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Abstract
We consider various definitions of degrees of discrete functions and establish relations
between the number of relevant (essential) variables and degrees of two- and three-valued
functions.
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1 Introduction

Let T be an arbitrary set and let T n be the Cartesian power of T . Given a function f
on T n , a variable xi , 1 ≤ i ≤ n, is called relevant (essential, or effective) if there exist
a1, . . . , ai−1, ai+1, . . . , an ∈ T and b, c ∈ T such that

f (a1, . . . , ai−1, b, ai+1, . . . , an) �= f (a1, . . . , ai−1, c, ai+1, . . . , an).

In this paper we study the relationship between various concept of degrees and the number
of relevant variables for two- and three-valued functions on [q]n , where [q] is a q-element
set. Binary-valued functions can be considered as indicator functions of subsets of [q]n , so
we can speak about the number of relevant variables for sets. For any bijection π : T → [q]
and any injection σ : [p] → P relevant variables of f : [q]n → [p] one-to-one correspond
to relevant variables of σ ◦ f ◦π . So, the relevance of variables does not depend on bijections
of the domain and on injections of the image set of a function. For convenience, we take
{−1, 1} as the image set of two-valued functions. Binary-valued functions on {0, 1}n are
called Boolean.

It is easy to see that every Boolean function f : {0, 1}n → {−1, 1} can be represented as
a real polynomial. The minimum degree of a polynomial that coincides with f on {0, 1}n is
called the degree of f .

A famous theorem of Nisan and Szegedy [6] states that a Boolean function of degree d
has at most d2d−1 relevant variables. This bound was improved to 6.614 · 2d in [4], and then
it was further improved to 4.394 · 2d in [11].
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For every balanced Boolean function f , the degree of f is equal to the order of correlation
immunity of f ⊕ �1, where �1(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn (see [3], Theorem 5). Thus, the
number of non-relevant variables of f is equal to the number of linear variables of f ⊕�1. So,
bounds on the number of relevant variables provide bounds on the number of linear variables
and vice versa in the case of balanced Boolean functions. The same bound as in [6] was
proved in terms of correlation immunity in [8].

It is possible to generalize the definition of the degree to other discrete functions in different
ways, one of them is used by Filmus and Ihringer [5]. The precise definition of this degree
will be given in the next section. The remark at the end of their paper [5] and the upper bound
for Boolean functions from [11] imply that a two-valued function f on [q]n of degree d has

at most 4.394 · 2�log2 q	d relevant variables. In [10] this bound was improved to dqd+1

4(q−1) for
q �= 2s .

In the next section we introduce degrees degi ( f ) for functions f : [q]n → [p],
where deg0( f ) coincides with the degree d . In Section 41 we prove upper bounds
1
4π

2deg1( f )qdeg0( f )−1 and 1
2π

2 deg2( f )qdeg0( f )−2 (Theorem 1) for the number of rele-
vant variables of two-valued functions. Unlike the previous bounds, the new bounds depend
on deg1( f ) and deg2( f ). We will see that they are better than all other known ones for
some classes of functions. For example, the second bound is better than others if q ≥ 4

and deg2( f ) = deg0( f ). Moreover, in Section 5 we obtain upper bounds deg0( f )qdeg0( f )+1

3(q−1)

(Theorem 2), π2

3 deg1( f )qdeg0( f )−1, and 2π2

3 deg2( f )qdeg0( f )−2 (Theorem 3) for the number
of relevant variables in the case of three-valued functions.

Our proofs are based on the notion of an average sensitivity. We consider a function
f : [q]n → [p] as a p-coloring of a graph G such that |V (G)| = qn . The average sensitivity
I [ f ] is the number of mixed colored edges in G. Our estimation of I [ f ] is similar to the
proof of the Bierbrauer–Friedman bound (see [2] and [7]) and depends on the adjacency
matrix of G. In previous papers [5, 6, 10, 11] the authors implicitly or explicitly treated G
as the Hamming graph. In the present paper we use the Cartesian products of cycles instead
of the Hamming graphs.

Moreover, in Section 3 we discuss relations between these degrees and other well-known
degrees of Boolean function such as numerical and algebraic degrees.

