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A multidimensional nonnegative matrix is called polystochastic if the sum of the entries in 
each line is equal to 1. The set of all polystochastic matrices of order n and dimension d
forms a convex polytope Ωd

n .
In the present paper, we compare known bounds on the number of vertices of the polytope 
Ωd

n and prove that the number of vertices of Ωd
3 is doubly exponential in d.

© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI 
training, and similar technologies.

1. Introduction and definitions

Polystochastic matrices are a natural extension of doubly stochastic matrices to higher dimensions. The properties of the 
convex polytope of doubly stochastic matrices were extensively studied by Brualdi and Gibson in the 1970s [2--4], while 
there are still few results on the more complicated polytope of polystochastic matrices.

Knowledge of the vertex set of a convex polytope allows one to reveal its geometrical structure and simplify the solution 
of certain optimization problems. The Birkhoff theorem states that the vertices of the polytope of doubly stochastic matrices 
are exactly the permutation matrices, whereas the polytope of polystochastic matrices contains many other vertices for 
which we lack good descriptions or exact bounds on their number. The aim of the present paper is to estimate the number 
of vertices of the polytope of polystochastic matrices.

Let us provide the necessary definitions. A d-dimensional matrix A of order n is an array (aα)α∈Id
n
, aα ∈ R, whose entries 

are indexed by α from the index set Id
n = {α = (α1, . . . ,αd)|αi ∈ {1, . . . ,n}}. A matrix A is called nonnegative if all aα ≥ 0, 

and it is a (0,1)-matrix if all its entries are 0 or 1. The support supp(A) of a matrix A is the set of all indices α for which 
aα ≠ 0.

Given k ∈ {0, . . . ,d}, a k-dimensional plane in A is the submatrix obtained by fixing d − k positions in indices and letting 
the values in the remaining k positions vary from 1 to n. We will say that the set of fixed positions defines the direction of 
a plane. A 1-dimensional plane is said to be a line. Matrices A and B are called equivalent if one can be obtained from the 
other by transposes (permutations of components of indices) and permutations of parallel (d − 1)-dimensional planes.

A multidimensional nonnegative matrix A is called polystochastic if the sum of its entries at each line is equal to 1. 
Polystochastic matrices of dimension 2 are known as doubly stochastic. Since doubly stochastic (0,1)-matrices are exactly 
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the permutation matrices, for d ≥ 3 we will say that d-dimensional polystochastic (0,1)-matrices are d-dimensional (or 
multidimensional) permutations. There is a one-to-one correspondence between d-dimensional permutations of order n and 
(d − 1)-dimensional latin hypercubes of order n, which are (d − 1)-dimensional matrices of order n filled with n symbols 
such that each line contains exactly one symbol of each type (for more details, see, for example, [7]).

It is easy to see that the set of d-dimensional polystochastic matrices of order n is a convex polytope, which we denote 
as Ωd

n and call the Birkhoff polytope. By the dimension of Ωd
n we mean its geometric dimension as a polytope in Rnd

, and its 
facets are the faces of one less dimension than the polytope itself.

A matrix A ∈ Ωd
n is a vertex of the Birkhoff polytope Ωd

n if there are no matrices B1, B2 ∈ Ωd
n such that A = λB1 +(1−λ)B2

for some 0 < λ < 1. The definition also implies that for every d-dimensional polystochastic matrix A of order n there is a 
decomposition of the form A = ∑︁

i 
λi Bi , where λi > 0, 

∑︁
i 

λi = 1, and Bi are vertices of Ωd
n such that supp(Bi) ⊆ supp(A). Let 

V (n,d) denote the number of vertices of the polytope Ωd
n . Note that every multidimensional permutation is a vertex in Ωd

n .
Finally, we will say that a multidimensional matrix A is a zero-sum matrix if the sum of entries at each line of A is 

equal to 0. For example, the difference between two polystochastic matrices of the same order and dimension is a zero-sum 
matrix.

The structure of the paper is as follows. In Section 2, using a general bound on the number of faces in polytopes, we de
rive an upper bound on the number of vertices of the polytope of polystochastic matrices. Then we summarize other known 
bounds on the number of vertices of Ωd

n and analyze their asymptotic behavior when either the order n or the dimension 
d of matrices is fixed. In particular, we observe that for the number V (3,d) of the polytope of d-dimensional matrices of 
order 3, the lower and upper bounds differ dramatically. To narrow this gap, in Section 3 we propose a construction of 
vertices of Ωd

3 that shows that V (3,d) grows doubly exponentially.

