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Abstract
We characterize mixed-level orthogonal arrays in terms of algebraic designs in a special
multigraph.We prove amixed-level analog of the Bierbrauer–Friedman (BF) bound for pure-
level orthogonal arrays and show that arrays attaining it are radius-1 completely regular codes
(equivalently, intriguing sets, equitable 2-partitions, perfect 2-colorings) in the corresponding
multigraph. For the casewhen the numbers of levels are powers of the same prime number, we
characterize, in terms of multispreads, additive mixed-level orthogonal arrays attaining the
BF bound. For pure-level orthogonal arrays, we consider versions of the BF bound obtained
by replacing the Hamming graph by its polynomial generalization and show that in some
cases this gives a new bound.

Keywords Orthogonal array · Algebraic t-design · Completely regular code · Equitable
partition · Intriguing set · Hamming graph · Bierbrauer–Friedman bound · Additive codes

Mathematics Subject Classification 05B15 · 05B30 · 06E30

1 Introduction

Orthogonal arrays are combinatorial structures important both for practical applications like
design of experiments or software testing and for theoretical purposes, because of many
relations with coding theory, cryptography, design theory, etc., see e.g. [11]. Among many
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B Ferruh Özbudak
ferruh.ozbudak@sabanciuniv.edu

1 School of Mathematical Sciences, Hebei Key Laboratory of Computational Mathematics and
Applications, Hebei Normal University, Shijiazhuang 050024, People’s Republic of China

2 Sobolev Institute of Mathematics, Novosibirsk 630090, Russia

3 Faculty of Engineering and Natural Science, Sabancı University, Istanbul, Turkey

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10623-025-01711-y&domain=pdf
http://orcid.org/0000-0002-8516-755X
http://orcid.org/0000-0002-1694-9283
http://orcid.org/0000-0001-9461-2064


D. S. Krotov et al.

other interesting relations, pure-level, or symmetric, orthogonal arrays are known as a spe-
cial case of algebraic designs, which makes them a part of a general theory that includes
also other widely known classes of combinatorial objects, such as combinatorial t-(v, k, λ)

designs. One of the main results of this correspondence is establishing a similar relation for
mixed-level (asymmetric) orthogonal arrays, attractingmore attention in recent years, see e.g.
recent works [4, 15, 16] and references therein. Then, we use the correspondence obtained to
generalize results known for pure-level orthogonal arrays, namely, the Bierbrauer–Friedman
bound and constructions of arrays attaining it. Additionally, we consider some generalized
versions of this bound for pure-level arrays that give a nontrivial inequality when the original
bound is not applicable.

The Bierbrauer–Friedman bound for pure-level orthogonal arrays with parameters
OA(N , n, q, t) says that

N ≥ qn
(
1 − (

1 − 1

q

) n

t + 1

)
, (1)

see [9] for the case q = 2 and [2] for general q . It is easy to see that the bound is nonnegative
if and only if t + 1 >

q−1
q n; so, it is effective for high values of t (in contrast, Rao’s bound

[17] is effective for relatively small t). The bound is tight, and there are orthogonal arrays
constructed as linear [11, Sect. 4.3] or additive [1, Sect. 4.2] codes that attain it. Binary (q = 2)
orthogonal arrays attaining bound (1) whose size is not a power of 2 can be constructed as
completely regular codes (see Definition 2 below) by the Fon-Der-Flaass construction [8];
the first example is OA(1536, 13, 2, 7). Ternary (q = 3) arrays with the similar property were
recently discovered, again in terms of completely regular codes, in [10]; the first example
is OA(5 · 38, 11, 3, 8). For q ≥ 4, the problem of existence of orthogonal arrays attaining
bound (1) whose size is not a power of q or of its prime divisor remains open. Similar
questions can be considered for mixed-level orthogonal arrays.

In this correspondence, we prove (Sect. 3) that (1) holds for mixed-level orthogonal arrays
OA(N , q1 · q2 · . . . · qn, t) if we replace qn by the product of all qi s and 1

q by the average

value of 1
qi
. The arrays (we treat an array as a multiset of rows of length n) attaining this

bound are necessarily simple sets (without repeated elements), independent sets (without
pairs of elements at Hamming distance 1), and intriguing sets (completely regular codes with
covering radius 1, see the definition below). The new bound is tighter than the previously
known generalization [6]

N ≥ qn
m

(
1 − nq̃ − n

nq̃ + (t + 1 − n)qM

)
if nq̃ + (t + 1 − n)qM > 0, (2)

where qm, q̃, and qM are respectively the minimum, the average, and the maximum value
of qi , i = 1, . . . , n. For example, for OA(N , 2144, 3) the new bound is tight: N ≥ 64 =
29 · (

1 − (1 − 3
10 )

5
3+1

)
(see the construction in Example 1), while (2) gives N ≥ 16

7 =
25 · (

1 − (3.6−1)·5
4·(3+1)−(4−3.6)·5

)
.

