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a b s t r a c t

A coloring of a q-ary n-dimensional cube (hypercube) is called perfect if, for every n-tuple
x, the collection of the colors of the neighbors of x depends only on the color of x. A
Boolean-valued function is called correlation-immune of degree n − m if it takes value
1 the same number of times for each m-dimensional face of the hypercube. Let f = χ S

be a characteristic function of a subset S of hypercube. In the present paper we prove
the inequality ρ(S)q(cor(f ) + 1) ≤ α(S), where cor(f ) is the maximum degree of the
correlation immunity of f , α(S) is the average number of neighbors in the set S for n-tuples
in the complement of a set S, and ρ(S) = |S|/qn is the density of the set S. Moreover, the
function f is a perfect coloring if and only if we have an equality in the formula above. Also,
we find a new lower bound for the cardinality of components of a perfect coloring and a
1-perfect code in the case q > 2.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Let Zq be the set {0, . . . , q−1}. The set Zn
q of n-tuples over Zq is called q-ary n-dimensional cube (hypercube). TheHamming

distance d(x, y) between two n-tuples x, y ∈ Zn
q is the number of positions at which they differ. If d(x, y) = 1, we call x and

y neighbors. Define the number α(S) to be the average number of neighbors in a set S ⊆ Zn
q for n-tuples in the complement

of S, i.e. α(S) =
1

qn−|S|


x∉S |{y ∈ S | d(x, y) = 1}|.

A mapping Col: Zn
q → {0, . . . , k} is called a perfect coloring with the matrix of parameters P = {pij} if, for all i, j, for every

n-tuple of color i, the number of its neighbors of color j is equal to pij. Other terms used for this notion in the literature are
‘‘equitable partition’’, ‘‘partition design’’ and ‘‘distributive coloring’’. In what follows we will only consider colorings in two
colors (2-coloring). Moreover, for convenience wewill assume that the set of colors is {0, 1}. In this case the Boolean-valued
function Col is a characteristic function of the set of n-tuples colored by 1.

A 1-perfect code (one-error-correcting code) C ⊂ Zn
q can be defined as the set of units of a perfect coloring with the

matrix of parameters P =


n(q − 1) − 1 1
n(q − 1) 0


. The entry 0 in the Southeast says that no two codewords are neighbors, hence

theminimumdistance is at least 2; the entries in the first row show that each vector outside of the code is at distance 1 from
exactly one codeword. If q is the power of a prime number then a coloring with such parameters exists only if n =

qm−1
q−1 (m

is an integer). For q = 2 a list of achievable parameters and corresponding constructions of perfect 2-colorings can be found
in [3,4].

Let U be a finite set. A correlation immune function of order n−m is a function f : Zn
q → U whose each value is uniformly

distributed on all m-dimensional faces. For any function f we denote the maximum order of its correlation immunity by
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cor(f ). An orthogonal array (OA(N, k, u, t)) of strength t with N rows, k columns (k ≥ t) and based on u symbols is an N × k
arraywith elements fromU , |U| = u, such that everyN×t subarray contains each of the ut possible t-tuples equally often as
a row (say λ times). N must be a multiple of ut and λ = N/ut is the index of the array. The definition of correlation immune
(of order t) function f is equivalent to the following property: the array whose rows are the vectors of f −1(a) for each a ∈ U
is an orthogonal array of strength t . In [5] it is established that for each unbalanced Boolean function f = χ S (S ⊂ Zn

2 ) the
inequality cor(f ) ≤

2n
3 −1 holds. Moreover, in the case of the equality cor(f ) =

2n
3 −1, the function f is a perfect 2-coloring.

Similarly, if for any set S ⊂ Zn
2 the Friedman inequality (see [6]) ρ(S) ≥ 1−

n
2(cor(f )+1) becomes an equality then the function

χ S is a perfect 2-coloring (see [11]). Consequently, in the extremal cases, regular distributions on balls follow from uniform
distributions on faces. The main result of the present paper is the following theorem:

Theorem 1. (a) For each Boolean-valued function f = χ S , where S ⊂ Zn
q , the inequality ρ(S)q(cor(f ) + 1) ≤ α(S) holds.

