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Generalizing the Bierbrauer–Friedman

bound for orthogonal arrays∗

Denis S. Krotov†, Ferruh Özbudak‡, Vladimir N. Potapov§

We characterize mixed-level orthogonal arrays it terms of algebraic
designs in a special multigraph. We prove a mixed-level analog of
the Bierbrauer–Friedman (BF) bound for pure-level orthogonal ar-
rays and show that arrays attaining it are radius-1 completely regu-
lar codes (equivalently, intriguing sets, equitable 2-partitions, perfect
2-colorings) in the corresponding multigraph. For the case when the
numbers of levels are powers of the same prime number, we character-
ize, in terms of multispreads, additive mixed-level orthogonal arrays
attaining the BF bound. For pure-level orthogonal arrays, we con-
sider versions of the BF bound obtained by replacing the Hamming
graph by its polynomial generalization and show that in some cases
this gives a new bound.
Keywords: orthogonal array, algebraic t-design, completely regular

code, equitable partition, intriguing set, Hamming graph, Bierbrauer–
Friedman bound, additive codes.

1 Introduction

Orthogonal arrays are combinatorial structures important both for practical ap-
plications like design of experiments or software testing and theoretically, because
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of many relations with coding theory, cryptography, design theory, etc., see e.g.
[11]. Among many other interesting relations, pure-level, or symmetric, orthogo-
nal arrays are known as a special case of algebraic designs, which makes them a
part of a general theory that include also other widely known classes of combina-
torial objects, such as combinatorial t-(v, k, λ) designs. One of the main results
of this correspondence is establishing a similar relation for mixed-level (asym-
metric) orthogonal arrays, attracting more attention last years, see e.g. recent
works [4], [15], [16] and references there. Then, we use the correspondence ob-
tained to generalize results known for pure-level orthogonal arrays, namely, the
Bierbrauer–Friedman bound and constructions of arrays attaining it. Addition-
ally, we consider some generalized versions of this bound for pure-level arrays that
give a nontrivial inequality in cases when the original bound is not applicable.
The Bierbrauer–Friedman bound for pure-level orthogonal arrays with param-

eters OA(N, n, q, t) says that

N ≥ qn
(

1−
(
1− 1

q

) n

t+ 1

)

, (1)

see [9] for the case q = 2 and [2] for general q. It is easy to see that the bound is
nonnegative if and only if t + 1 > q−1

q
n; so, it is effective for high values of t (in

contrast, Rao’s bound [17] is effective for relatively small t). The bound is tight,
and there are orthogonal arrays constructed as linear [11, Section 4.3] or additive
[1, Section 4.2] codes that attain it. Binary (q = 2) orthogonal arrays attaining
bound (1) whose size is not a power of 2 can be constructed as completely regular
codes (see Definition 2 below) by the Fon-Der-Flaass construction [8]; the first
example is OA(1536, 13, 2, 7). Ternary (q = 3) arrays with the similar property
were recently discovered, again in terms of completely regular codes, in [10];
the first example is OA(5 · 38, 11, 3, 8). For q ≥ 4, the problem of existence of
orthogonal arrays attaining bound (1) whose size is not a power of q or of its
prime divisor remains open. Similar questions can be considered for mixed-level
orthogonal arrays.
In this correspondence, we prove (Section 3) that (1) holds for mixed-level

orthogonal arrays OA(N, q1 · q2 · . . . · qn, t) if we replace qn by the product of all
qis and

1
q
by the average value of 1

qi
. The arrays (we treat an array as a multiset

of rows of length n) attaining this bound are necessarily simple sets (without
repeated elements), independent sets (without pairs of elements at Hamming
distance 1), and intriguing sets (completely regular codes with covering radius 1,
see the definition below). The new bound is tighter than the previously known
generalization [6]

N ≥ qnm

(

1− nq̃ − n

nq̃ + (t+ 1− n)qM

)

if nq̃ + (t+ 1− n)qM > 0, (2)
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where qm, q̃, and qM are respectively the minimum, the average, and the maximum
value of qi, i = 1, . . . , n. For example, for OA(N, 2144, 3) the new bound is tight:
N ≥ 64 = 29 ·

(
1 − (1 − 3

10)
5

3+1

)
(see the construction in Example 1), while (2)

gives N ≥ 16
7 = 25 ·

(
1− (3.6−1)·5

4·(3+1)−(4−3.6)·5
)
.

Further (Section 4), in the case when all qi are powers of the same prime p, we
prove that additive (linear over GF(p)) mixed-level orthogonal arrays attaining
the Bierbrauer–Friedman bound are equivalent to special partitions of a vector
space into subspaces, called multispreads [13].
Finally (Section 5), we discuss variations of bound (1) that can give positive

values in the cases when the original bound (1) is negative. As an example, for
OA(N, n, 2, n

2
− 1), n even, we obtain the bound

N > 0.409 · n−1 · 2n.