Further (Sect. 4), in the case when all qi are powers of the same prime p, we prove
that additive (linear over GF(p)) mixed-level orthogonal arrays attaining the Bierbrauer–
Friedman bound are equivalent to special partitions of a vector space into subspaces, called
multispreads [13].

Finally (Sect. 5), we discuss variations of bound (1) that can give positive values when
the original bound (1) is negative. As an example, for OA(N , n, 2, n

2 − 1), n even, we obtain
the bound N > 0.409 · n−1 · 2n . To compare, for these parameters, Rao’s bound gives the

size of the Hamming ball of radius approximately n/4, which is 2h( 14 )n(1+o(1)), h( 14 ) � 0.8.
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Our main results are Theorem 7 (mixed-level orthogonal arrays are algebraic designs),
Theorem 9 (Bierbrauer–Friedman bound for mixed-level orthogonal arrays and a relation
with completely regular codes), Theorem 14 (the characterization of additive mixed-level
orthogonal arrays attaining the Bierbrauer–Friedman bound), and Lemma 18 (a polynomial
generalization of the Bierbrauer–Friedman bound for mixed-level orthogonal arrays).

2 Definitions and notations

By a graph, we will mean a multigraph, with multiple edges and loops allowed. A graph
without loops and edge multiplicities more than 1 is called simple. For a graph G and a
positive integer scalar s, sG denotes the graph on the same vertex set with all edge mul-
tiplicities multiplied by s. For two graphs G ′ = (V ′, E ′) and G ′′ = (V ′′, E ′′), G ′�G ′′
denotes their Cartesian product, the graph with the vertex set V ′ ×V ′′ and the edge (multi)set
{{(v1, v), (v2, v)} : {v1, v2} ∈ E ′, v ∈ V ′′} ∪ {{(v, v1), (v, v2)} : {v1, v2} ∈ E ′′, v ∈ V ′}.

For a positive integer s, the set {0, . . . , s − 1} will be denoted by [s].
Definition 1 (adjacency matrix of a graph, eigenfunctions and eigenspaces) For a graph
G = (V , E), the adjacency matrix A is the symmetric nonnegative integer |V | × |V | matrix
whose rows and columns are indexed by V and the (x, y)th element Ax,y , x, y ∈ V , equals
the multiplicity of {x, y} in the edge multiset E . The eigenvectors of A, treated as functions
from V toC, are called eigenfunctions ofG, or θ -eigenfunctions, where θ is the corresponding
eigenvalue. An eigenspace of G is the subspace of the vector space C

V consisting of the
constantly zero function and all θ -eigenfunctions for some eigenvalue θ . Since the adjacency
matrix of a graph is symmetric, the eigenspaces are pairwise orthogonal.

Definition 2 (completely regular code with covering radius 1, {b; c}-CR code) A set C of
vertices of a regular graph G = (V , E) is called a completely regular code with covering
radius 1 and intersection array {b; c}, where b, c > 0, or a {b; c}-CR code, or simply a
CR-1 code if for every vertex in V (in V \C) the number of edges that connect it with V \C
(respectively, with C), equals b (respectively, c).

Remark 1 In literature, CR-1 codes are studied under different names. They are also called
intriguing sets; the corresponding partition of the vertex set into C and V \C is known as an
equitable 2-partition or a 2-partition design; the corresponding 2-coloring of the vertex set
is a perfect 2-coloring.

Definition 3 (H(q1 ·q2 · . . . ·qn), Hamming graph) For integers q1, q2, ..., qn ≥ 2, the graph
H(q1 · q2 · . . . · qn) is the graph on the set of n-tuples from V = [q1] × . . . × [qn] with two
n-tuples forming an edge of multiplicityμ if and only if they differ in only the i th position for
some i ∈ {1, . . . , n} and μ = Q/qi , where Q = lcm(q1, ..., qn) (least common multiple). If
q1 = q2 = . . . = qn = q , then H(q1 · q2 · . . . · qn) is a simple graph known as a Hamming
graph and denoted H(n, q).

In particular, H(1, q) is the complete graph of order q and

H(q1 · . . . · qn) = Q

q1
H(1, q1)� . . . � Q

qn
H(1, qn).

Definition 4 (algebraic t-design) For a regular graph G = (V , E) with eigenvalues θ0 >

θ1 > . . . > θd and the corresponding eigenspaces S0, S1, …, Sd , a multiset C of its vertices
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is called an algebraic t-design (with respect to the natural descending ordering θ0, θ1, . . . , θd

of the graph eigenvalues) if in the decomposition

fC = ϕ0 + ϕ1 + . . . + ϕd , ϕi ∈ Si ,

of the multiplicity function fC (in the case of a simple set, the characteristic function,
indicator) of C we have ϕ1 = . . . = ϕt ≡ 0.

