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Abstract—The union of ` disjoint MDS (or perfect) codes with distance 2 (respectively, 3) is
always an `-fold MDS (perfect) code. The converse is shown to be incorrect. Moreover, if k is
a multiple of 4 and n + 1 ≥ 16 is a power of two, then a k/2-fold k-ary MDS code of length
m ≥ 3 and an (n+ 1)/8-fold perfect code of length n exist from which no MDS (perfect) code
can be isolated.

1. INTRODUCTION

Let Fnk = {0, 1, . . . , k−1}n be the set of words of length n over the alphabet Fk = {0, 1, . . . , k−1}.
Let En def= Fn2 be a Boolean cube. The Hamming distance d(x̄, ȳ) between two words, x̄ and ȳ,
in Fnk is the number of positions in which they differ. A sphere {ȳ ∈ Fnk : d(x̄, ȳ) ≤ r} of radius r
centered at a word x̄ ∈ Fnk will be denoted by Br(x̄). An edge {(x1, x2, . . . , xi−1, y, xi+1, . . . , xn) :
y ∈ Fk} ⊆ Fnk of direction i passing through a word x̄ = (x1, x2, . . . , xn) in Fnk will be denoted
by Ei(x̄). By En and En, we denote the sets of all words from En in which the number of ones is,
respectively, even or odd.

A set C ⊆ Fnk (or C ⊆ En) is called an (n,M, d)k-code (respectively, an (n,M, d)-code), or a
k-ary (binary) code of length n, cardinality M , and with distance d if |C| = M and d(x̄, ȳ) ≥ d for
any distinct x̄ and ȳ in C.

A subset C of Fnk is called a perfect k-ary r-error-correcting code if |Br(x̄) ∩ C| = 1 for any x̄
in Fnk . In the present paper, perfect binary one-error-correcting codes are considered, which we for

brevity call perfect codes. Such codes have parameters
(
n, 2n

n+1 , 3
)

and exists if and only if n + 1
is a power of two.

If we append to each word of an
(
n′, 2n

′

n′+1 , 3
)

code one more symbol, the parity-check bit, which

is equal to the sum modulo 2 of all the preceding symbols, we obtain an
(
n, 2n

2n , 4
)

code (with

n = n′ + 1), called an extended perfect code. A subset C of En is an
(
n, 2n

2n , 4
)

code if and only if
|B1(x̄) ∩ C| = 1 for each x̄ in En.

For any n and k, there exists an
(
n, kn−1, 2

)
k

code, which is called an MDS code with distance 2
(in the sequel, simply an MDS code). A subset C of Fnk is an

(
n, kn−1, 2

)
k

code if and only if
|Ei(x̄) ∩ C| = 1 for each x̄ in Fnk and any i = 1, . . . , n.

Remark 1. Generally, by an MDS code, a code with parameters of the type
(
n, kn−d+1, d

)
k

is
called. Though MDS codes with distance 2 (as well as those with distance 1 or n) are called
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trivial [1], the problem of describing them and estimating their number remains open. Recently,
asymptotics of quaternary MDS codes with distance 2 was announced [2].

A code is called reduced if it contains the word (0, 0, . . . , 0).

Definition 1. A subset C of En is an `-fold perfect code if |B1(x̄) ∩ C| = ` for each x̄ in En.
A subset C of En is an `-fold extended perfect code if |B1(x̄)∩C| = ` for each x̄ in En. A subset C
in Fnk is an `-fold MDS code if |Ei(x̄) ∩ C| = ` for each x̄ in Fnk and any i = 1, . . . , n.

Remark 2. Twofold quaternary codes were considered in [3], where a criterion for such codes
(more precisely, their characteristic functions) to be decomposable into a sum (modulo 2) of twofold
MDS codes of a smaller length was presented. This criterion implied a test for decomposability of
ordinary (onefold) MDS codes.

Definition 2. An `-fold perfect code (extended perfect code, MDS code) is unsplittable if it
cannot be represented as a union of ` disjoint perfect codes (extended perfect codes, MDS codes).