To compare, for these parameters, Rao’s bound gives the size of the Hamming
ball of radius approximately n/4, which is 2h(

1

4
)n(1+o(1)), h(14) ≃ 0.8.

Our main results are Theorem 7 (mixed orthogonal arrays are algebraic de-
signs), Theorem 9 (Bierbrauer–Friedman bound for mixed-level orthogonal ar-
rays and a relation with completely regular codes), Theorem 14 (the characteriza-
tion of additive mixed-level orthogonal arrays attaining the Bierbrauer–Friedman
bound), and Lemma 18 (a polynomial generalization of the Bierbrauer–Friedman
bound for mixed-level orthogonal arrays).

2 Definitions and notations

By a graph, we will mean a multigraph, with multiple edges and loops allowed.
A graph without loops and edge multiplicities more than 1 is called simple. For a
graph G and a positive integer scalar s, sG denotes the graph on the same vertex
set with all edge multiplicities multiplied by s. For two graphs G′ = (V ′, E ′)
and G′′ = (V ′′, E ′′), G′

�G′′ denotes their Cartesian product, the graph with the
vertex set V ′ × V ′′ and the edge (multi)set {{(v1, v), (v2, v)} : {v1, v2} ∈ E ′, v ∈
V ′′} ∪ {{(v, v1), (v, v2)} : {v1, v2} ∈ E ′′, v ∈ V ′}.
For a positive integer s, the set {0, . . . , s− 1} will be denoted by [s].

Definition 1 (adjacency matrix of a graph, eigenfunctions and eigenspaces). For
a graphG = (V, E), the adjacency matrix A is the symmetric nonnegative integer
|V | × |V | matrix whose rows and columns are indexed by V and the (x, y)th
element Ax,y, x, y ∈ V , equals the multiplicity of {x, y} in the edge multiset E.
The eigenvectors of A, treated as functions from V to C, are called eigenfunctions
of G, or θ-eigenfunctions, where θ is the corresponding eigenvalue. An eigenspace
of G is the subspace of the vector space CV consisting of the constantly zero
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function and all θ-eigenfunctions for some eigenvalue θ. Since the adjacency
matrix of a graph is symmetric, the eigenspaces are pairwise orthogonal.

Definition 2 (completely regular code with covering radius 1, {b; c}-CR code). A
set C of vertices of a regular graph G = (V, E) is called a completely regular code
with covering radius 1 and intersection array {b; c}, where b, c > 0, or a {b; c}-CR
code, or simply a CR-1 code if for every vertex in V (in V \C) the number of edges
that connect it with V \C (respectively, with C), equals b (respectively, c).

Remark 1. In literature, CR-1 codes are studied under different names. They
are also called intriguing sets ; the corresponding partition of the vertex set into
C and V \C is known as an equitable 2-partition or a 2-partition design; the
corresponding 2-coloring of the vertex set is a perfect 2-coloring.

Definition 3 (H(q1 · q2 · . . . · qn), Hamming graph). For integers q1, q2, ..., qn ≥ 2,
the graph H(q1 · q2 · . . . · qn) is the graph on the set of n-tuples from V =
[q1]× . . .× [qn] with two n-tuples forming an edge of multiplicity µ if and only if
they differ in only the ith position for some i ∈ {1, . . . , n} and µ = Q/qi, where
Q = lcm(q1, ..., qn) (least common multiple). If q1 = q2 = . . . = qn = q, then
H(q1 · q2 · . . . · qn) is a simple graph known as a Hamming graph and denoted
H(n, q).

Definition 4 (algebraic t-design). For a regular graph G = (V, E) with eigen-
values θ0 > θ1 > . . . > θd and the corresponding eigenspaces S0, S1, . . . , Sd,
a multiset C of its vertices is called an algebraic t-design (with respect to the
natural descending ordering θ0, θ1, . . . , θd of the graph eigenvalues) if in the de-
composition

fC = ϕ0 + ϕ1 + . . .+ ϕd, ϕi ∈ Si,

of the multiplicity function fC (in the case of a simple set, the characteristic
function, indicator) of C we have ϕ1 = . . . = ϕt ≡ 0.

Definition 5 (orthogonal arrays, OA(N, q1·q2· . . . ·qn, t)). A nonempty multi-
set C of n-tuples from V = [q1] × . . . × [qn] is called an orthogonal array of
strength t, OA(|C|, q1 · q2 · . . . · qn, t), if for any distinct i1, . . . , it from {1, . . . , n}
and any a1 ∈ qi1, . . . , at ∈ qit, the number of (x1, ..., xn) ∈ C such that xij = aj ,

j = 1, ..., t, equals |C|
qi1qi2 ...qit

(i.e., independent on the choice of aj , j = 1, ..., t).