2 Fourier–Hadamard transform

In this section we treat the domain [q]n of functions as an abelian group G of order [q]n .
Consider the vector space V (G) consisting of functions f : G → C with the inner product

( f , g) =
∑

x∈G

f (x)g(x).

A function f : G → C\{0} mapping from G to the non-zero complex numbers is called a
character of G if it is a group homomorphism from G to C, i.e., φ(x + y) = φ(x)φ(y) for
each x, y ∈ G. The set of characters of G is an orthogonal basis of V (G).

We consider the linear space V (Zn
q) of complex valued functions with finite domain

Z
n
q = (Z/qZ)n . Let ξ = e2π i/q . We can define characters of Zn

q as φz(x) = ξ 〈x,z〉, where
〈x, z〉 = x1z1 + · · · + xnzn mod q for each z ∈ Z

n
q .

1 The results of Sections 3 and 4 were presented in the 9th International Workshop on Boolean Functions and
their Applications.

123



Cryptography and Communications

Below we will consider Zq as the set {− q−2
2 , . . . ,−1, 0, 1, . . . , q

2 } if q is even and as

the set {− q−1
2 , . . . ,−1, 0, 1, . . . , q−1

2 } if q is odd. We define the mth degree of φz , z =
(z1, . . . , zn), as the sum degm(φz) = ∑n

k=1 |zk |m . The weight of z ∈ Z
n
q is the number of

nonzero coordinates of z, i. e., wt(z) = deg0(φz).
Changing the variables xi → yi = ξ xi or xi → yi = ξ−xi we see that φz corresponds to

an expression of the form yz1
1 · · · yzn

n of degree deg1 φz .
Consider the expansion of f ∈ V (Zn

q) with respect to the basis of characters

f (x) = 1

qn

∑

z∈Zn
q

W f (z)φz(x), (1)

where W f (z) = ( f , φz) are called the Fourier–Hadamard coefficients of f . The function
W f ∈ V (Zn

q) is called theFourier–HadamardorWalsh–Hadamard (in binary case) transform
of f . We define

degm( f ) = max
W f (z)�=0

degm(φz).

If q = 2 or q = 3 then we see that degm( f ) = deg0( f ) for all m. Note that in [5] and [10]
the authors call deg0( f ) the degree of f . For q ≥ 4 and any z ∈ Z

n
q including a coordinate

zi , |zi | ≥ 2 we have deg1(φz) > deg0(φz). In the next section we will justify that deg1 is
some analogue of the polynomial degree.

Consider the simplest example of a function f with different values of degrees degm( f ),
m = 0, 1, . . . . Let f : Z4 → {0, 1} be defined by the values f (0) = f (1) = f (2) = 0 and
f (−1) = 1. We have ξ = e2π i/4 = i and

φ0 = (1, 1, 1, 1), φ1 = (1, i,−1,−i), φ2 = (1,−1, 1,−1), φ−1 = (1,−i,−1, i).

By the definition, degm(φ0) = 0 for allm, deg0(φz) = 1 for z �= 0; deg1(φ1) = deg1(φ−1) =
1, deg1(φ2) = 2; deg2(φ1) = deg2(φ−1) = 1, deg2(φ2) = 4. It is easy to calculate that

f = 1

4
(φ0 + iφ1 − φ2 − iφ−1).

Thus, deg0( f ) = 1, deg1( f ) = 2, deg2( f ) = 4.

3 Properties of numerical degree of Boolean functions

Let T be a finite subset of C. Consider the linear space V (T n) of complex valued functions
on T n . Let Ck(x1, . . . , xn) be the linear space of polynomials over C, where every variable
has degree at most k − 1.

Proposition 1 For every function g ∈ V (T n) there exists a unique polynomial Pg ∈
Ck(x1, . . . , xn), k = |T |, such that Pg|T n = g.