2. Bounds on the number of vertices of �d
n

We start with an upper bound on the number vertices in a general polytope. The well-known result of McMullen [13] 
states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension 
and number of vertices. As a consequence, one can estimate the number of vertices of a polytope given its dimension and 
number of facets.

Proposition 1 (see, e.g., [1]). The number of vertices V of a convex m-dimensional polytope with k facets, k ≥ m, satisfies

V ≤
(︃

k − ⌊m+1
2 ⌋

k − m 

)︃
+

(︃
k − ⌊m+2

2 ⌋
k − m 

)︃
.

The polytope of d-dimensional polystochastic matrices of order 2 has dimension 1 and only two vertices, i.e., the multi
dimensional permutations (see, for example, [17]). But for n ≥ 3, the polytope Ωd

n is nontrivial.

Proposition 2. Let n ≥ 3. The polytope Ωd
n is a (n − 1)d-dimensional polytope with nd facets.

Proof. Similar to the polytope Ω2
n of doubly stochastic matrices (see, e.g., [2]), every face F of the polytope Ωd

n is defined 
by a set of indices at which a matrix A from F takes zero values. So the facets of Ωd

n are {A ∈ Ωd
n|aα = 0} for some α ∈ Id

n , 
and there are nd facets in Ωd

n .
To find the dimension of Ωd

n , it is sufficient to note that the space of d-dimensional zero-sum matrices of order n
has dimension (n − 1)d because every such matrix is uniquely defined by values in any d-dimensional submatrix of order 
n − 1. □

From Propositions 1 and 2, we get the following upper bound on the number of vertices of Ωd
n . For d = 3 it was 

previously stated in [10].

Theorem 1. The number of vertices V (n,d) of the polytope of polystochastic matrices Ωd
n satisfies

V (n,d) ≤
(︃

nd − ⌊ (n−1)d+1
2 ⌋

nd − (n − 1)d

)︃
+

(︃
nd − ⌊ (n−1)d+2

2 ⌋
nd − (n − 1)d

)︃
.

To our knowledge, there are no upper bounds on the number of vertices of Ωd
n that use the specific properties of this 

polytope. Thus, finding any improvement to Theorem 1 is an interesting question.
A natural lower bound on the number V (n,d) of vertices of Ωd

n is the number of multidimensional permutations, since 
every d-dimensional permutation of order n is a vertex of Ωd

n .
Let us study the asymptotics of the number of vertices V (n,d) when d is fixed and n → ∞.
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When d = 2, the well-known Birkhoff theorem states that every vertex of the polytope of doubly stochastic matrices is a 
permutation matrix. So V (n,2) = n! that is the number of permutation matrices of order n.

In [8], Keevash found a lower bound on the number of multidimensional permutations of fixed dimension, which, to
gether with the upper bound by Linial and Luria [11], gives the following.

Theorem 2 ([8], [11]). The number of d-dimensional permutations of order n is 
(︂

n 
ed−1 + o(n)

)︂nd−1

as d ≥ 2 is fixed and n → ∞.

For d ≥ 3 and n ≥ 3, the polytope Ωd
n has vertices other than multidimensional permutations, but we know relatively few 

examples and very few constructions of such vertices. Most of these constructions [5,6,12] produce vertices of Ωd
n that have 

exactly two 1/2-entries in each line. The only improvement on the lower bound on the number of vertices of the polytope 
of Ωd

n of fixed dimension was obtained for d = 3 by Linial and Luria in [12].

Theorem 3 ([12]). If M(n,3) is the number of 3-dimensional permutations of order n, then for the number V (n,3) of vertices of Ω3
n

we have

V (n,3) ≥ M(n,3)3/2−o(1) as n → ∞.

Summarizing these results, we deduce the following asymptotic bounds for the logarithm of V (n,d) when d is fixed.

Proposition 3. If d ≥ 4 is fixed, then for the number V (n,d) of vertices of Ωd
n we have

nd−1 lnn · (1 + o(1)) ≤ ln V (n,d) ≤ dnd−1 ln n · (1 + o(1))

as n → ∞. In addition, if d = 3, then

3

2
n2 lnn · (1 + o(1)) ≤ ln V (n,3) ≤ 3n2 ln n · (1 + o(1)),

and if d = 2, then ln V (n,2) = ln n! = n ln n · (1 + o(1)).

Proof. For d ≥ 3, all upper bounds follow from the standard estimate 
(︁m

k 
)︁ ≤ mk

k! for the binomial coefficients in Theorem 1
and further analysis of the expressions for large n.