If q1 = q2 = . . . = qn, then such orthogonal arrays are called pure-level (in
some literature, symmetric) and also denoted OA(N, n, q1, t); otherwise, they are
called mixed-level, or just mixed (in some literature, asymmetric). For brevity,
in the notation q1 · q2 · . . . · qn, equal values of qi can be grouped using de-
grees, e.g., OA(N, 2·2·5, t) is the same as OA(N, 2251, t), but not the same as
OA(N, 4·5, t) = OA(N, 4151, t).
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3 Orthogonal arrays and algebraic designs

We first describe the eigenspaces of the graph H(q1·q2·...·qn).
Lemma 6. The following functions form an orthogonal basis from eigenfunctions
of H(q1 · q2 · . . . · qn):

χ(b1,b2,...,bn)(x1, x2, ..., xn) = ξb1x1

1 ξb2x2

2 . . . ξbnxn

s , bi ∈ [qi], (3)

where ξi is the degree-qi primitive root of 1. Moreover, χ(b1,b2,...,bn) is an eigen-
function corresponding to the eigenvalue θw = k − wQ, where

k =
n∑

i=1

Q

qi
(qi − 1)

is the degree of H(q1·q2·...·qn), Q = lcm(q1, ..., qn), and w is the number of nonze-
ros among b1, b2, . . . , bn.

Proof. The complete graph Kqi has eigenfunctions ξ(bi)(xi) = ξbixi

i corresponding
to the eigenvalue qi − 1 if bi = 0 and −1 otherwise. After multiplying (the multi-
plicity of all edges of) Kqi by

Q
qi
, we get the same eigenfunctions with eigenvalues

Q
qi
(qi − 1) and −Q

qi
(qi − 1). We note that the difference Q between these two

eigenvalues does not depend on i.
The rest is straightforward from the following easy property of the Cartesian

product of graphs, see e.g. [3, Section 1.4.6]: if χ′(x′), x′ ∈ V ′, and χ′′(x′′),
x′′ ∈ V ′′, are θ′- and θ′′-eigenfunctions of graphs Γ′ = (V ′, E ′) and Γ′′ = (V ′′, E ′′),
respectively, then χ(x′, x′′) = χ′(x′)χ′′(x′′) is a (θ′ + θ′′)-eigenfunction of Γ′

�Γ′′.

The following fact generalizes Delsarte’s characterization [5, Theorem 4.4] of
pure-level orthogonal arrays as algebraic designs.

Theorem 7. A multiset C of words from V = [q1] × . . . × [qn] is an orthog-
onal array OA(|C|, q1·q2·...·qn, t) if and only if C is an algebraic t-design in
H(q1·q2·...·qn).
Proof. If. Assume C is an algebraic t-design and fC is its multiplicity function.
We need to show that the sum of fC over V a1,...,at

i1,...,it
does not depend on the choice

of a1, . . . , at, where 1 ≤ i1 < . . . < it ≤ n, aj ∈ [qij ], and V a1,...,at
i1,...,it

denotes the set
of all n-tuples (x1, ..., xn) from V such that xi1 = a1, . . . , xit = at.
We have

fC = ϕ0 + ϕt+1 + ϕt+2 + . . .+ ϕn,

where ϕi is the zero constant or a θi-eigenfunction of H(q1·q2·...·qn).
For i ≥ t + 1, each such eigenfunction is a linear combination of basis eigen-

functions χ(b1,...,bn) from (3), where the number of nonzero elements among b1,
. . . , bn is i. We claim that
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(*) for more than t nonzeros in (b1, . . . , bn), the sum of χ(b1,...,bn) over V a1,...,at
i1,...,it

equals 0. Indeed, denoting by l1, . . . , ls the indices from {1, ..., n}\{i1, ..., it},
s = n− t, we have

∑

(x1,...,xn)∈V a1,...,at
i1 ,...,it

χ(b1,...,bn)(x1, ..., xn)

= ξ
bi1ai1
i1

· . . . · ξbitaitit
·

ql1∑

xl1
=0

ξ
bl1xl1

l1
· . . . ·

qls∑

xls=0

ξ
blsxls

ls
. (4)

Since the number of nonzeros is larger than t, for at least one j from
{l1, . . . , ls} we have bj 6= 0. It follows that at least one sum in (4) equals 0,
which proves (*).