Proof We will prove the existence of the polynomial by induction. If n = 1 then Pg is the
Lagrange interpolating polynomial. By the induction hypothesis, there exist Pi |T n−1×{ti } =

g|T n−1×{ti }, where ti ∈ T . Then Pg(x) =
n∑

i=1
Pi (̃xi )

∏
t j ∈T \{ti }

(xi −t j )

∏
t j ∈T \{ti }

(ti −t j )
, where x̃i is the set of all

variables except for xi . Since the dimensions of V (T n) and Ck(x1, . . . , xn) coincide, such a
polynomial is unique. �
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Let deg P be the degree of P ∈ Ck(x1, . . . , xn). We will call the weight rank (wran P)
the maximum number of variables in the monomials of P . Obviously, wran P ≤ deg P and
if k = 2 then wran P = deg P . We define degnum g = deg Pg and wrannum g = wran Pg .

Proposition 2 Let f : Zn
q → C and let s : Zq → C be defined by the equation s(x) = ξ x .

Then there exists g ∈ V ((s(Zq))n) such that f = g ◦s, wrannum g = deg0 f and degnum g ≥
deg1 f .

Proof By (1) we have

f (x1, . . . , xn) = 1

qn

∑

z∈Zn
q

W f (z)ξ
x1z1 · · · ξ xn zn .

Define g by the following equation.

g(s1, . . . , sn) = 1

qn

∑

y∈{0,1,...,q−1}n

W f (y)sy1
1 · · · syn

n ,

where yi = zi mod q . It is easy to see that f = g ◦ s and |zi | ≤ yi for every i =
1, . . . , n. Therefore, degnum g = maxy

∑n
k=1 yk ≥ maxz

∑n
k=1 |zk | = deg1 f . Moreover,

wrannum g = max
W f (z)�=0

wt(z) = deg0 f . �

Consider a function f : Zn
q → C and two injections si : Zq → C, where Ti = si (Zq)

and f = gi ◦ si , i = 1, 2. Then gi ∈ V (T n
i ), i = 1, 2. It is easy to see that wrannum g1 =

wrannum g2 but degnum g1 and degnum g2 may be different even in the case n = 1. Indeed,
consider a function f : Z3 → C defined by the equation f (−1) = 1, f (0) = 5, f (1) = 9.
If T = {t0, t0 + t1, t0 + 2t1}, t0, t1 ∈ C then g(t) = 1+ 4

t1
(t − t0), i. e., degnum g = 1 but for

an arbitrary T in the common case we have degnum g = 2. So if we want to define the degree
degnum f as degnum g1 then it will unfortunately depend on the injection of a finite set intoC.
Below we will consider the case |T | = 2 in more detail. In this case degnum f = wrannum f
and therefore this degree does not depend on the injection into C.

Next we treat the domain [2]n of functions as a vector space Fn
2. A real-valued function

f : Fn
2 → R is called a pseudo-Boolean function. By Proposition 1 every pseudo-Boolean

function can be represented in numerical normal form (NNF)

f (x1, . . . , xn) =
∑

y∈Fn
2

a(y)x y1
1 · · · x yn

n , (2)

where x0 = 1, x1 = x , and a(y) ∈ R. The maximum degree of the monomial in NNF is
called the numerical degree of f .

Every Boolean function f : Fn
2 → F2 can be represented in algebraic normal form (ANF)

f (x1, . . . , xn) =
⊕

y∈Fn
2

M f (y)x y1
1 · · · x yn

n , (3)

where x0 = 1, x1 = x , and the function M f : Fn
2 → F2 is called the Möbius transform of

f . It is well known (see [3]) that for every function the ANF is unique.
The maximal degree of the monomial in ANF of f is called the algebraic degree of f ,

i. e., degalg( f ) = max
M f (y)=1

wt(y). A function f is linear if its degree is at most one and

f (0) = 0. Denote by �u the linear function �u(x) = 〈u, x〉 = u1x1 ⊕ u2x1 ⊕ · · · ⊕ un xn ,
where u ∈ F

n
2, and �1(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn . Obviously, if f �= const or f �= �1
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then degalg( f ) = degalg( f ⊕ �1). A variable xi of f is called linear if f (x1, . . . , xn) =
g(x1, . . . , xi−1, xi+1, . . . , xn) ⊕ xi .