(b) A Boolean-valued function f = χ S is a perfect 2-coloring if and only if ρ(S)q(cor(f ) + 1) = α(S).

2. Criterion for perfect 2-coloring

In the proof of the theorem we employ the idea from [1].
We consider Zq as the cyclic group on the set {0, . . . , q − 1}. We may impose the structure of the group Zq × · · · × Zq

on the hypercube. Consider the vector space V of complex-valued functions on Zn
q with the scalar product (f , g) =

1
qn


x∈Znq

f (x)g(x). For every z ∈ Zn
q define a character φz(x) = ξ ⟨x,z⟩, where ξ = e2π i/q is a primitive complex qth root

of unity and ⟨x, z⟩ = x1z1 + · · · + xnzn. Here all arithmetic operations are performed on complex numbers. As is generally
known, the characters of the group Zq × · · · × Zq form an orthonormal basis of V. It is sufficient to verify that ξ kξ k = 1 andq−1

j=0 ξ kj
= 0 as k ≠ 0 mod q.

Let M be the adjacency matrix of the hypercube Zn
q . This means that Mf (x) =


y,d(x,y)=1 f (y). It is well known that the

characters are eigenvectors ofM . Indeed, we have

Mφz(x) =


y,d(x,y)=1

ξ ⟨y−x,z⟩+⟨x,z⟩
= ξ ⟨x,z⟩

n
j=1


k≠0

ξ kzj = ((n − wt(z))(q − 1) − wt(z))φz(x),

where wt(z) is the number of nonzero coordinates of z.
Consider a perfect coloring f ∈ V, f (Zn

q ) = {0, 1} with the matrix of parameters

A =


n(q − 1) − b b

c n(q − 1) − c


.

The vector (−b, c) is an eigenvector of Awith the eigenvalue n(q− 1) − c − b. The definition of a perfect 2-coloring implies
that the function (b+c)f −b is the eigenvector of thematrixM . Moreover, the converse is true: every two-valued eigenvector
ofM generates a perfect coloring (see [5]).

Proposition 1 (See [3]).
(a) Let f be a perfect 2-coloring with the matrix of parameters A. Then s =

c+b
q is an integer and (f , φz) = 0 for every n-tuple

z ∈ Zn
q such that wt(z) ≠ 0, s.

(b) Let f : Zn
q → {0, 1} be a Boolean-valued function. If (f , φz) = 0 for every n-tuple z ∈ {0, . . . , q−1}n such that wt(z) ≠ 0, s

then f is a perfect 2-coloring.

Proposition 2 (See [1]).
(a) If f ∈ V is a correlation-immune function of order m then (f , φz) = 0 for every n-tuple z ∈ Zn

q such that 0 < wt(z) ≤ m.
(b) A Boolean-valued function f ∈ V is correlation-immune of order m if (f , φz) = 0 for every n-tuple z ∈ Zn

q such that
0 < wt(z) ≤ m.

Corollary 1. Let f be a perfect 2-coloring with the matrix of parameters A. Then cor(f ) =
c+b
q − 1.

For 1-perfect codes the last statement was proved in [2].
Proof of Theorem 1. We have the following equalities by the definitions and general properties of an orthonormal basis.

z

|(f , φz)|
2

=
1
qn


x∈Znq

|f (x)|2 = ρ(S). (1)

(f , φ0) =
1
qn


x∈Znq

f (x) = ρ(S). (2)

(Mf , f ) =
1
qn


x∈Znq


y,d(x,y)=1

f (x)f (y) = nei(S)ρ(S), (3)
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where nei(S) =
1
|S|


x∈S |{y ∈ S | d(x, y) = 1}|.

(Mf , f ) =


z∈Znq

(n(q − 1) − wt(z)q)|(f , φz)|
2. (4)

From (1) to (4) and Proposition 2 we obtain the equality

nei(S)ρ(S) = ρ(S)2n(q − 1) +


z,wt(z)≥cor(f )+1

(n(q − 1) − wt(z)q)|(f , φz)|
2.

