces containing an odd number of zero values of f . By
Lemma 3 we obtain

Proposition 5 For any fixed x ∈ F
n, it holds S(x)

V = 1
2 − 1

2 · 2n+s−3·2n+2
(2n−1)(2n−2) .

Proof We can rewrite the formula from Lemma 3 by the following form

2n+s(−1) f (x) =
∑

z∈Fn

∑

y∈Fn

(−1) f (y)⊕ f (y⊕z)⊕ f (x⊕z) =
∑

z∈Fn

∑

y∈Fn

(−1) f (x⊕y)⊕ f (x⊕y⊕z)⊕ f (x⊕z).

It is easy to see that if two elements of {x, x ⊕ y, x ⊕z, x ⊕ y⊕z} are coincide then the two
remaining elements are also coincide. In this case (−1) f (x)⊕ f (x⊕y)⊕ f (x⊕z)⊕ f (x⊕y⊕z) = 1.
Let U be the set of such couples {y, z} that {x, x ⊕ y, x ⊕ z, x ⊕ y ⊕ z} is a 2-dimensional
affine subspace. By the inclusion-exclusion formula, we obtain that

∑

{y,z}∈U

(−1) f (x)⊕ f (x⊕y)⊕ f (x⊕z)⊕ f (x⊕y⊕z) = 2n+s − 3 · 2n + 2.

It is easy to see that every subspace {x, x ⊕ y, x ⊕ z, x ⊕ y ⊕ z} occurs 6 times in the sum
above. Consequently, it holds equation

2n+s − 3 · 2n + 2

6
= (V − S(x)) − S(x).

The extraction of S(x)
V from the last equation completes the proof. ��

Thus we have two equations: S(x)
V = 1

2 + 1
2(2n−1−1)

for every bent function and S(x)
V =

1
2 + 1

2(2n−1) for every 1-plateaued function. Note that for bent functions f , f (0̄) = 0, numbers
of linear subspaces such that contain 1, 2, 3 or 4 zero values of f do not depend on f (see
[13]).

We will use the following property of bent and plateaued functions.

Proposition 6 ([2, 4, 10]) Let f : F
n → F be an s-plateaued function, let A : F

n → F
n

be a non-degenerate affine transformation and let � : F
n → F be an affine function. Then

g = ( f ◦ A) ⊕ � is an s-plateaued function.
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The functions f andg satisfied the conditions ofProposition 6 are calledEA-equivalent. It is
easy to see that the cardinality of any equivalence class is not greater than an = 2n2+n+1(1+
o(1)). Note that two EA-equivalent functions f and g have the same algebraic degree as
deg( f ) > 1.

There are eight 2-variable Boolean functions such that take value 0 even times. All of
them are affine. Six of them take value 0 two times and the other take value 0 four or zero
times. Consider a 2-dimensional affine subspace � and an n-variable Boolean function g.
Let g take value 0 even times on �. It is easy to see that 3/4 among functions of the set
{g ⊕ � : � is an affine function} take value 0 two times and the other take value 0 four or zero
times. Consequently, from Propositions 5 and 6 we deduced:

Corollary 2 Let � be a 2-dimensional face, i.e, axes-aligned plane which can be obtained
by fixed all with the exception of two coordinates, and let f : F

n → F be an s-plateaued
function. There exists a non-degenerate affine transformation A and an affine function � such
that the s-plateaued function g = ( f ◦ A) ⊕ � satisfies the following conditions.

(a) The part of faces � ⊕ y, y ∈ F
n, that contain an odd number of zero values of g, is less

than 1
2 if s > 1 and less than 1

2 + 1
2n if s = 1.

(b) Among the faces � ⊕ y, y ∈ Bn,r ⊂ F
n, that contain an even number of zero values of

g, not less than one fourth part contain four or zero values 0.

Proof Firstly, we can find A to provide condition (a). Let s > 1. Suppose that the fraction
of faces A−1(� ⊕ y), y ∈ F

n , containing an odd number of zero values of f , is not less
than 1

2 for every non-degenerate affine transformation A. Then at least half of 2-dimensional
affine subspaces contain odd numbers of zero values of f . It is contradict to Proposition 5.
Therefore, we can fixed a non-degenerate affine transformation A such that g = f ◦ A
satisfies condition (a). The case s = 1 is similar.

