Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note On perfect 2-colorings of the *q*-ary *n*-cube[★]

Vladimir N. Potapov

Sobolev Institute of Mathematics, 4 Acad. Koptug avenue, 630090, Novosibirsk, Russia Novosibirsk State University, 2 Pirogova st., 630090, Novosibirsk, Russia

ARTICLE INFO

Article history: Received 8 July 2011 Received in revised form 29 November 2011 Accepted 6 December 2011 Available online 9 January 2012

Keywords: Hypercube Perfect coloring Perfect code MDS code Equitable partition Orthogonal array

1. Introduction

ABSTRACT

A coloring of a *q*-ary *n*-dimensional cube (hypercube) is called perfect if, for every *n*-tuple *x*, the collection of the colors of the neighbors of *x* depends only on the color of *x*. A Boolean-valued function is called correlation-immune of degree n - m if it takes value 1 the same number of times for each *m*-dimensional face of the hypercube. Let $f = \chi^S$ be a characteristic function of a subset *S* of hypercube. In the present paper we prove the inequality $\rho(S)q(\operatorname{cor}(f) + 1) \leq \alpha(S)$, where $\operatorname{cor}(f)$ is the maximum degree of the correlation immunity of *f*, $\alpha(S)$ is the average number of neighbors in the set *S* for *n*-tuples in the complement of a set *S*, and $\rho(S) = |S|/q^n$ is the density of the set *S*. Moreover, the function *f* is a perfect coloring if and only if we have an equality in the formula above. Also, we find a new lower bound for the cardinality of components of a perfect coloring and a 1-perfect code in the case q > 2.

© 2011 Elsevier B.V. All rights reserved.

Let Z_q be the set $\{0, \ldots, q-1\}$. The set Z_q^n of *n*-tuples over Z_q is called *q*-ary *n*-dimensional cube (hypercube). The Hamming distance d(x, y) between two *n*-tuples $x, y \in Z_q^n$ is the number of positions at which they differ. If d(x, y) = 1, we call x and y neighbors. Define the number $\alpha(S)$ to be the average number of neighbors in a set $S \subseteq Z_q^n$ for *n*-tuples in the complement of S, i.e. $\alpha(S) = \frac{1}{q^n - |S|} \sum_{x \notin S} |\{y \in S \mid d(x, y) = 1\}|$. A mapping Col: $Z_q^n \to \{0, \ldots, k\}$ is called a *perfect coloring* with the matrix of parameters $P = \{p_{ij}\}$ if, for all i, j, for every

A mapping *Col*: $Z_q^n \to \{0, \ldots, k\}$ is called a *perfect coloring* with the matrix of parameters $P = \{p_{ij}\}$ if, for all *i*, *j*, for every *n*-tuple of color *i*, the number of its neighbors of color *j* is equal to p_{ij} . Other terms used for this notion in the literature are "equitable partition", "partition design" and "distributive coloring". In what follows we will only consider colorings in two colors (2-coloring). Moreover, for convenience we will assume that the set of colors is $\{0, 1\}$. In this case the Boolean-valued function *Col* is a characteristic function of the set of *n*-tuples colored by 1.

A 1-perfect code (one-error-correcting code) $C \subset Z_q^{\overline{n}}$ can be defined as the set of units of a perfect coloring with the matrix of parameters $P = \begin{pmatrix} n(q-1) & 1 \\ n(q-1) & 0 \end{pmatrix}$. The entry 0 in the Southeast says that no two codewords are neighbors, hence the minimum distance is at least 2; the entries in the first row show that each vector outside of the code is at distance 1 from exactly one codeword. If *q* is the power of a prime number then a coloring with such parameters exists only if $n = \frac{q^m - 1}{q-1}$ (*m* is an integer). For q = 2 a list of achievable parameters and corresponding constructions of perfect 2-colorings can be found in [3,4].

Let *U* be a finite set. A correlation immune function of order n - m is a function $f : \mathbb{Z}_q^n \to U$ whose each value is uniformly distributed on all *m*-dimensional faces. For any function *f* we denote the maximum order of its correlation immunity by

^{*} The work is supported by RFBR (grants 10-01-00424, 10-01-00616) and Federal Target Grant "Scientific and educational personnel of innovation Russia" for 2009–2013 (government contract No. 02.740.11.0362).

E-mail address: vpotapov@math.nsc.ru.