Definition 5 (orthogonal arrays, OA(N , q1·q2· . . . ·qn, t))AnonemptymultisetC ofn-tuples
from V = [q1]× . . . ×[qn] is called an orthogonal array of strength t , OA(|C |, q1 · q2 · . . . ·
qn, t), if for any distinct i1, …, it from {1, . . . , n} and any a1 ∈ qi1 , …, at ∈ qit , the number
of (x1, ..., xn) ∈ C such that xi j = a j , j = 1, ..., t , equals |C |

qi1qi2 ...qit
(i.e., independent

on the choice of a j , j = 1, ..., t). If q1 = q2 = . . . = qn , then such orthogonal arrays are
called pure-level (in some literature, symmetric) and also denotedOA(N , n, q1, t); otherwise,
they are called mixed-level, or just mixed (in some literature, asymmetric). For brevity, in the
notation q1 ·q2 ·. . .·qn , equal values of qi can be grouped using degrees, e.g., OA(N , 2·2·5, t)
is the same as OA(N , 2251, t), but not the same as OA(N , 4·5, t) = OA(N , 4151, t).

3 Orthogonal arrays and algebraic designs

We first describe the eigenspaces of the graph H(q1·q2·...·qn).

Lemma 6 The following functions form an orthogonal basis from eigenfunctions of H(q1 ·
q2 · . . . · qn):

χ(b1,b2,...,bn)(x1, x2, ..., xn) = ξ
b1x1
1 ξ

b2x2
2 . . . ξbn xn

s , bi ∈ [qi ], (3)

where ξi is the degree-qi primitive root of 1. Moreover, χ(b1,b2,...,bn) is an eigenfunction
corresponding to the eigenvalue θw = k − wQ, where

k =
n∑

i=1

Q

qi
(qi − 1)

is the degree of H(q1·q2·...·qn), Q = lcm(q1, ..., qn), and w is the number of nonzeros
among b1, b2, …, bn.

Proof The complete graph Kqi has eigenfunctions ξ(bi )(xi ) = ξ
bi xi
i corresponding to the

eigenvalue qi −1 if bi = 0 and−1 otherwise. After multiplying (the multiplicity of all edges
of) Kqi by

Q
qi
, we get the same eigenfunctions with eigenvalues Q

qi
(qi − 1) and − Q

qi
(qi − 1).

We note that the difference Q between these two eigenvalues does not depend on i .
The rest is straightforward from the following easy property of the Cartesian product of

graphs, see e.g. [3, Sect. 1.4.6]: if χ ′(x ′), x ′ ∈ V ′, and χ ′′(x ′′), x ′′ ∈ V ′′, are θ ′- and θ ′′-
eigenfunctions of graphs �′ = (V ′, E ′) and �′′ = (V ′′, E ′′), respectively, then χ(x ′, x ′′) =
χ ′(x ′)χ ′′(x ′′) is a (θ ′ + θ ′′)-eigenfunction of �′��′′. �	

The following fact generalizes Delsarte’s characterization [5, Theorem 4.4] of pure-level
orthogonal arrays as algebraic designs.

Theorem 7 A multiset C of words from V = [q1] × . . . × [qn] is an orthogonal array
OA(|C |, q1·q2·...·qn, t) if and only if C is an algebraic t-design in H(q1·q2·...·qn).
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Proof If. Assume C is an algebraic t-design and fC is its multiplicity function. We need to
show that the sum of fC over V a1,...,at

i1,...,it
does not depend on the choice of a1, …, at , where

1 ≤ i1 < . . . < it ≤ n, a j ∈ [qi j ], and V a1,...,at
i1,...,it

denotes the set of all n-tuples (x1, ..., xn)

from V such that xi1 = a1, …, xit = at .
We have

fC = ϕ0 + ϕt+1 + ϕt+2 + . . . + ϕn,

where ϕi is the zero constant or a θi -eigenfunction of H(q1·q2·...·qn).
For i ≥ t + 1, each such eigenfunction is a linear combination of basis eigenfunctions

χ(b1,...,bn) from (3), where the number of nonzero elements among b1, …, bn is i . We claim
that

(*) for more than t nonzeros in (b1, . . . , bn), the sum of χ(b1,...,bn) over V a1,...,at
i1,...,it

equals 0.
Indeed, denoting by l1, …, ls the indices from {1, ..., n}\{i1, ..., it }, s = n − t , we have

∑

(x1,...,xn)∈V
a1,...,at
i1,...,it

χ(b1,...,bn)(x1, ..., xn)

= ξ
bi1ai1
i1

· . . . · ξ
bit ait
it

·
ql1∑

xl1=0

ξ
bl1 xl1
l1

· . . . ·
qls∑

xls =0

ξ
bls xls
ls

. (4)

Since the number of nonzeros is larger than t , for at least one j from {l1, . . . , ls} we have
b j �= 0. It follows that at least one sum in (4) equals 0, which proves (*).