For d ≥ 4, the lower bound follows from the estimate of the number of multidimensional permutations (Theorem 2), and 
for d = 3 it is improved by Theorem 3.

Finally, the case d = 2 is the Birkhoff theorem for doubly stochastic matrices. □
A comparison of weaker lower and upper bounds on the number of vertices of 3-dimensional polystochastic matrices 

was given in [18].
Based on these bounds, we propose the following conjecture.

Conjecture 1. For every d ≥ 2, there is a constant cd, 1 ≤ cd ≤ d, such that for the number V (n,d) of vertices of Ωd
n we have

ln V (n,d) = cdnd−1 ln n · (1 + o(1)).

Let us turn to the case when the order of polystochastic matrices is fixed but the dimension grows.
As we noted before, there are only two vertices in the polytope Ωd

2. It is also well known that for every d, the d
dimensional permutation of order 3 is unique up to equivalence, and there are 3 · 2d−1 different such multidimensional 
permutations.

The asymptotics of the number of d-dimensional permutations of order 4 were found in [14]. It gives that log2 V (4,d) ≥
2d−1(1 + o(1)).

To date, the best lower bounds on the number of d-dimensional permutations of order n, when n ≥ 5 is fixed, were 
proved by Potapov and Krotov in [15]. Their results imply the following.

Theorem 4 ([15]). Let V (n,d) be the number of vertices of the polytope of d-dimensional matrices of order n. Then log2 V (5,d) ≥
3(d−1)/3(1 − o(1)) as d → ∞, log2 V (n,d) ≥ (︁ n 

2

)︁d−1
if n ≥ 6 is even, and log2 V (n,d) ≥

(︂
n−3

2 
)︂ d−1

2 (︁n−1
2 

)︁ d−1
2 if n ≥ 7 is odd.

Until the present work, there were no rich constructions or lower bounds on the vertices of Ωd
n for fixed n other than 

those corresponding to multidimensional permutations.
Concerning the upper bound, an expansion of the binomial coefficients in Theorem 1 for fixed n gives the following.
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Proposition 4. If n is fixed, then for the logarithm of the number V (n,d) of vertices of d-dimensional polystochastic matrices of order 
n we have

log2 V (n,d) ≤ log2
n 

n − 1
· d 

2
· (n − 1)d(1 + o(1)) as d → ∞.

Thus, we have a substantial gap between the lower and upper bounds for the numbers of vertices of Ωd
n when n is fixed, 

and finding the asymptotics of these numbers is an interesting open problem.

3. Lower bound on the number of vertices of �d
3

In this section, we prove the following theorem.

Theorem 5. For the number of vertices V (3,d) we have

log2 V (3,d) ≥ c2δd(1 + o(1)),

where c = 1
4 log2 9/5 ≈ 0.212 and δ ≈ 0.047.

The main idea of the proof is to construct a large set 𝒜 of d-dimensional polystochastic matrices of order 3 such that for 
every three matrices A1, A2, A3 ∈ 𝒜, the faces of Ωd

3 defined by their supports do not share a common vertex. This means 
that every vertex from a decomposition of some matrix A ∈ 𝒜 into a convex sum of vertices can appear in at most one 
other decomposition of some matrix B ∈𝒜, and, therefore, we have at least |𝒜|/2 vertices of Ωd

3.
First, we aim to construct a rich set of polystochastic matrices. For this purpose we need several auxiliary notions and 

definitions.
Given indices α,β ∈ Id

n , let ρ(α,β) denote the Hamming distance between α and β , i.e., the number of positions in 
which these indices differ.

For an index α ∈ Id
3, define the set of indices Tα = {β|ρ(α,β) = d}. In other words, Tα is the d-dimensional submatrix 

of order 2 formed by indices at the maximal distance from the index α.
Let S ⊆ Id

3 be a subset of indices of a d-dimensional matrix of order 3. Given ε, 0 < ε < 1, we say that the set S is 
ε-sparse if

1. for all α,β ∈ S , we have ρ(α,β) ≥ εd;
2. for every α ∈ S there is an index γα ∈ Id

3 such that Tγα ∩ S = {α}.

We are going to use ε-sparse sets as the complements of the supports of polystochastic matrices of order 3. First, we 
show that ε-sparse sets exist and can be quite large. For this purpose, we need a well-known statement of the coding 
theory that follows from the work of Shannon [16].

Proposition 5 (see   [16]). Let 0 ≤ ε ≤ 1/2 and H(ε) = −ε log2 ε − (1 − ε) log2(1 − ε) be the binary entropy. Then for every d and 
N ≤ 2d(1−H(ε)) there is a set S ⊆ Id

2 of size N such that for every α,β ∈ S we have ρ(α,β) ≥ εd.