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter 0 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2011.12.004

cor(f). An orthogonal array (OA(N, k, u, t)) of strength t with N rows, k columns (k > t) and based on u symbols is an $N \times k$ array with elements from U, |U| = u, such that every $N \times t$ subarray contains each of the u^t possible t-tuples equally often as a row (say λ times). N must be a multiple of u^t and $\lambda = N/u^t$ is the index of the array. The definition of correlation immune (of order t) function f is equivalent to the following property: the array whose rows are the vectors of $f^{-1}(a)$ for each $a \in U$ is an orthogonal array of strength *t*. In [5] it is established that for each unbalanced Boolean function $f = \chi^S (S \subset \mathbb{Z}_2^n)$ the inequality $\operatorname{cor}(f) \leq \frac{2n}{3} - 1$ holds. Moreover, in the case of the equality $\operatorname{cor}(f) = \frac{2n}{3} - 1$, the function *f* is a perfect 2-coloring. Similarly, if for any set $S \subset \mathbb{Z}_2^n$ the Friedman inequality (see [6]) $\rho(S) \geq 1 - \frac{n}{2(\operatorname{cor}(f)+1)}$ becomes an equality then the function χ^{S} is a perfect 2-coloring (see [11]). Consequently, in the extremal cases, regular distributions on balls follow from uniform distributions on faces. The main result of the present paper is the following theorem:

Theorem 1. (a) For each Boolean-valued function $f = \chi^S$, where $S \subset Z_q^n$, the inequality $\rho(S)q(\operatorname{cor}(f) + 1) \le \alpha(S)$ holds. (b) A Boolean-valued function $f = \chi^S$ is a perfect 2-coloring if and only if $\rho(S)q(\operatorname{cor}(f) + 1) = \alpha(S)$.

2. Criterion for perfect 2-coloring

In the proof of the theorem we employ the idea from [1].

We consider Z_q as the cyclic group on the set $\{0, \ldots, q-1\}$. We may impose the structure of the group $Z_q \times \cdots \times Z_q$ on the hypercube. Consider the vector space \mathbb{V} of complex-valued functions on Z_q^n with the scalar product $(f, g) = \frac{1}{q^n} \sum_{x \in Z_q^n} f(x)\overline{g(x)}$. For every $z \in Z_q^n$ define a *character* $\phi_z(x) = \xi^{\langle x, z \rangle}$, where $\xi = e^{2\pi i/q}$ is a primitive complex *q*th root of unity and $\langle x, z \rangle = x_1 z_1 + \dots + x_n z_n$. Here all arithmetic operations are performed on complex numbers. As is generally known, the characters of the group $Z_q \times \dots \times Z_q$ form an orthonormal basis of \mathbb{V} . It is sufficient to verify that $\xi^k \overline{\xi^k} = 1$ and $\sum_{i=0}^{q-1} \xi^{ki} = 0 \text{ as } k \neq 0 \mod q.$

Let *M* be the adjacency matrix of the hypercube Z_q^n . This means that $Mf(x) = \sum_{y,d(x,y)=1} f(y)$. It is well known that the characters are eigenvectors of M. Indeed, we have

$$M\phi_{z}(x) = \sum_{y,d(x,y)=1} \xi^{\langle y-x,z\rangle + \langle x,z\rangle} = \xi^{\langle x,z\rangle} \sum_{j=1}^{n} \sum_{k\neq 0} \xi^{kz_{j}} = ((n - wt(z))(q - 1) - wt(z))\phi_{z}(x),$$

where wt(z) is the number of nonzero coordinates of z.

Consider a perfect coloring $f \in \mathbb{V}$, $f(Z_a^n) = \{0, 1\}$ with the matrix of parameters

$$A = \begin{pmatrix} n(q-1) - b & b \\ c & n(q-1) - c \end{pmatrix}.$$

The vector (-b, c) is an eigenvector of A with the eigenvalue n(q-1) - c - b. The definition of a perfect 2-coloring implies that the function (b+c)f - b is the eigenvector of the matrix M. Moreover, the converse is true: every two-valued eigenvector of *M* generates a perfect coloring (see [5]).

Proposition 1 (See [3]).

- (a) Let f be a perfect 2-coloring with the matrix of parameters A. Then $s = \frac{c+b}{q}$ is an integer and $(f, \phi_z) = 0$ for every n-tuple
- $z \in Z_q^n$ such that $wt(z) \neq 0$, s. (b) Let $f:Z_q^n \to \{0, 1\}$ be a Boolean-valued function. If $(f, \phi_z) = 0$ for every n-tuple $z \in \{0, ..., q-1\}^n$ such that $wt(z) \neq 0$, s then f is a perfect 2-coloring.

Proposition 2 (See [1]).