From (*) we conclude that the sum of fC over V a1,...,at
i1,...,it

equals the sum of φ0 over V a1,...,at
i1,...,it

.
Since φ0 is a constant, the sum does not depend on the choice of a1, …, at .

Only if.Weneed to show that fC is orthogonal to the θi -eigenspace for every i in {1, . . . , t},
i.e., to all χ(b1,...,bn) with more than 0 and at most t nonzeros in (b1, . . . , bn). Let all i such
that bi �= 0 lie in {i1, . . . , it }, where 1 ≤ i1 < . . . < it ≤ n. For the standard scalar product
( fC , χ(b1,...,bn)) of fC and χ(b1,...,bn), we have

( fC , χ(b1,...,bn)) =
∑

(x1,...,xn)∈V

χ(b1,...,bn)(x1, ..., xn) · fC (x1, ..., xn)

(i)=
∑

(x1,...,xn)∈V

ξ
bi1 xi1
i1

· . . . · ξ
bit xit
it

· fC (x1, ..., xn)

=
qi1−1∑
a1=0

. . .

qit −1∑
at =0

∑

(x1,...,xn)∈V
a1,...,at
i1,...,it

ξ
bi1 xi1
i1

· . . . · ξ
bit xit
it

· fC (x1, ..., xn)

=
qi1−1∑
a1=0

ξ
bi1a1
i1

· . . . ·
qit −1∑
at =0

ξ
bit at
it

·
∑

(x1,...,xn)∈V
a1,...,at
i1,...,it

fC (x1, ..., xn)

(ii)=
qi1−1∑
a1=0

ξ
bi1a1
i1

· . . . ·
qit −1∑
at =0

ξ
bit at
it

· |C |/qi1 ...qit

(iii)= 0,

where in equality (i) we use that ξ
b j x j
j = 1 if b j = 0, in (ii) we use the definition of an

orthogonal array, and (iii) holds because for some j in {i1, ..., it } we have b j �= 0 and hence
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∑q j
a=0 ξ

b j a
j = 0. We have shown that fC is orthogonal to χ(b0,...,bn) for any (b0, ..., bn) with

more than 0 and less than t + 1 nonzeros. Hence, C is an algebraic t-design. �	
Now, we can apply the following lower bound on the size of an algebraic design in a

regular graph.

Lemma 8 ([14, Sect. 4.3.1]) The cardinality of an algebraic t-design C in a k-regular graph
G = (V , E) with eigenvalues k = θ0 > θ1 > . . . > θd satisfies the inequality

|C |
|V | ≥ −θt+1

k − θt+1
. (5)

Moreover, a multiset C of vertices of G is an algebraic t-design meeting (5) with equality if
and only if C is a simple set (without multiplicities more than 1) and a {k;−θt+1}-CR code.

The following bound was proved in [9] for q1 = . . . = qs = 2 and in [2] for q1 = . . . =
qs = q for any q . The theorem generalizes the mentioned results to the case of mixed-level
orthogonal arrays.

Theorem 9 For an orthogonal array C with parameters OA(N , q1·...·qn, t), we have

N ≥ q1q2...qn

(
1 − (

1 − 1

q

) n

t + 1

)
, (6)

where q is the harmonic mean of all qi , i.e.,
1

q
= 1

n

n∑
i=1

1

qi
.

Moreover, a multiset of vertices of the graph H = H(q1 ·. . .·qn) is an OA(|C |, q1·...·qn, t)
meeting (6) with equality if and only if C is a simple set (without multiplicities more than 1)
and a {k;−θt+1}-CR code, where k = Qn(1− 1

q ) (the degree of H) and θt+1 = k −(t +1)Q,
Q = lcm(q1, . . . , qn).

Proof Taking into account Theorem 7 and Lemma 8, it remains to check that (5) and (6) are
the same for G = H . Indeed, the degree of H is

k = Q

q1
(q1 − 1) + . . . + Q

qn
(qn − 1) = Qn − Q

( 1

q1
+ . . . + 1

qn

)
= Qn

(
1 − 1

q

)

and θi = k − i Q. So, we find

−θt+1

k − θt+1
= (t + 1)Q − k

(t + 1)Q
= 1 −

(
1 − 1

q

) n

t + 1
.

�	
Next, we compare the new boundwith the previous generalization (2) of (1) tomixed-level

orthogonal arrays [6].

Proposition 10 For mixed-level orthogonal arrays, bound (6) is tighter than (2).

Proof Rewriting (2) in a convenient form, we have to prove that

q1q2...qn

(
1 − (

1 − 1

q

) n

t + 1

)
≥ qn

m

(
1 − (

1 − 1

q̃

) 1

1 − (1 − t+1
n )

qM
q̃

)
,

where

qm ≤ q ≤ q̃ ≤ qM, (7)
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1 − t + 1

n
≥ 0, (8)

1 −
(
1 − t + 1

n

)
qM
q̃

≥ 0 (9)

((7) are known inequalities between the minimum, the harmonic mean, the arithmetic mean,
and the maximum values; (8) is from t < n for nontrivial orthogonal arrays; (9) means that
the denominator in (2) is positive, which is the condition of the applicability of (2)). The
required inequality is straightforward from the following three observations.