Secondly, we can find � to satisfy condition (b). Indeed, we can choose � to provide (b),
since as mentioned above, this distribution is on the average for all �. By adding any affine
function we save the parity of the number of zero values of g on every 2-dimensional affine
subspace. So, we preserve condition (a). Consider the distribution of even numbers of zero
values of g on the faces � ⊕ y, y ∈ F

n . It is easy to see that the average distribution over
balls with fixed radius r and centers y ∈ F

n is equal to the distribution over the Boolean
hypercube. Then there exists a ball with center e ∈ F

n such that g = ( f ◦ A) ⊕ � has the
same or better distribution on the ball with center e. Then we can exchange A to A ⊕ e to
provide the required distribution on Bn,r . ��

Note that a random Boolean function has the required distribution of zero values in a
2-dimensional face, i.e., zero or four 0s with probability 1

8 , one or three 0s with probability
1
2 , two 0s with probability 3

8 .
Let p0 be a probability of an even number of zero values in a 2-dimensional face and let

p1 be a probability of an odd number of zero values in a 2-dimensional face. Moreover, p′
0

is the probability of two zero values in a 2-dimensional face and p′
0 ≤ 3p0/4. How many

bits on average we need to count four values (−1)g(x) in a 2-dimensional face � ⊕ y from
their sum? We use the following simple proposition.

Proposition 7 Let M be a set of words with length n and let ki > 0 be a number of different
symbols in i th place in every word from M. If pm = |{i ∈ {1, . . . , n} : ki = m}|/n then

log2 |M |
n

=
∑

m

pm log2 m.
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Proof By the definition, |M | = ∏n
i=1 ki . Rearranging the factors, we obtain that |M | =∏

m m pm n . Taking the logarithm of both sides of the previous equality we deduce the required
equality. ��

Consequently, to find all values of function in a 2-dimensional face in the case of two zero
valueswe need log2 6 bits, in the case of odd zero valuewe need 2 bits, in the case of 0 or 4 zero
values we do not need extra bits. Therefore, under conditions (a) and (b) from Corollary 2,
it is sufficient p′

0 log2 6 + 2p1 ≤ 1 + 3
8 log2 6 = α ≈ 1.969 (or 1 + 1

2n−1 + 3
8 log2 6 = αn if

s = 1) bits on average for finding four values (−1)g(x) in a 2-dimensional face � ⊕ y from
their sum. It is easy to see that αn → α as n → ∞. So, we obtain the following statement
from Corollary 2 and Proposition 7.

Corollary 3 For every n-variable s-plateaued function there exists an EA-equivalent function
g and 2-dimensional face � such that if we know sums of values of (−1)g on all � ⊕ y,
y ∈ Bn,r , then it is sufficient αb(n, r) (or αnb(n, r) if s = 1) extra bits to identify g on Bn,r .

5 Main results

In the previous section we proved that in every EA-equivalence class there exists an s-
plateaued function f satisfying the conditions of Corollary 2. Now we estimate the number
of bits sufficient to determine f .Wewill use the following combinatorial version of Shannon’s
source coding theorem.

Proposition 8 (see e.g. [7]) Let Mn be a set of equally composed words with length n over
alphabet A and let pi > 0 be a frequency of i th symbol of A in every word from Mn. Here
|A|∑

i=1
pi = 1. Then

log2 |Mn |
n

=
|A|∑

i=1

pi log2
1

pi
+ ε(n, Mn),

where supMn
|ε(n, Mn)| → 0 as n → ∞.

The sum
∑

i pi log2
1
pi

is called Shannon’s entropy of source with probability pi of i th
symbol. Denote by � Shannon’s entropy function in the case of two symbols, i.e., �(p) =
−p log p − (1 − p) log(1 − p) for p ∈ (0, 1).

Let N (n, s) be the binary logarithm of the number of n-variable s-plateaued Boolean
functions. The logarithm of the number of bent functions we denoted by N (n). Since the
Walsh–Hadamard transform is a bijection, N (n, s) is not greater than the number of bits
such that is sufficient to identify W f for an s-plateaued function f . Therefore, by Shannon’s
source coding theorem and Proposition 1 we obtain inequality:

N (n, s) ≤ 2n
(

�

(
1

2s

)

(1 + o(1)) + 1

2s

)

. (6)

Let N0(n, 1) be the binary logarithm of the number of n-variable 1-plateaued Boolean
functions which are obtained by the restriction of domain of (n + 1)-variable bent functions
to hyperplanes.