We can consider a Boolean function as a pseudo-Boolean function with values {0, 1} ⊂ R.
It is easy to prove that degalg( f ) ≤ degnum( f ) for any Boolean function f . Indeed, consider
ANF f (x1, . . . , xn) = ⊕

y∈Fn
2

a(y)x y1
1 · · · x yn

n , where a(y) = M f (y). Then

(−1) f (x1,...,xn) = ∏
y∈Fn

2

(−1)a(y)x
y1
1 ···x yn

n , and 1 − 2 f (x) = ∏
y∈Fn

2

(1 − 2a(y)x y1
1 · · · x yn

n ),

since (−1)b = 1 − 2b for b ∈ {0, 1} ⊂ R.
Using x2 = x for x ∈ {0, 1} ⊂ R, we obtain that

degalg( f ) ≤ degnum( f ) = degnum((−1) f ).

Denote by V (Fn
2) the 2

n-dimensional vector space (overR) of pseudo-Boolean functions.
By (1), we have

(−1) f (x) = 1

2n

∑

y∈Fn
2

W f (y)(−1)〈y,x〉,

whereW f (y) are theWalsh–Hadamard coefficients of f . Since (−1)〈y,x〉 = ∏n
i=1(−1)yi xi =∏n

i=1(1 − 2yi xi ), we have

(−1) f (x) = 1

2n

∑

y∈Fn
2

W f (y)

n∏

i=1

(1 − 2yi xi ).

Then
degnum( f ) = degnum((−1) f ) = max

W f (y)�=0
wt(y) = deg0( f ). (4)

Proposition 3 For every Boolean function f : F
n
2 → F2 it holds degalg( f ) ≤

min{deg0( f ), n − deg0( f )}.
Proof Denote byW( f ) the multiset of Walsh–Hadamard coefficients of f . From the defini-
tions we see that

y ∈ W( f ) ⇔ y ⊕ 1 ∈ W( f ⊕ �1). (5)

Then degnum( f ⊕�1) = n− min
W f (y)�=0

wt(y). Since degalg( f ) = degalg( f ⊕�1) if degalg( f ) >

1, then we obtain another inequality degalg( f ) ≤ min{ max
W f (y)�=0

wt(y), n − min
W f (y)�=0

wt(y)}.
By (4) we obtain the required inequality if degalg( f ) > 1. For degalg( f ) ≤ 1 the required
inequality is obviously true. �

Denote by t( f ) the number of the relevant variables of f . From the definitions, we
have degalg( f ) ≤ t( f ) for Boolean and degnum( f ) ≤ t( f ) for pseudo-Boolean functions.
Does there exist a reversed inequality in a general case? There exists a Boolean function
�1 with minimal algebraic degree degalg(�1) = 1 and maximal number n of the relevant
variables.Moreover, there exists a pseudo-Boolean function j (x) = (−1)x1 +· · ·+(−1)xn =
n−2(x1+· · ·+xn)withminimal numerical degree degnum(j) = 1 andmaximal number n of
the relevant variables. Thus, the inequalities for algebraic degree of Boolean functions and for
numerical degree of pseudo-Boolean functions cannot be reversed. However, as mentioned
in Introduction, the numerical degree provides an upper bound for the number of relevant
variables in the case of Boolean functions. In the next sections we prove upper bounds for
the number of the relevant variables for q-ary two- and three-valued functions.
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4 Bounds for two-valued functions

The Cayley graph Cay(G, S) on abelian group G with connecting set S, S ⊂ G, S = −S,
0 /∈ S, is the graph whose vertices are the elements of G and whose edge set E is {{x, a + x} :
x ∈ G, a ∈ S}.

It is well known that the set of scalar characters of abelian group G is an orthogonal basis
consisting of eigenvectors of the adjacency matrix of Cay(G, S).

Proposition 4 ([1], Corollary 3.2)Let φ be a character ofZn
q . Then its eigenvalue with respect

to Cay(Zn
q , S) is equal to

∑
s∈S

φ(s).