(i) Trivially, q1q2...qn ≥ qn
m.

(ii) From (7) we have 1 − 1

q
≤ 1 − 1

q̃
.

(iii) Taking into account (7)–(9), we get

n

t + 1
= 1

1 − (1 − t+1
n )

≤ 1

1 − (1 − t+1
n )

qM
q̃

.

Finally, each of (i), (ii), (iii) turns to equality if and only if q1 = q2 = . . . = qn , i.e., for
pure-level arrays. �	
Remark 2 As noted in [6], the definition of an orthogonal array implies that N must be a
multiple of

Qt = lcm {qi1qi2 . . . qit : 0 < i1 < . . . < it ≤ n}.
In particular, this gives the bound N ≥ Qt (by similarity of arguments, it can be considered as
an analog of the Singleton bound for error-correcting codes), but also means that any bound
of form N ≥ B(q1 · . . . · qn, t) can be rounded to

N ≥ �B(q1 · . . . · qn, t)/Qt
 · Qt . (10)

However, in some cases bound (6) is already divisible by Qt , and the problem of the existence
of orthogonal arrays attaining it arises. In the next section, we show how to construct such
arrays in the case when all qi are powers of the same prime number.

4 Additivemixed-level orthogonal arrays attaining the
Bierbrauer–Friedman bound

In this section, all qi are powers of the same prime p, and [pi ] is associated with the vector
spaceFi

p (to be explicit, an integera in [pi ] can be associatedwith its p-based notation, treated

as a vector from F
i
p). We should warn the reader about the following difference in notation:

now qi denotes pi , not the number of levels (alphabet size) in the i th position. This is because
in this section, it is convenient to write parameters in the form OA(N , qn1

1 qn2
2 . . . qns

s , t) (all
qi are different, but some ni , i < s, can be zero), while in Sect. 3 the preferred form was
OA(N , q1 · q2 · . . . · qn, t), where qi are not necessarily distinct.

Definition 11 (additive code) A set of (n1 + . . . + ns)-tuples from V = (F1
p)

n1 × (F2
p)

n2 ×
. . .× (Fs

p)
ns , where p is prime, is called additive (an additive code, or an additive orthogonal

array if we consider it as an orthogonal array) if it is closed with respect to the coordinatewise
addition, i.e., forms a subspace of the (n1 + 2n2 + . . . + sns)-dimensional vector space V
over Fp .
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Remark 3 For prime p, “additive” and “Fp-linear” are the same, but in general, if p is a
prime power, Fp-linear codes form a proper subclass of additive codes. The theory in the
rest of this section keeps working for an arbitrary prime power p if we replace “additive” by
“Fp-linear” everywhere. However, to simplify reading, we focus on the most important case
of prime p and localize the arguments for the general case in this remark.

Any k-dimensional vector subspace C of an n-dimensional vector space Sn can be rep-
resented as the null-space (kernel) of a homomorphism from Sn to an (n − k)-dimensional
vector space Sn−k over the same field. If the bases in Sn and Sn−k , are fixed, such a homo-
morphism is represented by an (n − k) × n matrix, called a check matrix of C . In our case
the dimension of the space is (n1 + 2n2 + . . . + sns), we have a natural basis, and the
coordinates of a vector, as well as the columns of a check matrix, are naturally divided into
n1 + n2 + . . . + ns groups, blocks, the first n1 blocks of size 1, the next n2 blocks of size 2,
and so on. For a check matrix H , by Hi, j we denote the space spanned by the columns from
the j th block of size i .

Definition 12 (multifold partition of a space) A multiset D of subspaces of a vector space S
is called a μ-fold partition of S if every nonzero vector of S belongs to exactly μ subspaces
from D, respecting the multiplicities.

Next, we define two concepts, which are not (in contrast to Definition 12) key concepts in our
theory, but allow to mention additionally one important correspondence in the main theorem
of this section.

Definition 13 (one-weight code, alphabet-effective code) An additive code C in V is called
one-weight (of weight w) if the number of nonzero blocks in a nonzero codeword is constant
(equal to w). The code is called alphabet-effective if in each block, every element of the
corresponding alphabet Fi

p occurs in some codeword (so, the alphabet Fi
p is effectively

used).

