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Abstract—Let Σ be a finite set of cardinality k > 0, let A be a finite or infinite set of indices, and let
F ⊆ ΣA be a subset consisting of finitely supported families. A function f : ΣA → Σ is referred to
as an A-quasigroup (if |A| = n, then an n-ary quasigroup) of order k if f(y) �= f(z) for any ordered
families y and z that differ at exactly one position. It is proved that an A-quasigroup f of order 4
is reducible (representable as a superposition) or semilinear on every coset of F . It is shown that
the quasigroups defined on ΣN, where N are positive integers, generate Lebesgue nonmeasurable
subsets of the interval [0, 1].
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1. INFINITE-DIMENSIONAL QUASIGROUPS AND NONMEASURABLE SETS

Let Σ be a nonempty finite set, and let A be a finite or infinite set whose elements enumerate the
arguments of functions acting from ΣA to Σ. Introduce a function d : ΣA × ΣA → [0,∞] in such a way
that d(y, z) is the number of distinct coordinates in y, z ∈ ΣA. A function f : ΣA → Σ is said to be a
A-quasigroup (in what follows, we use simply the term quasigroup or, if |A| = n, then the term n-ary
quasigroup, see, e.g., [1]) of order |Σ| if f(y) �= f(z) for d(y, z) = 1.

Without loss of generality, we may assume that Σ = {0, . . . , k − 1}. Let N be the set of natural
numbers. Elements of the set ΣN can be regarded as k-ary representations of reals δ ∈ [0, 1]. Let us
identify these reals and their k-ary representations1.

Proposition 1. For every quasigroup f : ΣN → Σ of finite order k and any element a ∈ Σ the set
{δ ∈ [0, 1] | f(δ) = a} is Lebesgue nonmeasurable.

Proof. Suppose that the set B = {δ ∈ [0, 1] | f(δ) = a} is measurable. Let τ ∈ [0, 1] be a k-ary rational
whose k-ary representation contains at most m nonzero initial symbols. Consider the half-interval
[τ, τ + 1/km+1). It follows from the definition of quasigroup that

(B ∩ [τ, τ + 1/km+1) + i/km+1) ∩ B = ∅ for every i = 1, . . . , k − 1.

In this case, using the invariance of the Lebesgue measure with respect to any shift of a set, we obtain
the inequality

μ(B ∩ [τ, τ + 2/km+1)) ≤ 1
2

μ([τ, τ + 2/km+1)).

*E-mail: vpotapov@math.nsc.ru
1The fact that the correspondence is not one-to-one on a countable set is inessential for the presentation below.
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Since k-ary rational points occur in an arbitrarily small neighborhood of every point υ ∈ (0, 1), it follows
that

lim
ε→0

μ((υ − ε, υ + ε) ∩ B)
μ((υ − ε, υ + ε))

≤ 1
2

.

By the Lebesgue density theorem for an arbitrary measurable set A, this limit is equal to 1 for almost all
points υ ∈ A. Then μ(B) = 0. Moreover, it follows from the definition of quasigroup that

[0, 1] ⊂
1+k⋃

i=1−k

(
B +

i

k

)
.

Then μ([0, 1]) = 0. We arrived at a contradiction.

Write suppy = {i ∈ A | yi �= 0}. Denote by I the family of finite subsets of the set A. Let the set A

be infinite. Consider

F = {y ∈ ΣA | suppy ∈ I}.

It is clear that the set ΣA can be represented as a disjoint union of subsets of the form Fa = a + F .
Moreover, if Fa �= Fb , then d(y, z) = ∞ for any y ∈ Fa and z ∈ Fb. Therefore, the quasigroup f can
be defined independently on every Fa . In what follows, we assume that f : F → Σ. As we shall see
below, the quasigroups on F admit a constructive definition, whereas, to define a quasigroup on ΣA, it is
necessary to choose a representative in every class Fa .

In what follows, we denote by the symbol x the family of arguments (variables) of the quasigroup and
by xL a sample of arguments with subscripts in the set L, L ⊆ A. By a retract of a quasigroup f we mean
a subfunction obtained from f by substituting constants into some arguments, provided that only finitely
many constants can be nonzero. The number of variables of a retract is referred to as the dimension of
the retract. By fL(xL) (or simply by f(xL)) we denote the retract of a quasigroup f : F → Σ in which
all arguments except for those with indices in the set L are fixed by zeros. By f(y{i}, xL) we denote the
quasigroup obtained by substituting a function, a variable, or a constant y instead of the argument xi,
i �∈ L. The symbols I and J are used to denote finite subsets of A only. It is clear that every retract of the
form fJ can be regarded as a |J |-ary quasigroup.

Denote by S0 the group of permutations on Σ that preserve the zero element2. By an isotopy
(preserving the zero) one means an element of the set S0 × SA

0 . Two quasigroups f and g are said to
be isotopic if g(xA) = θ0(f(θAxA)) for some θ0 ∈ S0 and θA ∈ SA

0 . If a permutation θ0 is the identity,
then the quasigroups f and g are said to be principally isotopic. A quasigroup f is said to be reduced
if, when substituting every element a ∈ Σ into any argument xi, i ∈ A, and simultaneously substituting
the zeros into the other arguments, one obtains a, i.e., f(a{i}, 0A\{i}) = a.