Let S ⊆ Zq \ {0}. Consider Sn = {(0, . . . , 0, s
i
, 0, . . . , 0) : s ∈ S, i = 1, . . . , n} ⊂ Z

n
q as

a connecting set in Z
n
q . If S = Zq \ {0} then Cay(Zq , S) is the complete graph Kq . By the

definition of the Cayley graph we obtain that Cay(Zn
q , Sn) = Kq� · · · �Kq . This graph is

equal to the Hamming graph H(n, q). The Hamming graph induces the Hamming distance
dH between vertices. This distance dH (u, v) is equal to the number of places in which n-
tuples u, v ∈ Z

n
q differ. The eigenvalues of the Hamming graphs are well known and are

obtained from Proposition 4.

Corollary 1 The eigenvector φz(x) = ξ 〈x,z〉 of the adjacency matrix of H(n, q) corresponds
to the eigenvalue λz = (q − 1)n − qwt(z).

In the present paper we take S = {−1, 1}. Thus, Cay(Zq , S) is the circular graph Cq

consisting of one cycle. In this case Sn is a collection of n-dimensional vectors consisting of
±1 and zeros. ThenCay(Zn

q , Sn) = Cq� · · · �Cq = Cn
q . The graphCn

q is called a hypercube
with induced Lee distance dL , where dL(u, v) = ∑n

i=1 min{|ui −vi |, q −|ui −vi |}. If q = 2
or q = 3, then the Hamming and Lee distances are the same. We say that an edge {x, y} in
Cn

q has direction i if vertices x and y differ in the i th position.
For a given vector z ∈ Z

n
q denote by ak(z) the number of elements k ∈ Zq in z. Then

n = ∑
k∈Zq

ak(z). By Proposition 4, we obtain

Corollary 2 The eigenvector φz(x) = ξ 〈x,z〉 of the adjacency matrix of Cn
q corresponds to

the eigenvalue λz = 2n − 4
∑

k∈Zq

ak(z) sin2 πk
q .

Proof In the case of Cn
q the connecting set Sn consists of vectors with ±1 in the ith position,

where i = 1, . . . , n, and zeros in other positions. By Proposition 4 we have

λz =
∑

s∈Sn

ξ s1z1+···+sn zn =
n∑

i=1

(ξ zi + ξ−zi ) =
n∑

i=1

2 cos
2π zi

q

= 2n −
∑

k∈Zq

2ak(z)(1 − cos
2πk

q
) = 2n −

∑

k∈Zq

4ak(z) sin
2 πk

q
.

�
We will use some results on the theory of invariant subspaces of Hamming graphs devel-

oped by Valyuzhenich and his coauthors. Denote by Uk(n, q) the linear span of all φz , where
z has weight k. Uk(n, q) is a subspace of V (Zq). The direct sum of subspaces

U0(n, q) ⊕ · · · ⊕ Um(n, q)
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is denoted by U[0,m](n, q). Straightforwardly, U[0,m](n, q) is the set of functions f such that
deg0( f ) ≤ m (see [10]).

Proposition 5 ([10], Theorem 1) Let f ∈ U[0,m](n, q), where q ≥ 3 and f �= 0. Then
|supp( f )| ≥ qn−m.

Denote by f |xi =a a retract of f , i. e.,

f |xi =a(x1, . . . , xi−1, xi+1, . . . , xn) = f (x1, . . . , xi−1, a, xi+1, . . . , xn).

Proposition 6 ([9], Lemma 4) If f ∈ U[0,m](n, q), m > 0. Then the difference
f |xi =a − f |xi =b belongs to U[0,m−1](n − 1, q).

Corollary 3 If f |xi =a �= f |xi =b then |supp( f |xi =a − f |xi =b)| ≥ qn−deg0( f ).

The next property follows from the definition of the Fourier–Hadamard coefficients.

Proposition 7 If a function f ∈ V (Zn
q) does not essentially depend on variable xi and zi �= 0

then W f (z) = 0.

By the definition of degree we obtain

Corollary 4 If a function f ∈ V (Zn
q) has no more than m relevant variables then deg0( f ) ≤

m.

Next, we prove the converse statement on the bound of the number of relevant variables
under conditions on the degrees of functions. The proof of the following theorem is similar
to the arguments from [10] but we use the hypercube with the Lee metric instead of one with
the Hamming metric.