Theorem 14 Let H be an m × (n1 + 2n2 + . . . + sns) rank-m matrix over Fp, and let C be
the null-space of H (so, C is an additive code in (F1

p)
n1 × . . . × (Fs

p)
ns ). Denote

k =
s∑

i=1

ni (ps − ps−i ) = ps
s∑

i=1

ni (1 − p−i ), μ = k

pm − 1
, qi = pi . (11)

The following assertions are equivalent:

(i) C is an OA(|C |, qn1
1 qn2

2 ...qns
s , t) attaining bound (6);

(i’) C is an OA(|C |, qn1
1 qn2

2 ...qns
s , t) with t = μ+k

ps − 1;

(ii) C is a {k, μ}-CR code in H(qn1
1 qn2

2 ...qns
s );

(iii) the code C⊥ generated by the rows of H is an alphabet-effective one-weight code of
weight μpm−s ;

(iv) the multiset M = {ps−i × Hi, j }s
i=1

ni
j=1 of subspaces of Fm

p is a μ-fold partition (ps−i ×
Hi, j denotes that Hi, j is added ps−i times in the multiset);

(v) the collection M⊥ = {H⊥
i, j }s

i=1
ni
j=1 of subspaces dual to Hi, j is a ν-fold partition of Fm

p ,

where ν = n1 + . . . + ns − pm−s · μ.

Proof Since C is a null-space of H , we have |C | = pn1+2n2+...+sns /pm = qn1
1 · qn2

2 · . . . ·
qns

s /pm .
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(i)⇐⇒(i’) Taking into account the expression for |C | above, (6) has the form
p−m ≥

(
1 − (

1 − 1

q

) n

t + 1

)
. (12)

(recall that q is the harmonic mean of q1, ..., q1︸ ︷︷ ︸
n1 times

, q2, ..., q2︸ ︷︷ ︸
n2 times

, . . . , qs, ..., qs︸ ︷︷ ︸
ns times

). From the equality

in (12), we find

t + 1 = n(1 − 1
q )

1 − p−m
= p−sk

1 − p−m
= p−sk

(
1 + 1

pm − 1

)
= k + μ

ps
.

Inversely, substituting t = k+μ
ps − 1 turns (12) to equality.

(i)⇐⇒(ii) By Theorem 9, C attains (6) if and only if it is a {k;−θt+1}-CR code, where k
is the degree of H(qn1

1 qn2
2 ...qns

s ) and θt+1 = k − ps(t + 1) (the (t + 1)th largest eigenvalue
of H(qn1

1 qn2
2 ...qns

s ), counting from 0).
(ii)⇐⇒(iv) Assume that (iv) holds and we have to show (ii). We first check that

(*) Hi, j has dimension i for each i , j .

Indeed, if it is so, then Hi, j has (pi − 1) nonzero points, ps−i × Hi, j has (ps − ps−i )

nonzero points, and M has
∑s

i=1 ni (ps − ps−i ), i.e., k, nonzero points. This is exactly
the number of points we need to cover all pm − 1 nonzero points of Fm

p with multiplicity

μ = k
pm−1 .

But if one Hi, j has dimension smaller than i , then the number of points in M is not enough
to make a μ-fold partition of Fm

p . So, (*) holds.
Next, (*) means that C is independent. Indeed, if there are two adjacent vectors x and y

in C , then their difference x − y has nonzero values only in coordinates from one block, say
(i, j)th. In this case, these values are coefficients of a nontrivial linear dependency between
the corresponding columns, and hence Hi, j has dimension smaller than i , contradicting (*).

The independence of C implies that every its element is connected to elements not in C
by k edges (k is the degree of the graph), and it remains to confirm the second parameter μ

of the {k;μ}-CR code.
For a vector v not in C denote by s its syndrome H · vT (since c /∈ C , the syndrome s is

nonzero). A vector v − e is adjacent to v and belongs to C if and only if H · eT = s and e has
zeros in all positions out of one block, say (i, j)th. The last is equivalent to s ∈ Hi, j . Since
the subspace Hi, j is counted with multiplicity ps−i in the multiset M , and the multiplicity
of the edge {v, v − e} is also ps−i , the number of edges between v and C is equal to the
multiplicity of s in M , i.e., μ.

By reversing the arguments, we ensure that (ii) implies (iv).
(iv)⇐⇒(v) The equivalence between (iv) and (v) is proven in [13, Theorem 3] (which is,

apart of the direct correspondence between the parameters, is essentially a special case of [7,
Theorem 15]).