From (*) we conclude that the sum of fC over V a1,...,at
i1,...,it

equals the sum of φ0

over V a1,...,at
i1,...,it

. Since φ0 is a constant, the sum does not depend on the choice of
a1, . . . , at.
Only if. We need to show that fC is orthogonal to the θi-eigenspace for every i

in {1, . . . , t}, i.e., to all χ(b1,...,bn) with more than 0 and at most t nonzeros in
(b1, . . . , bn). Let all i such that bi 6= 0 lie in {i1, . . . , it}, where 1 ≤ i1 < . . . < it ≤
n. For the standard scalar product (fC , χ(b1,...,bn)) of fC and χ(b1,...,bn), we have

(fC, χ(b1,...,bn)) =
∑

(x1,...,xn)∈V
χ(b1,...,bn)(x1, ..., xn) · fC(x1, ..., xn)

(i)
=

∑

(x1,...,xn)∈V
ξ
bi1xi1

i1
· . . . · ξbitxit

it
· fC(x1, ..., xn)

=

qi1−1
∑

a1=0

. . .

qit−1
∑

at=0

∑

(x1,...,xn)∈V a1,...,at
i1,...,it

ξ
bi1xi1

i1
· . . . · ξbitxit

it
· fC(x1, ..., xn)

=

qi1−1
∑

a1=0

ξ
bi1a1
i1

· . . . ·
qit−1
∑

at=0

ξ
bitat
it

·
∑

(x1,...,xn)∈V a1,...,at
i1 ,...,it

fC(x1, ..., xn)

(ii)
=

qi1−1
∑

a1=0

ξ
bi1a1
i1

· . . . ·
qit−1
∑

at=0

ξ
bitat
it

· |C|/qi1...qit
(iii)
= 0,

where in equality (i) we use that ξ
bjxj

j = 1 if bj = 0, in (ii) we use the definition
of an orthogonal array, and (iii) holds because for some j in {i1, ..., it} we have

bj 6= 0 and hence
∑qj

a=0 ξ
bja

j = 0. We have shown that fC is orthogonal to χ(b0,...,bn)

for any (b0, ..., bn) with more than 0 and less than t+1 nonzeros. Hence, C is an
algebraic t-design.
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Now, we can apply the following lower bound on the size of an algebraic design
in a regular graph.

Lemma 8 ([14, Sect. 4.3.1]). The cardinality of an algebraic t-design C in a k-
regular graph G = (V, E) with eigenvalues k = θ0 > θ1 > . . . > θd satisfies the
inequality

|C|
|V | ≥

−θt+1

k − θt+1
. (5)

Moreover, a multiset C of vertices of G is an algebraic t-design meeting (5) with
equality if and only if C is a simple set (without multiplicities more than 1) and
a {k;−θt+1}-CR code.

The following bound was proved in [9] for q1 = . . . = qs = 2 and in [2] for
q1 = . . . = qs = q for any q. The theorem generalizes the mentioned results to
the case of mixed-level orthogonal arrays.

Theorem 9. For an orthogonal array C with parameters OA(N, q1·...·qn, t), we
have

N ≥ q1q2...qn

(

1−
(
1− 1

q

) n

t+ 1

)

, (6)

where q is the harmonic mean of all qi, i.e.,
1

q
=

1

n

n∑

i=1

1

qi
.

Moreover, a multiset of vertices of the graph H = H(q1·. . .·qn) is an OA(|C|, q1·...·qn, t)
meeting (6) with equality if and only if C is a simple set (without multiplicities
more than 1) and a {k;−θt+1}-CR code, where k = Qn(1− 1

q
) (the degree of H)

and θt+1 = k − (t+ 1)Q, Q = lcm(q1, . . . , qn).

Proof. Taking into account Theorem 7 and Lemma 8, it remains to check that
(5) and (6) are the same for G = H. Indeed, the degree of H is

k =
Q

q1
(q1 − 1) + . . .+

Q

qn
(qn − 1) = Qn−Q

( 1

q1
+ . . .+

1

qn

)

= Qn
(

1− 1

q

)

and θi = k − iQ. So, we find

−θt+1

k − θt+1
=

(t+ 1)Q− k

(t+ 1)Q
= 1−

(

1− 1

q

) n

t+ 1
.

Next, we compare the new bound with the previous generalization (2) of (1)
to mixed-level orthogonal arrays [6].

Proposition 10. For mixed-level orthogonal arrays, bound (6) is tighter than (2).
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Proof. Rewriting (2) in a convenient form, we have to prove that

q1q2...qn

(

1−
(
1− 1

q

) n

t+ 1

)

≥ qnm

(

1−
(
1− 1

q̃

) 1

1− (1− t+1
n
)qM

q̃

)

,

where

qm ≤ q ≤ q̃ ≤ qM, (7)

1− t+ 1

n
≥ 0, (8)

1−
(

1− t+ 1

n

)
qM
q̃

≥ 0 (9)

((7) are known inequalities between the minimum, the harmonic mean, the arith-
metic mean, and the maximum values; (8) is from t < n for nontrivial orthogonal
arrays; (9) means that the denominator in (2) is positive, which is the condition
of the applicability of (2)). The required inequality is straightforward from the
following three observations.