Theorem 1 (a) N (n, s) ≤ (αb(n − 2, � n−s
2 � + 1) + 2n−2(�( 1

2s ) + 1
2s ))(1 + o(1)) where

α = 1 + 3
8 log2 6, s > 0 is fixed and n → ∞.
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(b) N0(n, 1) ≤ b(n − 2, n+1
2 )(α + 3

2 )(1 + o(1)) as n → ∞.

Proof Let f be an n-variable s-plateaued function. Consider an (n − 2)-dimensional face �.
Without loss of generality (see Propositions 1 and 6) we admit that the part of nonzero values
of W f in � is not greater than 1

2s .
Case (a). For every s-plateaued Boolean function f it is sufficient (by similar way as in

(6)) 2n−2(�( 1
2s ) + 1

2s )(1 + o(1)) bits to identify W f · 1� .
Case (b). Suppose that a 1-plateaued function f is obtained by the restriction of domain

of a bent function to a hyperplane. By Proposition 4, an algebraic degree of the support S
of the Walsh–Hadamard transform of such 1-plateaued function is not greater than n+1

2 . By
Lemma 1, it is sufficient to identify S only in a ball Bn−2, n+1

2
. Then we just need (�( 12 ) +

1
2 )b(n − 2, n+1

2 )(1 + o(1)) = 3
2b(n − 2, n+1

2 )(1 + o(1)) bits to identify W f · 1� by (6).
The last part of the proof is the same for cases (a) and (b).
By (3), if we know W f · 1� then we can find sums

∑

x∈�⊥⊕a

(−1) f (x) for any a ∈ F
n .

By Corollary 2, we can choose an s-plateaued function such that is EA-equivalent to f and
has the appropriate distribution of these sums. By Corollary 1, an algebraic degree of any
n-variable s-plateaued Boolean functions f is not greater than r = � n−s

2 �+1. Consequently,
by Lemma 2 it is sufficient to recognize values of f in a ball of radius r . By Corollary 3,
there exists s-plateaued function f ′ from the same EA–equivalence class as f such that
αb(n, r) if s > 1 or αnb(n, r) if s = 1 bits is sufficient to recover f ′ on F

n . If we know a
EA–equivalence class of the function then it is sufficient log2 an = n2+n+1 = o(2n) bits to
identify the function. Thus, if W f · 1� is given then we need αb(n − 2, � n−s

2 �+ 1)(1+ o(1))
extra bits to identify (−1) f . ��
Corollary 4 N0(n, 1) < 3.47 · 2n−3(1 + o(1)) as n → ∞.

The idea of the new upper bound on the number of the Boolean bent functions is the
following. We consider a restriction of the domain of a bent function into a hyperplane. This
is a 1-plateaued function and we can evaluate the number of such functions by Theorem 1
(b). Then we evaluate the number of extra bits witch we need to recover all values the bent
function when we know it values only on hyperplane. By Lemma 1 it is sufficient to identify
an n-variable bent function only on a ball with radius n/2.

Theorem 2 N (n) ≤ N0(n − 1, 1) + 2n−3(1 + o(1)) < 11
322

n(1 + o(1)) as n → ∞.

Proof Let f be an n-variable bent function and let g be dual of f bent function. By
Proposition 2, g ·1� is an (n−1)-variable 1-plateaued function as� is a hyperplane. Presume
that �⊥ = {0̄, a}.

Now we evaluate a number of extra bits which is sufficient to recover f if g · 1� is given.
By (3) we obtain that sums s(x) = (−1) f (x) + (−1) f (x+a) are determined by g · 1� . Since
all derivatives of each bent function are balanced (see e.g. [2], Theorem 12), a half of these
sums s(x) are equal to ±2 and the other half of these sums are equal to 0. In the first case
we can extract (−1) f (x) and (−1) f (x+a) from the sum. But in the second case we need an
additional information to choose (−1) f (x) = 1 and (−1) f (x+a) = −1 or vice versa. Denote
by S1 the set of x ∈ � such that s(x) = ±2.

By Lemma 1 and Proposition 6, we need to identify values of f only in some ball with
radius n/2. It is easy to see that we can find a ball B such that |S1 ∩ B ∩ �| ≥ |B ∩ �|/2.
Therefore, it is necessary not greater than |B∩�|−|S1∩B∩�| ≤ |B∩�|/2 = 2n−3(1+o(1))
extra bits to recover f from g · 1� . Therefore, we establish that

N (n) ≤ N0(n − 1, 1) + 2n−3(1 + o(1))
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as n → ∞. By Theorem 1(b), we obtain the required inequality. ��
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