(iv)⇐⇒(iii) The equivalencebetween (iv) and (iii) is essentially proven in [13,Theorem1].
The difference is that [13, Theorem 1] considers one-weight codes over the same alphabet
F

s
p (in our current notation), but not necessarily alphabet-effective. It remains to observe

that there is a trivial weight-preserving relation between alphabet-effective additive codes
over our mixed alphabet and additive codes over the alphabet Fs

p , namely, adding s − i zero
columns to each block of size m × i of the generator matrix H . �	

A collection of subspaces of Fm
p of dimension at most s satisfying the condition of The-

orem 14 is called a (λ, μ)
s,m
p -multispread [13], where λ = n1(ps−1 − 1) + n2(ps−2 −

123



D. S. Krotov et al.

1) + . . . + ns−1(p1 − 1) (the multiplicity of the zero vector in M). Theorem 14 means that
such multispreads with ni subspaces of dimension i , i = 1, ..., s, corresponds to orthogonal
arrays in (F1

p)
n1 × . . . × (Fs

p)
ns attaining the generalized Bierbrauer–Friedman bound (6)

in Theorem 9. Note that n1, …, ns are not uniquely determined from the parameters p, s,
m, λ, μ of a (λ, μ)

s,m
p -multispread, and even without fixing n1, …, ns the problem of exis-

tence of (λ, μ)
s,m
p -multispread is open in general (in [13], it is completely solved for s = 2,

any p, and for ps ∈ {23, 24, 33}). The pure-level subcase of Theorem 14 was proved in [1,
Theorem 4.8]; in that case, λ = 0, and multispreads are μ-fold spreads, whose parameters
are characterized, see [12, p. 83], [7, Corollary 8].

Example 1 Consider the 3 × (1 · 1 + 4 · 2) matrix

H =
⎛
⎝
1 1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 1 1
1 0 0 0 1 0 1 0 1

⎞
⎠

over F2. Its null-space C is an additive OA(64, 2144, 3) attaining (6). Indeed,

• 64 = 29
(
1 − (1 − 3

10 )
5

3+1

)
;

• the degree of the graph H(2144) = 2K2 × K4 × K4 × K4 × K4 is 2 + 4 · 3 = 14;
• the eigenvalue θt+1 = θ4 equals 14 − 4 · 4 = −2;
• the subspace H1,1 = 〈(1, 1, 1)〉, corresponding to the first column, is taken with

multiplicity 2 and covers the vector (1, 1, 1) exactly 2 = −θ4 times; each of the
other nonzero vectors from F

3
2 is covered exactly 2 = −θ4 times by the subspaces

H2,1 = 〈(1, 0, 0), (0, 1, 0)〉, H2,2 = 〈(1, 0, 0), (0, 0, 1)〉, H2,3 = 〈(0, 1, 0), (0, 0, 1)〉,
H2,4 = 〈(1, 1, 0), (0, 1, 1)〉, formed by the last four blocks of columns; so, μ = 2.

• According to p.(iv) of Theorem 14, the dual subspaces H⊥
1,1, H⊥

2,1, H⊥
2,2, H⊥

2,3, H⊥
2,4 form

a partition of F3
2, ν = n1 + n2 − μ · 2m−s = 1 + 4 − 2 · 23−2 = 1.

• Every nonzero linear combination of the rows of H has exactly 4 nonzero blocks, i.e,
C⊥ is a one-weight code of weight 4 = μ · 2m−s .

5 Polynomial generalization of the Bierbrauer–Friedman bound

For a connected graph G, d(G) denotes its diameter, and G( j), denotes a simple graph where
two vertices are adjacent if and only if the distance between them in G is j .

Definition 15 (distance-regular graph) A simple connected graph is called a distance-
regular graph if for i = 1, . . . , d(G) the product A(1) A(i) is a linear combination of A(i−1),
A(i), and A(i+1), where A( j) is the adjacency matrix of G( j).

Corollary 16 For every distance-regular graph G, there are degree-i polynomials K (i), i =
0, . . . , d(G), such that G(i) = K (i)(G).

Let G be a distance-regular graph. Consider a nonnegative integer linear combination of
the polynomials K (i), i.e., P = ∑

i αi K (i), ai ≥ 0. Then P(A) is the adjacency matrix of a
multigraph P(G) with the same set V of vertices. If vertices u and v are at distance i from
each other in G, then the edge {u, v} has multiplicity αi in P(G). The following proposition
collects some obvious and straightforward facts about eigenfunctions of G and P(G).

Proposition 17 (a) The set of eigenfunctions of P(G) includes the set of eigenfunctions
of G. If P is strictly monotonic function, then these sets coincide.
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(b) If ϕ is an eigenfunction of G with eigenvalue θ , then ϕ is also an eigenfunction of P(G)

with eigenvalue P(θ).

(c) If P strictly increases, then the sets of algebraic t-designs of G and P(G) coincide.

The next lemma is a variant of Lemma 8.