(i) Trivially, q1q2...qn ≥ qnm.

(ii) From (7) we have 1− 1

q
≤ 1− 1

q̃
.

(iii) Taking into account (7)–(9), we get

n

t+ 1
=

1

1− (1− t+1
n
)
≤ 1

1− (1− t+1
n
)qM

q̃

.

Finally, each of (i), (ii), (iii) turns to equality if and only if q1 = q2 = . . . = qn,
i.e., for pure-level arrays.

Remark 2. As noted in [6], the definition of an orthogonal array implies that N
must be a multiple of

S = LCM {qi1qi2 . . . qit : 0 < i1 < . . . < it}.
In particular, this gives the bound N ≥ S (by similarity of arguments, it can be
considered as an analog of the Singleton bound for error-correcting codes), but
also means that any bound of form N ≥ B(q1 · . . . · qn, t) can be rounded to

N ≥ ⌈B(q1 · . . . · qn, t)/S⌉ · S. (10)

However, in some cases bound (6) is already divisible by S, and the problem of
existence orthogonal arrays attaining it arises. In the next section, we show how
to construct such arrays in the case when all qi are powers of the same prime
number.
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4 Additive mixed orthogonal arrays attaining the

Bierbrauer–Friedman bound

In this section, all qi are powers of the same prime p, and [pi] is associated with
the vector space Fi

p (to be explicit, an integer a in [pi] can be associated with

its p-based notation, treated as a vector from F
i
p). We should warn the reader

about the following difference in notation: now qi denotes pi, not the number
of levels (alphabet size) in the ith position. This is because in this section, it
is convenient to write parameters in the form OA(N, qn1

1 qn2

2 . . . qns
s , t) (all qi are

different, but some ni, i < s, can be zero), while in Section 3 the preferred form
was OA(N, q1 · q2 · . . . · qn, t), where qi are not necessarily distinct.

Definition 11 (additive code). A set of (n1+ . . .+ns)-tuples from V = (F1
p)

n1 ×
(F2

p)
n2 × . . . × (Fs

p)
ns, where p is prime, is called additive (an additive code, or

an additive orthogonal array if we consider it as an orthogonal array) if it is
closed with respect to the coordinatewise addition, i.e., forms a subspace of the
(n1 + 2n2 + . . .+ sns)-dimensional vectorspace V over Fp.

Remark 3. For prime p, “additive” and “Fp-linear” are the same, but in general, if
p is a prime power, Fp-linear codes form a proper subclass of additive codes. The
theory in the rest of this section keeps working for an arbitrary prime power p if
we replace “additive” by “Fp-linear” everywhere. However, to simplify reading,
we focus on the most important case of prime p and localize the arguments for
the general case in this remark.

Any k-dimensional vector subspace C of an n-dimensional vector space Sn can
be represented as the null-space (kernel) of a homomorphism from S to an (n−k)-
dimensional vector space Sn−k over the same field. If the bases in Sn and Sn−k,
are fixed, such a homomorphism is represented by an (n−k)×n matrix, called a
check matrix of C. In our case the dimension of the space is (n1+2n2+ . . .+sns),
we have a natural basis, and the coordinates of a vector, as well as the columns
of a check matrix, are naturally divided into n1 + n2 + . . . + ns groups, blocks,
the first n1 blocks of size 1, the next n2 blocks of size 2, and so on. For a check
matrix H, by Hi,j we denote the space spanned by the columns from the jth
block of size i.

Definition 12 (multifold partition of a space). A multiset D of subspaces of
a vector space S is called a µ-fold partition of S if every nonzero vector of S
belongs to exactly µ subspaces from D, respecting the multiplicities.

Next, we define two concepts, which are not (in contrast to Definition 12)
key concepts in our theory, but allow to mention additionally one important
correspondence in the main theorem of this section.
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Definition 13 (one-weight code, alphabet-effective code). An additive code C
in V is called one-weight (of weight w) if the number of nonzero blocks in a
nonzero codeword is constant (equal to w). The code is called alphabet-effective
if in each block, every element of the corresponding alphabet Fi

p occurs in some

codeword (so, the alphabet Fi
p is effectively used).

Theorem 14. Let H be an m×(n1+2n2+ . . .+sns) rank-m matrix over Fp, and
let C be the null-space of H (so, C is an additive code in (F1

p)
n1 × . . .× (Fs

p)
ns).