An `-fold perfect code (extended perfect code, MDS code) is completely unsplittable if it contains
(as a subset) no onefold perfect code (extended perfect code, MDS code).

A onefold perfect code (onefold extended perfect code, onefold MDS code) is precisely a perfect
code (respectively, extended perfect code, MDS code). On the other hand, a union of ` disjoint
perfect codes (MDS codes) is an `-fold perfect code (MDS code). The goal of the present paper
is to show, first, the existence of unsplittable multifold MDS codes and, second, the existence of
unsplittable `-fold perfect codes of length n, where n + 1 is a power of two. Moreover, it will be
proved that, if k is divisible by 4 and m ≥ 3, then a completely unsplittable k/2-fold k-ary MDS
code of length m exists; if n + 1 ≥ 16 and ` ≤ (n + 1)/8 are powers of two, then a completely
unsplittable `-fold perfect code of length n (`-fold extended perfect code of length n+ 1) exists.

Remark 3. The condition m ≥ 3 is necessary for an unsplittable MDS code to exist. To each
`-fold MDS code of length 2 corresponds in a natural way a square (0, 1)-matrix with ` ones
in each column and each row. A well-known consequence of the König–Frobenius theorem (see,
e.g., [4, Section 3.3]) is the fact that such matrices have all-one diagonals. Hence, there are no
unsplittable MDS codes of length 2.

In Section 2, multifold MDS codes are considered. In Section 2.1, existence of unsplittable `-fold
k-ary MDS codes of length 3 with ` < k/2 is shown; in Section 2.2, a completely unsplittable
k/2-fold k-ary MDS code of length 3 is constructed (k is a multiple of 4). Section 2.3 extends the
results to an arbitrary length n ≥ 3. In Section 3, with the use of the concatenation construction and
unsplittable (completely unsplittable) multifold MDS codes, unsplittable (completely unsplittable)
multifold perfect codes are constructed.

2. MULTIFOLD MDS CODES

Let Ω ⊆ Fnk . A function fn : Ω→ Fk is called a partial n-quasigroup of order k if the condition
d(x̄, ȳ) = 1 implies fn(x̄) 6= fn(ȳ). The function fn is called an n-quasigroup if Ω = Fnk .

Remark 4. A table of values of an n-quasigroup is precisely a Latin n-cube (the n-dimensional
generalization of a Latin square).

Proposition 1. 1. A function fn−1 : Fn−1
k → Fk is an (n − 1)-quasigroup if and only if its

graph

C =
{

(x̄, fn−1(x̄)) : x̄ ∈ Fn−1
k

}
is an (n, kn−1, 2)k MDS code.
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2. The projection

M =
`−1⋃
j=0

{
(x̄, fn(j, x̄)) : x̄ ∈ Fn−1

k

}
of the graph of a partial n-quasigroup fn : F` × Fn−1

k → Fk is an `-fold MDS code.

Proof. 1. A known and simple consequence of definitions.
2. Since fn is a quasigroup,

gn−1
j (x1, . . . , xn−1) def= fn(j, x1, . . . , xn−1)

is an (n − 1)-quasigroup for any j from 0 to ` − 1. Furthermore, for any x̄ ∈ Fn−1
k , we have

gn−1
i (x̄) 6= gn−1

j (x̄) if i 6= j. Then item 1 implies that

Cj =
{
(x̄, gn−1

j (x̄)) : x̄ ∈ Fn−1
k

}
, j = 0, . . . , `− 1,

are disjoint MDS codes. 4
A partial n-quasigroup fn : Ω → Fk is called extendable if fn = gn|

Ω
for some n-quasigroup

gn : Fnk → Fk.

2.1. Nonsplittable `-fold MDS Codes of Length 3, ` < k/2.

In [5], the following statement is proved.

Lemma 1. Let k ≥ 5 and k/2 < ` < k − 1. Then there exists a nonextendable partial
3-quasigroup f3 : F` × F 2

k → Fk.

Proposition 2. Let M ⊂ Fnk be an `-fold MDS code. Then Fnk \M is a (k− `)-fold MDS code.