Since


z,wt(z)≥cor(f )+1 |(f , φz)|
2

= ρ(S) − ρ(S)2, we have

nei(S)ρ(S) ≤ ρ(S)2n(q − 1) + (n(q − 1) − (cor(f ) + 1)q)(ρ(S) − ρ(S)2) and
(cor(f ) + 1)q(1 − ρ(S)) ≤ n(q − 1) − nei(S). (5)

Substitute the set Zn
q \ S instead of the set S in the inequality (5). Since cor(χ S) = cor(χ Znq \S), 1 − ρ(Zn

q \ S) = ρ(S) and
n(q − 1) − nei(Zn

q \ S) = α(S) we obtain (a) of the theorem.
Moreover, the equality

(cor(f ) + 1)q(1 − ρ(S)) = n(q − 1) − nei(S) (6)

holds if and only if (f , φz) = 0 for every n-tuple z such that wt(z) ≥ cor(f ) + 2. Then from Proposition 1(b) we conclude
that f is a perfect 2-coloring.

Any perfect 2-coloring satisfies (6), which is a consequence of Proposition 1(a) and Corollary 1. As mentioned above,
equality (6) is equivalent to the equality (b) of the theorem. �

Since nei(S) ≠ 0, the inequality (5) implies the Bierbrauer–Friedman inequality (see [6,1])

ρ(S) ≥ 1 −
n(q − 1)

q(cor(f ) + 1)
.

For 1-perfect binary codes, a similar theoremwas previously proved in [9]. Namely, if cor(S) = cor(H) and ρ(S) = ρ(H),
where S,H ⊂ Zn

2 and H is a 1-perfect code, then S is also a 1-perfect code.

3. Components of a perfect 2-coloring

By a bitrade of order n − m we will mean a subset B ⊆ Zn
q such that the cardinality of intersections B and each

m-dimensional face are even. For example, if q is even then B ⊆ Zn
q is a bitrade of order n − 1.

Proposition 3. Let B ⊆ Zn
q be a nonempty bitrade of order m, m < n. Then |B| ≥ 2m+1.

Proof. Suppose that the statement is true for n = k. We will prove it for n = k + 1. Since |B| ≥ 2, there exist two parallel
k-dimensional faces F1, F2 such that the intersections Fi∩S are nonempty for i = 1, 2. It is clear that Fi∩S is a bitrade of order
m−1 in the (n−1)-dimensional cube Fi. By induction hypothesis, |Fi ∩B| ≥ 2m for i = 1, 2; consequently, |B| ≥ 2m+1. �

Suppose that the characteristic functions f = χ S1 and g = χ S2 are perfect 2-colorings (correlation-immune) with the
same matrix of the parameters (cor(f ) = cor(g)). A set S1 △ S2 is called mobile and sets S1 \ S2 and S2 \ S1 are called
components of perfect 2-colorings (correlation-immune functions) χ S1 and χ S2 , respectively. It is clear, that a mobile set of
correlation-immune function of orderm is a bitrade of orderm.

Corollary 2. (a) Let f be a perfect 2-coloring with the matrix of parameters A. If S ⊂ Zn
q is a component of f then |S| ≥ 2

c+b
q −1.

(b) Let C ⊂ Zn
p be a 1-perfect code. If S ⊂ Zn

q is a component of f then |S| ≥ 2
n(q−1)+1

q −1.

If q = 2 then the lower bound |S| ≥ 2
n+1
2 −1 for the cardinality of components of 1-perfect codes is achievable (see,

for example, [11]). In the case q > 2, an upper bound for the cardinality of components of 1-perfect codes is obtained

constructively (see [10,8]). If q = pr and p is a prime number then |S| ≥ p
qm−1

−1
q−1 (r(q−2)+1) where n =

qm−1
q−1 .

A set S ⊂ Zn
p is called MDS code with distance 2 if the intersection of S with each 1-dimensional face contains precisely

one n-tuple. Obviously, a characteristic function of an MDS code is a perfect 2-coloring with the matrix of parameters
n(q − 2) n
n(q − 1) 0


. If q ≥ 4 then the lower bound |S| ≥ 2n−1 for the cardinality of the components of MDS codes is achievable

(see [7]).
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