Denote

k =

s∑

i=1

ni(p
s − ps−i) = ps

s∑

i=1

ni(1− p−i), µ =
k

pm − 1
, qi = pi. (11)

The following assertions are equivalent:

(i) C is an OA(|C|, qn1

1 qn2

2 ...qns
s , t) attaining bound (6);

(i’) C is an OA(|C|, qn1

1 qn2

2 ...qns
s , t) with t = µ+k

ps
− 1;

(ii) C is a {k, µ}-CR code in H(qn1

1 qn2

2 ...qns
s );

(iii) the code C⊥ generated by the rows of H is an alphabet-effective one-weight
code of weight pm−s;

(iv) the multiset M = {ps−i×Hi,j}si=1
ni

j=1 of subspaces of F
m
p is a µ-fold partition

(ps−i ×Hi,j denotes that Hi,j is added ps−i times in the multiset);

(v) the collection M⊥ = {H⊥
i,j}si=1

ni

j=1 of subspaces dual to Hi,j is a ν-fold parti-
tion of Fm

p , where ν = n1 + . . .+ ns − pm−s · µ.

Proof. Since C is a null-space of H, we have |C| = pn1+2n2+...+sns/pm = qn1

1 · qn2

2 ·
. . . · qns

s /pm.
(i)⇐⇒(i’) Taking into account the expression for |C| above, (6) has the form

p−m ≥
(

1−
(
1− 1

q

) n

t+ 1

)

. (12)

(recall that q is the harmonic mean of q1, ..., q1
︸ ︷︷ ︸

n1 times

, q2, ..., q2
︸ ︷︷ ︸

n2 times

, . . . , qs, ..., qs
︸ ︷︷ ︸

ns times

). From the

equality in (12), we find

t+ 1 =
n(1− 1

q
)

1− p−m
=

p−sk

1− p−m
= p−sk(1 +

1

pm − 1
) =

k + µ

ps
.

Inversely, substituting t = k+µ
ps

− 1 turns (12) to equality.

10



(i)⇐⇒(ii) By Theorem 9, C attains (6) if and only if it is a {k;−θt+1}-CR code,
where k is the degree of H(qn1

1 qn2

2 ...qns
s ) and θt+1 = k − ps(t + 1) (the (t + 1)th

largest eigenvalue of H(qn1

1 qn2

2 ...qns
s ), counting from 0).

(ii)⇐⇒(iv) Assume that (iv) holds and we have to show (ii). We first check
that

(*) Hi,j has dimension i for each i, j.

Indeed, if it is so, thenHi,j has (p
i−1) nonzero points, ps−i×Hi,j has (p

s−ps−i)
nonzero points, and M has

∑s
i=1 ni(p

s − ps−i), i.e., k, nonzero points. This is
exactly the number of points we need to cover all pm − 1 nonzero points of Fm

p

with multiplicity µ = k
pm−1

.
But if one Hi,j has dimension smaller than i, then the number of points in M

is not enough to make a µ-fold partition of Fm
p . So, (*) holds.

Next, (*) means that C is independent. Indeed, if there are two adjacent
vectors x and y in C, then their difference x − y has nonzero values only in
coordinates from one block, say (i, j)th. In this case, these values are coefficients
of a nontrivial linear dependency between the corresponding columns, and hence
Hi,j has dimension smaller than i, contradicting (*).
The independence of C implies that every its element is connected to elements

not in C by k edges (k is the degree of the graph), and it remains to confirm the
second parameter µ of the {k;µ}-CR code.
For a vector v not in C denote by s its syndrome H · vT (since c 6∈ C, the

syndrome s is nonzero). A vector v − e is adjacent to v and belongs to C if and
only ifH ·eT = s and e has zeros in all positions out of one block, say (i, j)th. The
last is equivalent to s ∈ Hi,j. Since the subspace Hi,j is counted with multiplicity
ps−i in the multiset M , and the multiplicity of the edge {v, v−e} is also ps−i, the
number of edges between v and C is equal to the multiplicity of s in M , i.e., µ.
By reversing the arguments, we ensure that (ii) implies (iv).
(iv)⇐⇒(v) The equivalence between (iv) and (v) is proven in [13, Theorem 3]

(which is, apart of the direct correspondence between the parameters, is essen-
tially a special case of [7, Theorem 15]).
(iv)⇐⇒(iii) The equivalence between (iv) and (iii) is essentially proven in [13,

Theorem 1]. The difference is that [13, Theorem 1] considers one-weight codes
over the same alphabet Fs

p (in our current notation), but not necessarily alphabet-
effective. It remains to observe that there is a trivial weight-preserving relation
between alphabet-effective additive codes over our mixed alphabet and additive
codes over the alphabet Fs

p, namely, adding s − i zero columns to each block of
size m× i of the generator matrix H.