Proof. This follows from Definition 1 and the equality

k = |Ei(x̄)| = |Ei(x̄) ∩M |+ |Ei(x̄) ∩ (Fnk \M)|. 4

Proposition 3. Let k ≥ 5 and 2 ≤ ` < k/2. Then there exists an unsplittable `-fold MDS code
M ⊂ F 3

k .

Proof. From Lemma 1, we have a nonextendable partial 3-quasigroup f3 : Fk−` × F 2
k → Fk.

Proposition 1 implies that the set

M =
k−`−1⋃
j=0

{(
x̄, f3(j, x̄)

)
: x̄ ∈ F 2

k

}

is a (k− `)-fold MDS code. Let us show that the `-fold MDS code F 3
k \M is unsplittable. Assume

the contrary: let F 3
k \M = C1∪ . . .∪C`, where Ci are pairwise disjoint MDS codes in F 3

k . Consider
the 2-quasigroups f2

Ci
which corresponds to the MDS codes Ci according to Proposition 1, item 1.

Define the function g3 : F 3
k → Fk as

g3(x, y, z) = f3(x, y, z) if 0 ≤ x ≤ k − `− 1,

g3(x, y, z) = f3
Ck−x(y, z) if k − ` ≤ x ≤ k − 1.

It can easily be checked that the function g3 is a 3-quasigroup and that g3 is an extension of the
partial 3-quasigroup f3. A contradiction. 4
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2.2. Completely Unsplittable k/2-fold MDS Codes of Length 3.

A face in F 3
k obtained by fixing the ith coordinate is denoted by

Fi(y) def= {(x1, x2, x3) : xi = y}, y ∈ Fk.

A set C ⊂ F 3
k is called a diagonal if |Fi(y) ∩ C| = 1 for any i ∈ {1, 2, 3} and y ∈ Fk. In other

words, C = {(0, y0, z0), . . . , (k − 1, yk−1, zk−1)}, where {y0, . . . , yk−1} = {z0, . . . , zk−1} = Fk.

Proposition 4. Let ` be even. Then the (3, `2, 2)` MDS code

G`
def=
{

(x, y, z) ∈ F 3
` : x+ y + z = 0 mod `

}
contains no diagonal.

Proof. Assume the contrary: let a diagonal H ⊂ G` exist. For any (x, y, z) in G`, we have
x+ y + z = 0 mod `; therefore,

0 mod `=
∑

(x,y,z)∈H
(x+ y + z) =

∑
(x,y,z)∈H

x+
∑

(x,y,z)∈H
y +

∑
(x,y,z)∈H

z

=
`−1∑
x=0

x+
`−1∑
y=0

y +
`−1∑
z=0

z =
`(`− 1)

2
+
`(`− 1)

2
+
`(`− 1)

2
mod `=

`

2
6= 0,

a contradiction. 4
Remark 5. Proposition 4 is a particular case of the theorem on transversal-free Latin squares

(see [6]).

Proposition 5. For any k divisible by 4 there exists a completely unsplittable k/2-fold MDS
code M ⊂ F 3

k .

Proof. Let ` ≥ 2 be even, and let k = 2`. For C ⊂ F 3
` , introduce the following notations:

Ĉ
def= F 3

` \ C,

C + (a, b, c) def= {(x+ a, y + b, z + c) : (x, y, z) ∈ C}.

Define the set G` ⊂ F 3
` as in Proposition 4, and define the sets B1, B2, B3 ⊂ F 3

` by the equalities

B1
def= {(x, y, y) : x, y ∈ F`}, B2

def= {(y, x, y) : x, y ∈ F`}, B3
def= {(y, y, x) : x, y ∈ F`}.

Let

M
def= G` ∪ (B̂3 + (`, 0, 0)) ∪ (B̂1 + (0, `, 0)) ∪ (B̂2 + (0, 0, `))

∪ (B3 + (`, 0, `)) ∪ (B1 + (`, `, 0)) ∪ (B2 + (0, `, `)) ∪ (Ĝ` + (`, `, `)).