- (a) If $f \in \mathbb{V}$ is a correlation-immune function of order m then $(f, \phi_z) = 0$ for every n-tuple $z \in Z_q^n$ such that $0 < wt(z) \le m$. (b) A Boolean-valued function $f \in \mathbb{V}$ is correlation-immune of order m if $(f, \phi_z) = 0$ for every n-tuple $z \in Z_q^n$ such that 0 < wt(z) < m.

Corollary 1. Let *f* be a perfect 2-coloring with the matrix of parameters *A*. Then $cor(f) = \frac{c+b}{a} - 1$.

For 1-perfect codes the last statement was proved in [2].

Proof of Theorem 1. We have the following equalities by the definitions and general properties of an orthonormal basis.

$$\sum_{z} |(f, \phi_{z})|^{2} = \frac{1}{q^{n}} \sum_{x \in \mathbb{Z}_{q}^{n}} |f(x)|^{2} = \rho(S).$$
(1)

$$(f, \phi_{\overline{0}}) = \frac{1}{q^n} \sum_{x \in \mathbb{Z}_n^n} f(x) = \rho(S).$$
(2)

$$(Mf,f) = \frac{1}{q^n} \sum_{x \in \mathbb{Z}_q^n} \sum_{y, d(x,y)=1} f(x) \overline{f(y)} = \operatorname{nei}(S) \rho(S),$$
(3)

where nei(*S*) = $\frac{1}{|S|} \sum_{x \in S} |\{y \in S \mid d(x, y) = 1\}|.$

$$(Mf,f) = \sum_{z \in \mathbb{Z}_q^n} (n(q-1) - wt(z)q) |(f,\phi_z)|^2.$$
(4)

From (1) to (4) and Proposition 2 we obtain the equality

$$\operatorname{nei}(S)\rho(S) = \rho(S)^2 n(q-1) + \sum_{z, wt(z) \ge \operatorname{cor}(f) + 1} (n(q-1) - wt(z)q) |(f, \phi_z)|^2.$$

Since $\sum_{z, wt(z) > cor(f)+1} |(f, \phi_z)|^2 = \rho(S) - \rho(S)^2$, we have

$$nei(S)\rho(S) \le \rho(S)^2 n(q-1) + (n(q-1) - (cor(f) + 1)q)(\rho(S) - \rho(S)^2) \text{ and} (cor(f) + 1)q(1 - \rho(S)) \le n(q-1) - nei(S).$$
(5)

Substitute the set $Z_q^n \setminus S$ instead of the set *S* in the inequality (5). Since $\operatorname{cor}(\chi^S) = \operatorname{cor}(\chi^{Z_q^n \setminus S})$, $1 - \rho(Z_q^n \setminus S) = \rho(S)$ and $n(q-1) - \operatorname{nei}(Z_q^n \setminus S) = \alpha(S)$ we obtain (a) of the theorem.

Moreover, the equality

$$(cor(f) + 1)q(1 - \rho(S)) = n(q - 1) - nei(S)$$
(6)

holds if and only if $(f, \phi_z) = 0$ for every *n*-tuple *z* such that $wt(z) \ge cor(f) + 2$. Then from Proposition 1(b) we conclude that *f* is a perfect 2-coloring.

Any perfect 2-coloring satisfies (6), which is a consequence of Proposition 1(a) and Corollary 1. As mentioned above, equality (6) is equivalent to the equality (b) of the theorem.

Since $nei(S) \neq 0$, the inequality (5) implies the Bierbrauer–Friedman inequality (see [6,1])

$$\rho(S) \ge 1 - \frac{n(q-1)}{q(\operatorname{cor}(f)+1)}.$$

For 1-perfect binary codes, a similar theorem was previously proved in [9]. Namely, if cor(S) = cor(H) and $\rho(S) = \rho(H)$. where *S*, $H \subset \mathbb{Z}_2^n$ and *H* is a 1-perfect code, then *S* is also a 1-perfect code.

3. Components of a perfect 2-coloring

By a *bitrade of order* n - m we will mean a subset $B \subseteq Z_q^n$ such that the cardinality of intersections B and each m-dimensional face are even. For example, if q is even then $B \subseteq Z_q^n$ is a bitrade of order n - 1.

Proposition 3. Let $B \subseteq Z_q^n$ be a nonempty bitrade of order m, m < n. Then $|B| \ge 2^{m+1}$.