A collection of subspaces of Fm
p of dimension at most s satisfying the condition

of Theorem 14 is called a (λ, µ)s,mp -multispread [13], where λ = n1(p
s−1 − 1) +

11



n2(p
s−2 − 1) + . . . + ns−1(p

1 − 1) (the multiplicity of the zero vector in M).
Theorem 14 means that such multispreads with ni subspaces of dimension i,
i = 1, ..., s, corresponds to orthogonal arrays in (F1

p)
n1 × . . . × (Fs

p)
ns attaining

the generalized Bierbrauer–Friedman bound (6) in Theorem 9. Note that n1, . . . ,
ns are not uniquely determined from the parameters p, s, m, λ, µ of a (λ, µ)s,mp -
multispread, and even without fixing n1, . . . , ns the problem of existence of
(λ, µ)s,mp -multispread is open in general (in [13], it is completely solved for s = 2,

any p, and for ps ∈ {23, 24, 33}). The pure-level subcase of Theorem 14 was
proved in [1, Theorem 4.8]; in that case, λ = 0, and multispreads are µ-fold
spreads, whose parameters are characterized, see [12, p.83], [7, Corollary 8].

Example 1. Consider the 3× (1 · 1 + 4 · 2) matrix

H =





1 1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 1 1
1 0 0 0 1 0 1 0 1





over F2. Its null-space is an additive OA(64, 2144, 3). Indeed, 64 = 29
(
1 − (1 −

3
10)

5
3+1

)
; the degree of the graphH(2144) = 2K2×K4×K4×K4×K4 is 1+4·3 = 14;

the eigenvalue θt+1 = θ4 equals 14 − 4 · 4 = −2; the subspace H1,1 = 〈(1, 1, 1)〉,
corresponding to the first column, is taken with multiplicity 2 and covers the
vector (1, 1, 1) exactly 2 = −θ4 times; each of the other nonzero vectors from F3

2

is covered exactly 2 = −θ4 times by the subspaces H2,1 = 〈(1, 0, 0), (0, 1, 0)〉,
H2,2 = 〈(1, 0, 0), (0, 0, 1)〉, H2,3 = 〈(0, 1, 0), (0, 0, 1)〉, H2,4 = 〈(1, 1, 0), (0, 1, 1)〉,
formed by the last four blocks of columns. So, µ = 2 According to p.(iv) of
Theorem 14, the dual subspaces H⊥

1,1, H
⊥
2,1, H

⊥
2,2, H

⊥
2,3, H

⊥
2,4 form a partition of F3

2,

ν = n1 + n2 − µ · 2m−s = 1 + 4− 2 · 23−2 = 1.

5 Polynomial generalization of the

Bierbrauer–Friedman bound

For a connected graph G, d(G) denotes its diameter, and G(j), denotes a simple
graph where two vertices are adjacent if and only if the distance between them
in G is j.

Definition 15 (distance-regular graph). A simple connected graph is called a
distance-regular graph if for i = 1, . . . , d(G) the product A(1)A(i) is a linear com-
bination of A(i−1), A(i), and A(i+1), where A(j) is the adjacency matrix of G(j).

Corollary 16. For every distance-regular graph G, there are degree-i polynomials
K(i), i = 0, . . . , d(G), such that G(i) = K(i)(G).

12



Let G be a distance-regular graph. Consider a nonnegative integer linear
combination of the polynomials K(i), i.e., P =

∑

i αiK
(i), ai ≥ 0. Then P (A)

is the adjacency matrix of a multigraph P (G) with the same set V of vertices.
If vertices u and v are at distance i from each other in G, then the edge {u, v}
has multiplicity αi in P (G). The proposition below collects some obvious and
straightforward facts.

Proposition 17. (a) The set of eigenfunctions of P (G) includes the set of eigen-
functions of G. If P is strictly monotonic function, then these sets coincide.
(b) If ϕ is an eigenfunction of G with eigenvalue θ, then ϕ is also an eigenfunc-
tion of P (G) with eigenvalue P (θ).
(c) If P strictly increases, then the sets of algebraic t-designs of G and P (G)
coincide.

The next lemma is a variant of Lemma 8.