An example of a set M (with ` = 4) is shown in Fig. 1 (note that the example is not a minimal
one; ` may equal 2). One can easily verify that M is an `-fold MDS code. Let us prove that M is
completely unsplittable. Assume the contrary: let a onefold MDS code D ⊂M exist.

Let x ∈ F`. Consider the set D1(x) def= D∩F1(x) ⊂M ∩F1(x) (see Fig. 2). By the construction,
the intersection of M and the edge E2((x, 0, x + `)) is contained in F 3

` + (0, `, `). Hence, the only
element of D (and also of D1(x)) that belongs to this edge lies in F 3

` + (0, `, `). Similarly, the
intersection of each of the `− 1 edges E2((x, 0, z + `)), z ∈ F`, z 6= x, and the code M is contained
in F 3

` + (0, 0, `). Hence, ` − 1 elements of D (and also of D1(x)) that belong to these edges lie in

PROBLEMS OF INFORMATION TRANSMISSION Vol. 40 No. 1 2004



ON MULTIFOLD MDS AND PERFECT CODES 9

Fig. 1. Completely unsplittable 4-fold 8-ary MDS code M .

Fig. 2. The set F1(x) ∩M , ` = 4, x = 2.

F 3
` + (0, 0, `). Thus, D1(x) intersects F 3

` + (0, `, `) by one element and intersects F 3
` + (0, 0, `) by

`− 1 elements. The set(
F 2
` × F2`

)
∩ F1(x) =

(
F1(x) ∩ F 3

`

)
∪
(
F1(x) ∩

(
F 3
` + (0, 0, `)

))
intersects D by ` elements (since it is split into ` edges). Of them, as is already shown, ` − 1
elements are contained in F 3

` + (0, 0, `). Hence, |D1(x) ∩ F 3
` | = |D ∩ F1(x) ∩ F 3

` | = 1.
Analogously, it can be shown that |D ∩ Fi(x) ∩ F 3

` | = 1 for any i ∈ {1, 2, 3} and x ∈ F`. Thus,
the set D has one element in each face from F 3

` . Hence, D ∩ F 3
` is a diagonal by the definition.

This contradicts Proposition 4 since D ∩ F 3
` ⊂ G`. 4

2.3. Multifold MDS Codes of an Arbitrary Length

Proposition 6. If M3 ⊂ F 3
k is an unsplittable (completely unsplittable) `-fold MDS code of

length 3, then

Mn def=
{

(x1, x2, x3, . . . , xn) ∈ Fnk : (x1, x2, (x3 + . . .+ xn) mod k) ∈M3
}
, n ≥ 3,

is an unsplittable (completely unsplittable) `-fold MDS code of length n.
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Proof. Obviously, Mn is an `-fold MDS code. Since

M3 =
{

(x1, x2, x3) : (x1, x2, x3, 0, . . . , 0) ∈Mn
}
,

it is easy to prove by contradiction that unsplittability (complete unsplittability) of M3 implies
unsplittability (complete unsplittability) of Mn. 4

Propositions 3, 5, and 6 imply the following theorem.

Theorem 1. 1. Let n ≥ 3, k ≥ 5, and 2 ≤ ` < k/2. Then there exists an unsplittable `-fold
MDS code M ⊂ Fnk .

2. Let n ≥ 3 and let k be a multiple of 4. Then there exists a completely unsplittable k/2-fold
MDS code M ⊂ Fnk .

3. MULTIFOLD PERFECT CODES

Definitions 1 and 2 imply the following fact.

Proposition 7. Let C ⊆ En, C ⊆ En+1, and let C be obtained from C by adding the parity-
check bit. Then C is an `-fold perfect code (unsplittable `-fold perfect code, completely unsplittable
`-fold perfect code) if and only if C is an `-fold extended perfect code (respectively, unsplittable
`-fold perfect code, completely unsplittable `-fold perfect code).

Proposition 8. A subset C of the set En is an `-fold extended perfect code if |C| = `
2n

2n
and

|B1(x̄) ∩ C| ≥ ` for any x̄ in En.