Theorem 1 For a two-valued function f on Z
n
q it holds

t( f ) ≤ π2

4
deg1( f )qdeg0( f )−1 and t( f ) ≤ π2

2
deg2( f )qdeg0( f )−2,

where t( f ) is the number of relevant variables of f .

Proof Wewill consider the domain of f as the vertex set ofCn
q . Let A be the adjacencymatrix

of Cn
q . An edge {x, y} of Cn

q is called mixed colored if f (x) �= f (y). The total number of
edges of Cn

q is nqn . Denote by I [ f ] the number of mixed colored edges of Cn
q . Note that

the average number I [ f ]
|V (H(n,q)| of mixed colored edges in the Hamming graph is called the

average sensitivity of f . But I [ f ] may be less than the sensitivity of f in the case of Cn
q .

Straightforwardly, we can prove that

−(A f , f ) = 2I [ f ] − (2nqn − 2I [ f ]).
By the definition of characters, we obtain that f = 1

qn

∑
z∈Zn

q

W f (z)φz, and

(A f , f ) = 1

q2n

∑

z∈Zn
q

λz |W f (z)|2(φz, φz). (6)

It is clear that (φz, φz) = qn . By Corollary 2, we obtain that

I [ f ] = 1

qn

∑

z∈Zn
q

|W f (z)|2
∑

k∈Zq

ak(z) sin
2 πk

q
. (7)
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Using sin2 y = sin2(π − y) and sin2 y ≤ y2, we have

I [ f ] ≤ 1

qn

∑

z∈Zn
q

|W f (z)|2
k1∑

k=−k′
1

ak(z)

(
πk

q

)2

, (8)

where k1 = q
2 , k′

1 = q
2 −1 if q is even and k′

1 = k1 = (q −1)/2 if q is odd. By the definition

of degrees, we obtain that
k1∑

k=−k′
1

ak(z)k2 ≤ deg2( f ) and
k1∑

k=−k′
1

ak(z)k2 ≤ k1deg1( f ) for all

z ∈ Z
n
q . Then from Parseval’s identity

∑
z∈Zn

q

|W f (z)|2 = q2n and (8) we obtain

I [ f ]≤deg2( f )

qn

(
π

q

)2 ∑

z∈Zn
q

|W f (z)|2 ≤ deg2( f )π2qn−2 and I [ f ]≤(deg1( f )π2qn−1)/2.

(9)
Let xi be a relevant variable of f . Consider the retracts f |xi =0, f |xi =1,... There are at least
two numbers a1, a2 ∈ Zq such that f |xi =a j �= f |xi =a j +1 mod q , j = 1, 2. By Corollary 3,
we obtain that at least 2qn−deg0( f ) mixed colored edges have direction i . Then I [ f ] ≥
2t( f )qn−deg0( f ). By inequalities (9) the proof is complete. �

Next we consider an example of a function fm such that the new estimate of t( fm) is

greater than the previous one. For q = 3 the presented bound π2

2 deg2( f )qd−2 is weaker

than Valyuzhenich’s bound dqd+1

4(q−1) since deg2( f ) ≥ deg0( f ) = d and π2

2 ≥ 33
8 . So, consider

the following example for q = 4. Let h : Z4 → {0, 1} be defined by the vector of values
(1, 1, 0, 0). We have equalities

∑
x∈Z4

h(x)i−2x = ∑
x∈Z4

h(x)i2x = 0, where i = √−1.
Consider fm : Zn

4 → {0, 1}, where fm(x1, . . . , xn) = h(x1) · h(x2) · · · h(xm). It is clear that
t( fm) = m. Let us estimate t( fm) using the above formulas. By Proposition 7, we conclude
that W fm (z) = 0 if zk �= 0 for some k > m. If zk = 0 for all k > m, then we obtain that

W fm (z) =
∑

x

fm(x)ξ−〈x,z〉 =
∑

x

fm(x)ξ−〈x,z〉 =
∑

x

h(x1)i
−x1z1 · · · h(xm)i−xm zm

= 4n−m(
∑

x1

h(x1)ξ
−x1z1) · · · (

∑

xm

h(xm)ξ−xm zm ), where ξ = i .