Proposition 6. Let 0 < ε ≤ 1/2. Then for every N ≤ 2(1−H(ε))d there exists an ε-sparse S set of size N in Id
3 .

Proof. For shortness, we denote the index (1, . . . ,1) from Id
3 by 1 and let T1 = {α ∈ Id

3 : αi ∈ {2,3}}. By Proposition 5, for 
every N ≤ 2(1−H(ε))d there is a subset S of T1 such that for all α,β ∈ S it holds ρ(α,β) ≥ εd.

Let us show that all such sets S satisfy the second condition of the definition of ε-sparse sets. Given α ∈ T1 , consider an 
index γ from T1 such that γi = 2 if αi = 3, and γi = 3 if αi = 2 for every i ∈ {1, . . . ,d}. It is easy to see that Tγ ∩ T1 = {α}. 
Since S ⊆ T1 , for every α ∈ S we have that Tγ ∩ S = {α}, so we can take γ as γα . □

Now we prove that for every ε-sparse set S (provided it is not too large and d is not too small), there exists a 
polystochastic matrix of order 3 whose complement of the support is exactly the set S .

Lemma 1. Let d ≥ 14/ε and S ⊆ Id
3 be an ε-sparse set of size N = |S| ≤ 2εd/4 . Then there exists a d-dimensional polystochastic matrix 

A of order 3 such that supp(A) = Id
3 \ S.

Proof. We will look for a d-dimensional zero-sum matrix M of order 3 such that mα = 1 for all α ∈ S and |mα | ≤ 3/4 for 
all α ∉ S . Then the matrix A = J − 1

3 M is the required polystochastic matrix, where J is the d-dimensional polystochastic 
matrix of order 3, whose all entries are equal to 1/3.

We construct the matrix M in two steps.
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1. Given index α ∈ Id
3, define the matrix F α = ( f α

β )
β∈Id

n
with entries f α

β = (︁− 1
2

)︁ρ(α,β)
. Note that all matrices F α are 

zero-sum because each line consists of indices β1, β2, β3 such that ρ(α,β1) = k and ρ(α,β2) = ρ(α,β3) = k + 1 for some 
k ∈ {0, . . .d − 1}.

Consider the zero-sum matrix M ′ = (m′
β)

β∈Id
n

such that

M ′ =
∑︂
α∈S

F α.

Let us estimate its entries. For each α ∈ S , denote δα = 1 − m′
α . Since S is an ε-sparse set of size N , we have that

|δα | = |1 − m′
α| ≤ N

2εd
≤ 2−3εd/4,

because for all γ ∈ S , γ ≠ α, each matrix F γ has the absolute value f γ
α in index α not greater than 1/2εd . In particular, for 

δ = max
α∈S 

|δα | we have δ ≤ 2−3εd/4.

Suppose now that α ∉ S and γ ∈ S is an index such that ρ(α,γ ) is minimal. Then from the definition of an ε-sparse 
set, for every other β ∈ S , β ≠ γ , we have that ρ(α,β) ≥ (εd − 1)/2. Using N ≤ 2εd/4, we obtain

|m′
α | ≤ | f γ

α | +
∑︂

β∈S,β≠γ

| f β
α | ≤ 1

2
+ N

2(εd−1)/2
≤ 1

2
+ 2−εd/4+1/2 ≤ 5

8
,

because 2−εd/4+1/2 ≤ 1/8, when d ≥ 14/ε.
2. Now we modify the matrix M ′ to obtain the required matrix M .
Since the set S is ε-sparse, for every α ∈ S there is γα ∈ Id

3 such that Tγα ∩ S = {α}. Let Rα be the zero-sum matrix such 
that for every β ∈ Tγα the entry rα

β = (−1)ρ(α,β) · δα and for every β ∉ Tγα we put rα
β = 0. Consider the matrix

M = M ′ +
∑︂
α∈S

Rα.

Using the definition of δα and the fact that for every α ∈ S it holds Tγα ∩ S = {α}, we see that mα = 1 for all α ∈ S as 
required.

Suppose that α ∉ S . Using inequalities N ≤ 2εd/4, δ ≤ 2−3εd/4, and d ≥ 14/ε, we obtain

|mα | ≤ |m′
α | +

∑︂
α∈S

|δα | ≤ 5

8
+ Nδ ≤ 5

8
+ 2−εd/2 ≤ 3

4
. □

To construct many polystochastic matrices with the desired property, we also utilize 3-perfect hash codes that are known 
as trifferent codes.