Proof. By the condition, ∑
x̄∈En

|B1(x̄) ∩ C| ≥ `|En| = `2n−1, (1)

and this inequality is strict if |B1(x̄) ∩ C| > ` for at least one x̄ from En.
Since each word y in C (as well as any other word) belongs to spheres with centers in at most

n vertices from En (more precisely, in one vertex if y ∈ En, and in n vertices if y ∈ En), we have∑
x̄∈En

|B1(x̄) ∩ C| ≤ n|C| = `2n−1, (2)

and this inequality is strict if at least one word from C belongs to En.
Strictness of either of inequalities (1) and (2) results in the contradiction `2n−1 < `2n−1; there-

fore, C is an `-fold extended perfect code by the definition. 4
The construction described below is a particular case of the generalized concatenation construc-

tion [7]. In [8], it is applied (in a more general form) to construct extended perfect codes from
MDS codes. We will use this construction to obtain unsplittable (completely unsplittable) multifold
perfect codes from unsplittable (completely unsplittable) multifold MDS codes.

Let m, k, and n = mk be powers of two; H and C be reduced extended perfect codes of length
m and k respectively; B be a subset of Fmk .

Denote by ẽi the word from Ek with unity in the (i+ 1)st position and zeros in all the others,
i = 0, . . . , k − 1. Define the codes Cai , a ∈ {0, 1}, i ∈ {0, . . . , k − 1}, by the equalities C1

i
def= C ⊕ ẽi

and C0
i

def= C1
i ⊕ ẽ0, i = 0, . . . , k − 1. Note that Cai ∩ Ca

′
i′ = ∅ if (i, a) 6= (i′, a′). Since

k−1∑
i=0

|C0
i | = 2k−1 = |Ek| and C0

i ⊂ Ek,
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ON MULTIFOLD MDS AND PERFECT CODES 11

we have Ek =
⋃
i
C0
i and, analogously, Ek =

⋃
i
C1
i . Define the set

D =
⋃

(a1,...,am)∈H

⋃
(i1,...,im)∈B

Ca1
i1
× Ca2

i2
× . . .× Camim . (3)

Proposition 9. If B is an `-fold MDS code, then the set D defined by (3) is an `-fold extended
perfect code.

Before proving the proposition, let us define for an arbitrary word x̄ = (x1, . . . , xn) ∈ En = Emk

the generalized parity check

p(x̄) =
(
(x1 ⊕ . . .⊕ xk), (xk+1 ⊕ . . .⊕ x2k), . . . , (x(m−1)k+1 ⊕ . . . ⊕ xmk)

)
.

Proof. Consider an arbitrary odd word x̄ ∈ En. The word p(x̄) is also odd. Since H is
an extended perfect code, there exists a unique z̄ in H such that d(p(x̄), z̄) = 1. Let j be the
number of positions in which p(x̄) and z̄ differ. Denote x̃t def= (x(t−1)k+1, x(t−1)k+2, . . . , xtk). For
each t in {1, . . . ,m} \ {j}, let it be such that x̃t ∈ Cztit . By the definition of an `-fold MDS code,
there are pairwise distinct i(1), i(2), . . . , i(`) such that (i1, i2, . . . , ij−1, i

(s), ij+1, . . . , im) ∈ B for each
s ∈ {1, . . . , `}. Since the words p(x̄) and z̄ differ in position j, there exists a word ỹ(s) ∈ Czj

i(s)
such

that d(x̃j , ỹ(s)) = 1. Denote ȳ(s) = (x̃1, . . . , x̃j−1, ỹ(s), x̃j+1, . . . , x̃m). By the construction, we have
d(x̄, ȳ(s)) = 1 and at the same time ȳ(s) ∈ D. Thus, |{ȳ ∈ D : d(x̄, ȳ) = 1}| ≥

∣∣{ȳ(s)
}`
s=1

∣∣ = ` for
each x̄ ∈ En.

On the other hand,

|D| = |H||B||C|m =
2m

2m
`km−1

(
2k

2k

)m
=
`2n

2n
.