Lemma 18 Let G = (V , E) be a distance-regular graph with eigenvalues k =
θ0, θ1, . . . , θd(G), in the decreasing order, let the polynomial P be a linear combination

P(x) = α1K (1)(x) + . . . + αd(G)K (d(G))(x)

of the polynomials K (i) from Corollary 16, where αi ≥ 0, i = 1, . . . , d(G), and let

μ = max {P(θt+1), . . . , P(θd(G))}.
If μ < 0, then the cardinality of an algebraic t-design C satisfies the inequality

|C |
|V | ≥ −μ

P(k) − μ
. (13)

Proof If all αi are integer, then P(x) is a graph, for which Lemma 8 gives (13).
If all αi are rational, we divide P by their greatest common divisor, which makes all αi

integer and does not affect the value in (13).
If some αi are irrational, we can approximate them by rational values with any accuracy

and get (13) as the limit of bounds corresponding to polynomials P with rational coefficients.
�	

Remark 4 Although in this section we focus on distance-regular graphs, the approach is
partially applicable in more general cases. Proposition 17 and Lemma 18 above work for
any regular graph G and a polynomial P such that for the adjacency matrix A of G, the
matrix P(A) is nonnegative (and integer, for Proposition 17). Combining the distance-i
polynomials K (i) of G is also possible if they exist for some values of i , not necessarily for
all i from 0 to d(G).

Our aim is to find a polynomial P such that θt+1 ≥ 0 butμ < 0. In this case, the lower bound
from Lemma 8 is non-positive and hence trivial, while the lower bound from Lemma 18 is
positive and can be valuable. Actually, to obtain the best lower bound in (13), we need to
solve the following linear programming problem in the variables α1, …, αd(G), μ (the last
one is an additional variable, which plays the role of max{P(θ j )} j≥t+1):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(G)∑
i=1

αi K (i)(θ j ) ≤ μ, j = t + 1, . . . , d(G),

αi ≥ 0, i = 1, . . . , d(G),

d(G)∑
i=1

ai K (i)(θ0) = const (the degree of P(G)),

μ −→ min .

By the proof of Lemma 18, we do not need to care about the integrity of αi . By Lemmas
8, 18, and Proposition 17(c) we can conclude the following.
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Proposition 19 Let a collection a1, . . . , ad(G) be the solution of the linear program and let
P be the corresponding polynomial. Suppose that P(θt+1) �= P(θ j ) for j �= t + 1. If some
t-design C attains the bound (13), then C is a CR-1 code in G.

For the Hamming graph G = H(n, q), the degree-w polynomial K (w) is

K (w)(·) = Pw(P−1
1 (·)),

where Pw(x) = Pw(x; n, q) =
w∑

j=0

(−1) j (q − 1)w− j
(

x

j

) (
n − x

w − j

)

is the Krawtchouk polynomial; P1(x) = (q − 1)n − qx , P−1
1 (y) = (q − 1)n − y

q
.

Example 2 Consider G = H(2m, 2), t = m − 1. Let us derive a bound on the size of
OA(N , 2m, 2, m − 1) by combining only three polynomials K (i), i = 1, 2, 3. We have
G = H(2m, 2), θt+1 = θm = 0,

K (1)(x) = x, K (2)(x) = 1

2
(x2 − 2m), K (3)(x) = 1

6

(
x3 − (6m − 2)x

)
.

We are looking for a polynomial P = K (3) + βK (2) + αK (1) where α ≥ 0, β ≥ 0, and

P ′(x) ≥ 0 for all x ∈ [−2m, 0]. Put α = β2

2 + m − 1
3 . Then 6P(x) = (x +β)3 −β3 −6βm.

It is easy to see that P increases monotonically. Substituting β = m√
3
, we obtain 6P(x) =

x3 + √
3mx2 + m2x − 2

√
3m2 and, by (13),

|C |
|V | ≥ −6P(0)

6P(2m) − 6P(0)
= 2

√
3m2

10m3 + 4
√
3m3

= 1

m(5 · 3− 1
2 + 2)

>
0.2046

m
.

6 Conclusion

The most general contribution of our correspondence is a representation of orthogonal
arrays as algebraic designs (which was previously known only for pure-level arrays). More
specifically, as an application of this representation, we have considered two possibilities to
generalize the Bierbrauer–Friedman bound for orthogonal arrays.

One of the generalizations concerns mixed-level orthogonal arrays, and we have also
shown how to construct arrays attaining the generalized bound. However, the constructed
arrays have one restriction because of their additive structure over a finite field; namely, the
size of such an array is always a prime power. As was mentioned in the introduction, the only
known arrays attaining the Bierbrauer–Friedman boundwith the size not being a prime power
are pure-level binary or ternary. By generalizing the bound the problem of the existence of
such arrays also expands to the mixed-level case. In particular: do there exist mixed-level
OA(N , 2n13n2 , t) attaining bound (6)? Orthogonal arrays attaining the considered bound (in
both pure- and mixed-level cases) are of special interest because of their relation with such
regular structures as CR-1 codes (equivalently, intriguing sets, equitable 2-partitions, perfect
2-colorings).
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The other, polynomial, generalization, considered in Sect. 5, makes it possible to obtain
a lower bound on the size of a pure-level orthogonal array when the original Bierbrauer–
Friedman bound gives a trivial inequality. The authors do not know if it is possible to improve
the Bierbrauer–Friedman bound in this way in cases when it is positive.
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