Given q ≥ 2 and N ∈N , a q-perfect hash code C of block length N is a collection C of words of length N over the alphabet 
{1, . . . ,q} such that for any distinct q words w1, . . . , wq from C there is a position i, i ∈ {1, . . . , N}, for which {w j(i) | 1 ≤
j ≤ q} = {1, . . . ,q}. In what follows, we identify words from q-perfect hash codes with indices from I N

q .

A set C ⊆ I N
3 is called a trifferent code if it is a 3-perfect hash code. To date, the asymptotically large trifferent codes were 

constructed by Körner and Marton in [9].

Theorem 6 ([9], Theorem 1). For every N ∈N , there exists a trifferent code C in I N
3 of size |C | =

(︂
9
5

)︂N/4
.

Now we are ready to prove the main result of this section.

Proof of Theorem 5. Recall that we aim to construct a large set 𝒜 of d-dimensional polystochastic matrices of order 3 such 
that for every three matrices A1, A2, A3 ∈ 𝒜 there are no vertices B of Ωd

3 for which supp(B) ⊆ supp(A1) ∩ supp(A2) ∩
supp(A3).

Let ε ≤ 1/2 be a solution of 1− H(ε) = ε/8, ε ≈ 0.3735, and put μ = ε/8. Then by Proposition 6, there exists an ε-sparse 

set S in Id
3 with cardinality N = ⌊2μd⌋, and by Theorem 6, there is a trifferent code C in I N

3 such that |C | =
(︂

9
5

)︂N/4
.

Using the ε-sparse set S in Id
3 and the trifferent code C , let us now construct many sparse sets in Id+1

3 . Since a word 
x ∈ C has length N , we may assume that its positions are indexed by α ∈ S . For every x ∈ C , consider the set Sx in Id+1

3
such that Sx = {(α, xα) : α ∈ S}, |Sx| = |S|. Also note that the number of sets Sx is equal to |C |.

Let us prove that all sets Sx are ε/2-sparse. Let β = (α, xα) and β ′ = (α′, xα′ ), where β,β ′ ∈ Sx . Then ρ(β,β ′) ≥ ρ(α,α′). 
Since S is an ε-sparse set, we have that ρ(α,α′) ≥ εd ≥ ε

2 (d + 1), and so ρ(β,β ′) ≥ ε
2 (d + 1).

5 
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Next, by the condition on the ε-sparse set S , for every α ∈ S there is γα ∈ Id
3 such that Tγα ∩ S = {α}. Given β ∈ Sx , 

β = (α, xα), consider index γβ = (γα, j) from Id+1
3 , where j ∈ {1,2,3} is different from xα . Then the construction of sets Sx

implies that Tγβ ∩ Sx = {β}. Therefore, sets Sx are ε/2-sparse for all x ∈ C .

Using Lemma 1 and the fact that N ≤ 2εd/8, for all d ≥ 28/ε and each x ∈ C there is a (d + 1)-dimensional polystochastic 
matrix Ax of order 3 such that supp(Ax) = Id+1

3 \ Sx . Define a collection of polystochastic matrices 𝒜 = {Ax : x ∈ C}.
Since C is a trifferent code, for all words x1, x2, x3 ∈ C there is a position in which all these three words are dif

ferent. In our construction, this position corresponds to a line ℓ of direction d + 1 in Id+1
3 such that supp(Ax1) ∩

supp(Ax2) ∩ supp(Ax3) ∩ ℓ = ∅. Therefore, there are no vertices B of the Birkhoff polytope Ωd+1
3 for which supp(B) ⊆

supp(Ax1) ∩ supp(Ax2) ∩ supp(Ax3).
Denote by ℬ the set of all vertices B of the polytope Ωd+1

3 such that supp(B) ⊆ Ax for some Ax ∈ 𝒜. The obtained 
property of the set 𝒜 means that for every B ∈ ℬ there are at most two matrices Ax such that supp(B) ⊆ Ax . Therefore,

|ℬ| ≥ |C |
2 

= 1

2

(︃
9

5

)︃N/4

≥ 1

2

(︃
9

5

)︃ ⌊2μd⌋
4 

that implies the statement of the theorem. □
Remark. The same reasoning can be applied to construct a quite rich families of vertices of polytopes Ωd

n for any fixed n ≥ 3
and large d. However, for n ≠ 3 the numbers of such vertices will be much less than the lower bounds on the numbers of 
multidimensional permutations from Theorem 4.
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