Applying Proposition 8 completes the proof. 4
We have the following statement.

Proposition 10. 1. For each x̄ in D, we have p(x̄) ∈ H.
2. (ẽi1 , . . . , ẽim) ∈ D if and only if (i1, . . . , im) ∈ B.
3. Let A ⊂ D be an extended perfect code of length n; let B0 =

{
(i1, . . . , im) | (ẽi1 , . . . , ẽim) ∈ A

}
.

Then B0 is an
(
m,km−1, 2

)
k

MDS code and B0 ⊂ B.

Proof. Items 1 and 2 immediately follow from formula (3). Item 2 implies that B0 ⊆ B. Let us
show that B0 is an

(
m,km−1, 2

)
k

MDS code.
Code distance. If (i1, . . . , im) and (j1, . . . , jm) from B0 differ in one coordinate only, then

(ẽi1 , . . . , ẽim) and (ẽj1 , . . . , ẽjm) from A differ in two coordinates only. This contradicts the fact
that A is an extended perfect code.

Cardinality. For arbitrary i2, . . . , im, consider the word x̄ = (0, . . . , 0, ẽi2 , . . . , ẽim) ∈ En. Since
x̄ ∈ En, there exists a unique word ȳ in A which differs from x̄ in exactly one coordinate.
The words p(x̄) and p(ȳ) also differ in exactly one coordinate. Since p(x̄) = (0, 1, . . . , 1) and
p(ȳ) ∈ H 3 (1, 1, . . . , 1) (it is known [9] that a reduced (extended) perfect code contains the word
(1, 1, . . . , 1)), we have p(ȳ) = (1, 1, . . . , 1). Hence, ȳ = (ẽi1 , ẽi2 , . . . , ẽim) for some i1. Since ȳ ∈ A,
we have (i1, i2, . . . , im) ∈ B0. Therefore, |B0| = km−1. 4

Theorem 2. 1. If n = 2s ≥ 16 and 1 < ` < n/8, then there exists an unsplittable `-fold
extended perfect code in En.

2. If n = 2s ≥ 16 and 1 < ` = 2t ≤ n/8, then there exists a completely unsplittable `-fold
extended perfect code in En.
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Proof. 1. Let m = 4 and k = n/4. By item 1 of Theorem 1, there is an unsplittable `-fold
MDS code B ⊂ Fmk (2 ≤ ` < n/8 = k/2). Due to Proposition 9, the set D obtained from B by
formula (3) is an `-fold extended perfect code. Let us show that D is unsplittable.

Let D = C1∪. . .∪C`, where Ci are pairwise disjoint extended perfect codes. Then Proposition 10
implies that, for 1 ≤ j ≤ `, the sets Bj =

{
(i1, . . . , im) | (ẽi1 , . . . , ẽim) ∈ Cj

}
are MDS codes.

Moreover, the codes Bj are subsets of B and, as well as the codes Cj, are pairwise disjoint. Then
the equality

|B| = `km−1 =
∑̀
j=1

|Bj |

implies that B = B1 ∪ . . . ∪B`. The contradiction proves that D is unsplittable.
2. Let m = n/2` and k = 2`. By item 2 of Theorem 1, there is a completely unsplittable

`-fold MDS code B ⊂ Fmk . Due to Proposition 9, the set D obtained from B by formula (3) is
an `-fold extended perfect code. Let us prove by contradiction that D does not contain a onefold
subcode. Let C ⊂ D be a onefold extended perfect code. Then Proposition 10 implies that the set
B′ =

{
(i1, . . . , im) : (ẽi1 , . . . , ẽim) ∈ C

}
is an MDS code and is contained in B, a contradiction. 4

Theorem 2 and Proposition 7 imply the following theorem.

Theorem 3. 1. If n = 2s − 1 ≥ 15 and 1 < ` < (n + 1)/8, then there exists an unsplittable
`-fold perfect code in En.

2. If n = 2s − 1 ≥ 15 and 1 < ` = 2t ≤ (n + 1)/8, then there exists a completely unsplittable
`-fold perfect code in En.
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