Proof. Suppose that the statement is true for n = k. We will prove it for n = k + 1. Since $|B| \ge 2$, there exist two parallel k-dimensional faces F_1 , F_2 such that the intersections $F_i \cap S$ are nonempty for i = 1, 2. It is clear that $F_i \cap S$ is a bitrade of order m-1 in the (n-1)-dimensional cube F_i . By induction hypothesis, $|F_i \cap B| \ge 2^m$ for i = 1, 2; consequently, $|B| \ge 2^{m+1}$.

Suppose that the characteristic functions $f = \chi^{S_1}$ and $g = \chi^{S_2}$ are perfect 2-colorings (correlation-immune) with the same matrix of the parameters (cor(f) = cor(g)). A set $S_1 \triangle S_2$ is called *mobile* and sets $S_1 \setminus S_2$ and $S_2 \setminus S_1$ are called *components* of perfect 2-colorings (correlation-immune functions) χ^{S_1} and χ^{S_2} , respectively. It is clear, that a mobile set of correlation-immune function of order *m* is a bitrade of order *m*.

Corollary 2. (a) Let f be a perfect 2-coloring with the matrix of parameters A. If $S \subset \mathbb{Z}_q^n$ is a component of f then $|S| \ge 2^{\frac{c+b}{q}-1}$. (b) Let $C \subset \mathbb{Z}_p^n$ be a 1-perfect code. If $S \subset \mathbb{Z}_q^n$ is a component of f then $|S| \ge 2^{\frac{n(q-1)+1}{q}-1}$.

If q = 2 then the lower bound $|S| \ge 2^{\frac{n+1}{2}-1}$ for the cardinality of components of 1-perfect codes is achievable (see, for example, [11]). In the case q > 2, an upper bound for the cardinality of components of 1-perfect codes is obtained constructively (see [10,8]). If $q = p^r$ and p is a prime number then $|S| \ge p^{\frac{q^m-1}{q-1}}(r(q-2)+1)$ where $n = \frac{q^m-1}{q-1}$. A set $S \subset Z_p^n$ is called *MDS code with distance* 2 if the intersection of *S* with each 1-dimensional face contains precisely one *n*-tuple. Obviously, a characteristic function of an MDS code is a perfect 2-coloring with the matrix of parameters $r(q, q, q) = r^{n-1}$. $\begin{pmatrix} n(q-2) & n \\ n(q-1) & 0 \end{pmatrix}$. If $q \ge 4$ then the lower bound $|S| \ge 2^{n-1}$ for the cardinality of the components of MDS codes is achievable (see [7]).

References

- [1] J. Bierbrauer, Bounds on orthogonal arrays and resilient functions, Journal of Combinatorial Designs 3 (1995) 179-183.
- [2] P. Delsarte, Bounds for unrestricted codes by linear programming, Philips Research Reports 27 (1972) 272–289.
- [3] D.G. Fon-Der-Flaass, Perfect 2-colorings of a hypercube, Siberian Mathematical Journal 48 (4) (2007) 740-745.
- [4] D.G. Fon-Der-Flaass, Perfect 2-colorings of the 12-cube that attain the bounds on correlation immunity, Sibirskie Elektronnye Matematicheskie [4] D.G. Foll-Der-Haass, Ferret 2-colorings of the 12 cube that attain the bounds on conclusion minimum, substate 2 izvestiya 4 (2007) 292–295 (Russian).
 [5] D.G. Fon-Der-Flaass, A bound of correlation immunity, Siberian Electronic Mathematical Reports, 4, 2007, pp. 133–135.
- [6] J. Friedman, On the bit extraction problem, in: Proc. 33rd IEEE Symposium on Foundations of Computer Science 1992, pp. 314–319.
- [7] D.S. Krotov, V.N. Potapov, P.V. Sokolova, On reconstructing reducible n-ary quasigroups and switching subquasigroups, Quasigroups and Related Systems 16 (2008) 55–67.
- [8] A.V. Los', Construction of perfect *q*-ary codes by switching of simple components, Problems of Information Transmission 42 (1) (2005) 30–37.
 [9] P.R.J. Östergård, O. Pottonen, K.T. Phelps, The perfect binary one-error-correcting codes of length 15: part II-properties, IEEE Transactions on Information Theory 56 (2010) 2571-2582.
- [10] K.T. Phelps, M. Villanueva, Ranks of q-ary 1-perfect codes, Design, Codes and Cryptography 27 (1-2) (2002) 139-144.
- [11] V.N. Potapov, On perfect colorings of Boolean n-cube and correlation immune functions with small density, Sibirskie Elektronnye Matematicheskie Izvestiya 7 (2010) 372–382 (Russian).