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g%’g?gﬁie in the complement of a set S, and p(S) = |S|/q" is the density of the set S. Moreover, the
Perfect coloring function f is a perfect coloring if and only if we have an equality in the formula above. Also,
Perfect code we find a new lower bound for the cardinality of components of a perfect coloring and a
MDS code 1-perfect code in the case ¢ > 2.

Equitable partition © 2011 Elsevier B.V. All rights reserved.

Orthogonal array

1. Introduction

LetZ, betheset {0, ..., g—1}.Theset Zg of n-tuples over Z, is called g-ary n-dimensional cube (hypercube). The Hamming
distance d(x, y) between two n-tuplesx,y € Z; is the number of positions at which they differ. If d(x, y) = 1, we call x and
y neighbors. Define the number «(S) to be the average number of neighbors in a set S € Z; for n-tuples in the complement

of S, i a(S) = gty Doygs [y € S 1d(x, y) = 1}I.

A mapping Col: Zg — {0, ..., k} is called a perfect coloring with the matrix of parameters P = {p;} if, for all i, j, for every
n-tuple of color i, the number of its neighbors of color j is equal to p;. Other terms used for this notion in the literature are
“equitable partition”, “partition design” and “distributive coloring”. In what follows we will only consider colorings in two
colors (2-coloring). Moreover, for convenience we will assume that the set of colors is {0, 1}. In this case the Boolean-valued
function Col is a characteristic function of the set of n-tuples colored by 1.

A 1-perfect code (one-error-correcting code) C C ZZ; can be defined as the set of units of a perfect coloring with the

matrix of parameters P = ("(g(; 1)]_) ! (1)) The entry 0 in the Southeast says that no two codewords are neighbors, hence

the minimum distance is at least 2; the entries in the first row show that each vector outside of the code is at distance 1 from
. . . . . m__
exactly one codeword. If q is the power of a prime number then a coloring with such parameters exists only if n = % (m
is an integer). For ¢ = 2 a list of achievable parameters and corresponding constructions of perfect 2-colorings can be found
in [3,4].
Let U be a finite set. A correlation immune function of order n — m is a function f : Z; — U whose each value is uniformly
distributed on all m-dimensional faces. For any function f we denote the maximum order of its correlation immunity by
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cor(f). An orthogonal array (OA(N, k, u, t)) of strength t with N rows, k columns (k > t) and based on u symbolsisan N x k
array with elements from U, |U| = u, such that every N x t subarray contains each of the u* possible t-tuples equally often as
arow (say A times). N must be a multiple of u* and A = N/u" is the index of the array. The definition of correlation immune
(of order t) function f is equivalent to the following property: the array whose rows are the vectors of f ~!(a) for eacha € U
is an orthogonal array of strength t. In [5] it is established that for each unbalanced Boolean function f = x° (S C Z7) the
inequality cor(f) < % — 1 holds. Moreover, in the case of the equality cor(f) = 23—” — 1, the function f is a perfect 2-coloring.

Similarly, if for any set S C ZJ the Friedman inequality (see [6]) p(S) > 1— 2(c+(f)+1) becomes an equality then the function
x5 is a perfect 2-coloring (see [11]). Consequently, in the extremal cases, regular distributions on balls follow from uniform

distributions on faces. The main result of the present paper is the following theorem:

Theorem 1. (a) For each Boolean-valued function f = x5, where S C Z7, the inequality p(S)q(cor(f) + 1) < «(S) holds.
(b) A Boolean-valued function f = x° is a perfect 2-coloring if and only if p(S)q(cor(f) + 1) = «(S).

2. Criterion for perfect 2-coloring

In the proof of the theorem we employ the idea from [1].

We consider Z; as the cyclic group on the set {0, ..., g — 1}. We may impose the structure of the group Z; x -+ x Z4
on the hypercube. Consider the vector space V of complex-valued functions on Z"J1 with the scalar product (f,g) =
q]—n erzg f(0g(x). For every z € Z]! define a character ¢,(x) = £*?), where & = /% is a primitive complex qth root
of unity and (x, z) = x1z1 + - - - + Xn2,. Here all arithmetic operations are performed on complex numbers. As is generally
known, the characters of the group Z; x - - - x Z, form an orthonormal basis of V. It is sufficient to verify that & kgk = 1 and

;’:_()]E"j =0ask 0 mod q.

Let M be the adjacency matrix of the hypercube Z;. This means that Mf (x) = Zy, d(xy)=1 f (). It is well known that the

characters are eigenvectors of M. Indeed, we have

n
M, () = Y EVIHD = g0 N TN e = (n— wt(2)(q — 1) — wi (@) (),
y.dx.y)=1 j=1 k#0
where wt(z) is the number of nonzero coordinates of z.
Consider a perfect coloring f € V,f(Zj;) = {0, 1} with the matrix of parameters

_(n(@g—1)—=0>b b
A_< c n(q—l)—c)'

The vector (—b, ¢) is an eigenvector of A with the eigenvalue n(q — 1) — ¢ — b. The definition of a perfect 2-coloring implies
that the function (b+c)f —b is the eigenvector of the matrix M. Moreover, the converse is true: every two-valued eigenvector
of M generates a perfect coloring (see [5]).

Proposition 1 (See [3]).