Since
∑

x h(x)i−xz = 0 for z = 2, we conclude that deg2( fm) = deg0( fm) = m. Thus, the

new bound t( fm) ≤ π2m
32 4m is slightly better than Valyuzhenich’s bound t( fm) ≤ m4m

3 .

5 Bounds for three-value functions

It is possible to generalize our methods to functions with three different values. We put the

set of values 	 = {1, ξ, ξ−1}, where ξ = e
2π i
3 . Let the domain of f be the vertex set of Cn

q

and let A be the adjacency matrix of Cn
q . It is easy to see that ab + ab = −1 if a, b ∈ 	 and

a �= b; aa + aa = 2 for each a ∈ 	. Then

(A f , f ) = −I [ f ] + 2(nqn − I [ f ]), (10)

where I [ f ] is the number of mixed colored edges. Indeed, on the left side of the equation two
adjacent vertices with equal values give the term 2 and two adjacent vertices with different
values give the term −1.
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By (6), (10) and Corollary 2 we obtain that

I [ f ] = 4

3qn

∑

z∈Zn
q

|W f (z)|2
∑

k∈Zq

ak(z) sin
2 πk

q
. (11)

Using (11) instead of (7), similarly to Theorem 1 we prove the following inequalities for
three-valued functions.

Theorem 2 For a three-valued function f on Z
n
q it holds

t( f ) ≤ π2

3
deg1( f )qdeg0( f )−1 and t( f ) ≤ 2π2

3
deg2( f )qdeg0( f )−2,

where t( f ) is the number of relevant variables of f .

Moreover, using arguments from [10] we can prove the following statement.

Theorem 3 Every three-valued function f of degree d = deg0( f ) on Z
n
q , has at most dqd+1

3(q−1)
relevant variables.

Proof Every vertex of the Hamming graph H(n, q) has n(q − 1) neighbors instead of 2n
neighbors in Cn

q . So, if A is the adjacency matrix of H(n, q), then

(A f , f ) = −I [ f ] + 2

(
n(q − 1)

2
qn − I [ f ]

)
, (12)

By (6), (12) and Corollary 1 we obtain that

3I [ f ] = q

qn

∑

z∈Zn
q

|W f (z)|2wt(z). (13)

Using Parseval’s identity
∑

z∈Zn
q

|W f (z)|2 = q2n and the definitionmax
z

wt(z) = deg0( f ) =
d we obtain that

3I [ f ] ≤ qn+1d. (14)

Let xi be a relevant variable of f . By the definition of the relevant variable, not all retracts
f |xi =0, f |xi =1,... are equal. Let us estimate the number of pairs of distinct retracts. Suppose
that t j be the number of retracts of type j , where j = 1, . . . , k, 2 ≤ k ≤ q ,

∑k
j=1 t j = q .

It is easy to see that there exist
∑k

j=1 t j (q − t j ) ≥ 2q − 2 ordered pairs of distinct retracts.

Thus, by Corollary 3, we obtain that at least (q −1)qn−d mixed colored edges have direction
i . Then I [ f ] ≥ (q − 1)t( f )qn−d . By inequalities (14), the proof is complete. �

6 Conclusions

The main goal of this paper is to explore new relationships between the Fourier–Hadamard
spectrumof a discrete function and the number of its relevant variables, particularly in the non-
binary case. We aim to answer questions of the following type: Are there discrete functions
with a given Fourier–Hadamard spectrum that have no irrelevant variables? We introduce
new degrees of discrete functions based on the Fourier–Hadamard coefficients and establish
relationships between these new degrees and known ones. We show that the new degrees
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provide better upper bounds on the number of relevant variables than existing bounds for
q-ary functions when q ≥ 4. Previously, all known bounds estimated the number of relevant
variables only for two-valued functions. In this paper, however, we establish a similar bound
for three-valued functions. Nevertheless, we believe that the new bounds are far from tight
and can be improved.

Another problem we are interested in is finding a lower bound on the number of linear
variables of a ternary function, depending on the order of correlation immunity. Asmentioned
in the Introduction, in the binary case, there is a strong connection between this problem and
the upper bounds on the number of relevant variables based on the function’s degree.
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