Lemma 18. Let G = (V, E) be a distance-regular graph with eigenvalues k =
θ0, θ1, . . . , θd(G), in the decreasing order, let the polynomial P be a linear combi-
nation

P (x) = α1K
(1)(x) + . . .+ αd(G)K

(d(G))(x)

of the polynomials K(1) from Corollary 16, where αi ≥ 0, i = 1, . . . , d(G), and
let

µ = max {P (θt+1), . . . , P (θd(G))}.
If µ < 0, then the cardinality of an algebraic t-design C satisfies the inequality

|C|
|V | ≥

−µ

P (k)− µ
. (13)

Proof. If all αi are integer, then P (x) is a graph, for which Lemma 8 gives (13).
If all αi are rational, we divide P by their greatest common divisor, which

makes all αi integer and does not affect the value in (13).
If some αi are irrational, we can approximate them by rational values with any

accuracy and get (13) as the limit of bounds corresponding to polynomials P
with rational coefficients.

Our aim is to find a polynomial P such that θt+1 ≥ 0 but µ < 0. In this
case, the lower bound from Lemma 8 is non-positive and hence trivial, while the
lower bound from Lemma 18 is positive and can be valuable. Actually, to obtain
the best lower bound in (13), we need to solve the following linear programming
problem in the variables α1, . . . , αd(G), µ (the last one is an additional variable,
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which plays the role of max{P (θj)}j≥t+1):







d(G)∑

i=1

αiK
(i)(θj) ≤ µ, j = t+ 1, . . . , d(G),

αi ≥ 0, i = 1, . . . , d(G),

d(G)∑

i=1

aiK
(i)(θ0) = const (the degree of P (G)),

µ −→ min .

By the proof of Lemma 18, we do not need to care about the integrity of αi.
By Lemmas 8, 18, and Proposition 17(c) we can conclude the following.

Proposition 19. Let a collection a1, . . . , ad(G) be the solution of the linear pro-
gram and let P be the corresponding polynomial. Suppose that P (θt+1) 6= P (θj)
for j 6= t+ 1. If some t-design C attains the bound (13), then C is a CR-1 code
in G.

For the Hamming graph G = H(n, q), the degree-w polynomial K(w) is

K(w)(·) = Pw(P
−1
1 (·)),

where Pw(x) = Pw(x;n, q) =

w∑

j=0

(−1)j(q − 1)w−j

(
x

j

)(
n− x

w − j

)

is the Krawtchouk polynomial ; P1(x) = (q − 1)n− qx, P−1
1 (y) = (q−1)−y

q
.

Example 2. Consider G = H(2m, 2), t = m − 1. Let us derive a bound on the
size of AO(N, 2m, 2, m− 1) by combining only three polynomials K(i), i = 1, 2, 3.
We have G = H(2m, 2), θt+1 = θm = 0,

K(1)(x) = x, K(2)(x) =
1

2
(x2 − 2m), K(3)(x) =

1

6

(
x3 − (6m− 2)x

)
.

We are looking for a polynomial P = K(3) + βK(2) + αK(1) where α ≥ 0, β ≥ 0,

and P ′(x) ≥ 0 for all x ∈ [−2m, 0]. Put α = β2

2
+ m − 1

3
. Then 6P (x) =

(x+β)3−β3−6βm. It is easy to see that P increases monotonically. Substituting
β = m√

3
, we obtain 6P (x) = x3 +

√
3mx2 +m2x− 2

√
3m2 and, by (13),

|C|
|V | ≥ −6P (0)

6P (2m)− 6P (0)
=

2
√
3m2

10m3 + 4
√
3m3

=
1

m(5 · 3− 1

2 + 2)
>

0.2046

m
.
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6 Conclusion

The most general contribution of our correspondence is a representation of or-
thogonal arrays as algebraic designs (which was previously known only for pure-
level arrays). More specifically, as an application of this representation, we have
considered two possibilities to generalize the Bierbrauer–Friedman bound for or-
thogonal arrays.
One of the generalizations concerns mixed-level orthogonal arrays, and we have

also show how to construct arrays attaining the generalized bound. However, the
constructed arrays have one restriction because of their additive structure over
a finite field; namely, the size of such an array is always a prime power. As was
mentioned in the introduction, the only known arrays attaining the Bierbrauer–
Friedman bound with the size not being a prime power are pure-level binary or
ternary. With generalizing the bound the problem of the existence of such arrays
also expands to the mixed-level case. In particular: do there exist mixed-level
OA(N, 2n13n2, t) attaining bound (6)? Orthogonal arrays attaining the considered
bound (in both pure- and mixed-level cases) are of special interest because of their
relation with such regular structures as CR-1 codes (equivalently, intriguing sets,
equitable 2-partitions, perfect 2-colorings).
The other, polynomial, generalization, considered in Section 5, makes it pos-

sible to obtain a lower bound on the size of a pure-level orthogonal array in
the cases when the original Bierbrauer–Friedman bound gives a trivial inequality.
The authors do not know if it is possible to improve the Bierbrauer–Friedman
bound in this way in cases when it is positive.
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