(a) Let f be a perfect 2-coloring with the matrix of parameters A. Then s = # is an integer and (f, ¢,) = 0 for every n-tuple
ze Z; such that wt(z) # 0, s.

(b) Let f: Z(;' — {0, 1} be a Boolean-valued function. If (f, ¢,) = 0 forevery n-tuplez € {0, ..., q— 1}" such that wt(z) # 0, s
then f is a perfect 2-coloring.

Proposition 2 (See [1]).

(a) If f € Vis a correlation-immune function of order m then (f, ¢,) = 0 for every n-tuple z € Z; such that 0 < wt(z) < m.

(b) A Boolean-valued function f € V is correlation-immune of order m if (f, ¢,) = O for every n-tuple z € Z[; such that
0<wtz) <m.

kb _ 4

Corollary 1. Let f be a perfect 2-coloring with the matrix of parameters A. Then cor(f) = .

For 1-perfect codes the last statement was proved in [2].
Proof of Theorem 1. We have the following equalities by the definitions and general properties of an orthonormal basis.

1
Z|(f,¢z>|2=q—,,2|f<x>|2=p(5). (1)
z xezg

1

.90 = & PN IETION (2)
xezg

1 _

Mf.) ==Y > [fRFY) =neis)(), (3)

xezg y.dx.y)=1
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: 1
where nei(S) = 5] > wes 1y €S 1dx, y) =1}

MF.f) =Y (n(g— 1) — wt@I(F. ¢:)I. (4)

zeZy
From (1) to (4) and Proposition 2 we obtain the equality

neiS)p) = p’n@— D+ Y, (@—1) - wt@a|(f, p.) .

z,wt(z)>cor(f)+1

Since 3°, ,c)scorgy+1 (s )12 = p(S) — p(S)?, we have

nei($)p(S) < p(S)’n(@ — 1) + (n(g — 1) — (cor(f) + D(p(S) — p(S)*) and
(cor(f) + Dg(1 — p(S)) < n(g — 1) — nei(s). (5)
Substitute the set Z; \ S instead of the set S in the inequality (5). Since cor(x’) = cor(ng\s), 1—pZ;\S) = p(S) and

niq—1) — nei(Z(;' \ S) = a(S) we obtain (a) of the theorem.
Moreover, the equality

(cor(f) + 1)q(1 — p(S)) = n(q — 1) — nei(S) (6)

holds if and only if (f, ¢,) = 0 for every n-tuple z such that wt(z) > cor(f) + 2. Then from Proposition 1(b) we conclude
that f is a perfect 2-coloring.

Any perfect 2-coloring satisfies (6), which is a consequence of Proposition 1(a) and Corollary 1. As mentioned above,
equality (6) is equivalent to the equality (b) of the theorem. O

Since nei(S) # 0, the inequality (5) implies the Bierbrauer-Friedman inequality (see [6,1])

niq—1)
g(cor(f) + 1)’

For 1-perfect binary codes, a similar theorem was previously proved in [9]. Namely, if cor(S) = cor(H) and p(S) = p(H),
where S, H C ZJ and H is a 1-perfect code, then S is also a 1-perfect code.

pS) =1—

3. Components of a perfect 2-coloring

By a bitrade of order n — m we will mean a subset B C Z[;’ such that the cardinality of intersections B and each
m-dimensional face are even. For example, if q is even then B C Z;/ is a bitrade of order n — 1.

Proposition 3. Let B C Z; be a nonempty bitrade of order m, m < n. Then |B| > 2™*1,

Proof. Suppose that the statement is true for n = k. We will prove it forn = k + 1. Since |B| > 2, there exist two parallel
k-dimensional faces Fy, F, such that the intersections F;NS are nonempty fori = 1, 2.1t is clear that F;NS is a bitrade of order
m — 1in the (n — 1)-dimensional cube F;. By induction hypothesis, |F;\B| > 2™ fori = 1, 2; consequently, [B| > 2™, O

Suppose that the characteristic functions f = x5! and g = x5 are perfect 2-colorings (correlation-immune) with the
same matrix of the parameters (cor(f) = cor(g)). A set S; A S, is called mobile and sets Sy \ S, and S, \ S; are called
components of perfect 2-colorings (correlation-immune functions) x5t and x 2, respectively. It is clear, that a mobile set of
correlation-immune function of order m is a bitrade of order m.

c+b
Corollary 2. (a) Let f be a perfect 2-coloring with the matrix of parameters A. If S C Zg is a component of f then |S| > 2%_1.

n(g—1)+1
(b) Let C C Zg be a 1-perfect code. If S C Zg is a component of f then |S| > 2 7 -1

If g = 2 then the lower bound |S| > 2"5 =1 for the cardinality of components of 1-perfect codes is achievable (see,
for example, [11]). In the case ¢ > 2, an upper bound for the cardinality of components of 1-perfect codes is obtained

g1-1
= @=2+) qm-1

constructively (see [10,8]). If g = p" and p is a prime number then |S| > p where n = el

AsetS C Z] is called MDS code with distance 2 if the intersection of S with each 1-dimensional face contains precisely
one n-tuple. Obviously, a characteristic function of an MDS code is a perfect 2-coloring with the matrix of parameters

nq—2) n
ngqg—1 0

(see [7]).

). If ¢ > 4 then the lower bound |S| > 2" for the cardinality of the components of MDS codes is achievable
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