The objective of the present paper is to classify the quasigroups of order 4. To this end, we introduce
below the notions of reducibility (representability in the form of superposition) and semilinearity of a
quasigroup; we claim that all quasigroups of order 4 are either semilinear or reducible. The semilinear
quasigroups admit a description using Boolean functions. Reducible quasigroups can be represented
by using their own retracts. However, in contrast to the similar description of quasigroups of finite
dimension (see [6]), the present work does not ensure any constructive classification of infinite-
dimensional quasigroups, because the tree of decomposition of a quasigroup into superpositions can
turn out to be infinite.

2If the set A is finite, then one does not fix the zero element.
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2. REDUCIBILITY

A quasigroup f is said to be reducible if it can be represented in the form of a superposition, i.e., in the
form f(xL1, xL2) = g(h(xL1){j}, xL2), where g and h are L1- and ({j} ∩L2)-quasigroups, L1 ∩L2 = ∅,
|L1| ≥ 2, |L2| ≥ 1, j �∈ L2

3. In the converse case, the quasigroup is said to be inreducible.
As is well known (see, e.g., [2]), every quasigroup is isotopic to a reduced quasigroup and every

reduced reducible quasigroup can be represented as a superposition of reduced quasigroups.

Proposition 2. A quasigroup f can be represented as a superposition

f(xL1 , xL2) = g(h(xL1){j}, xL2)

if and only if, for any families of arguments yL2 , yL1 , y′L1
, the relation f(yL1, 0L2) = f(y′L1

, 0L2)
implies the relation f(yL1, yL2) = f(y′L1

, yL2).

Proof. Without loss of generality, we assume that the quasigroup f is reduced and 1 = j ∈ L1. The
necessity is obvious; let us prove the sufficiency. Write h = fL1 and g = f{1}∪L2

.

Let

f(yL1, 0L2) = h(yL1) = a = f(a{1}, 0L1\{1}, 0L2)

for some a ∈ Σ. Then

f(yL1, yL2) = f(a{1}, 0L1\{1}, yL2) = g(a{1}, yL2) = g(h(yL1){1}, yL2).

The following assertion is an immediate corollary to a theorem in [3].

Statement 1. Every reducible n-ary quasigroup f can be represented in the form

f(xJ) = F (q1(xJ1), . . . , qm(xJm)), (2.1)

where qj are nj-ary quasigroups for j ∈ {1, . . . ,m}, F is an inreducible m-ary quasigroup, and
{Ji} is a partition of the set J into families of cardinalites n1, . . . , nm. Moreover, if m ≥ 3, then,
in this representation, the partition {Ji} is unique.

This assertion can be restated as follows (see [4, Sec. 2]).

Corollary 1. If a reducible n-ary quasigroup f has an inreducible retract of dimension m > 2 not
contained in inreducible retracts of larger dimension, then

{x | x0 = fJ(xJ )} = {x | q0(xJ0) = F (q1(xJ1), . . . , qm(xJm))}, (2.2)

where qj are nj-ary quasigroups for j ∈ {0, . . . ,m}, F is an inreducible m-ary quasigroup, and
{Ji} is the partition of the set J ∪ {0} into families of cardinalities n0, . . . , nm

4.

Let us choose some quasigroup f : F → Σ. We say that a set M ⊆ A is inreducible (with respect
to f ) if |M | ≥ 3 and, for every finite family J ⊆ M , there is a finite family J ′, J ⊆ J ′ ⊆ M , for which the
quasigroup fJ ′ is inreducible.

A system of sets in which, for every pair of sets L1, L2, there is a set L such that L1 ∪ L2 ⊂ L, is
said to be a direction. We say that a direction S ⊆ I converges to a set M ⊆ A if, for any finite subset
of M , there is an element of the direction S for which the given subset is contained in this element. By
the definition of inreducibility of the set M , there is a direction S which converges to M and consists of
inreducible finite families.

Proposition 3. If a direction S ⊆ I converges to a set M ⊆ A and S =
⋃m

i=1 Si, then there is an
i ∈ {1, . . . ,m} such that the set Si is a direction which converges to M .

3To be definite, we assume that j ∈ L1.
4Here and below, we assume that x0 is not an argument of the quasigroup f .

MATHEMATICAL NOTES Vol. 93 No. 3 2013



482 POTAPOV

Proof. Let Si be not a direction convergent to M . Then there is a Ji ∈ I which is not dominated by
elements of Si. Consider J =

⋃m
i=1 Ji. There is an I ∈ S such that J ⊆ I. By assumption, I ∈ Si for

some i ∈ {1, . . . ,m}. We have arrived at a contradiction.

Proposition 4. If a set M is inreducible, then the quasigroup fM is inreducible.

Proof. Suppose the contrary, i.e., let there be a representation of the quasigroup fM in the form of a
superposition

fM (xL1 , xL2) = g(h(xL1){i0}, xL2), (2.3)

where M = L1 ∪L2, |L1| ≥ 2, and |L2| ≥ 1. Let i0, i1 ∈ L1 and i2 ∈ L2. By the definition of inreducible
set, there is a finite family J , {i0, i1, i2} ⊂ J ⊆ M , for which the quasigroup fJ is inreducible. However,
this contradicts equation (2.3).

The inverse to this statement, which is decomposed into two subcases (Lemmas 1 and 2), is the main
result of this section and the next one. It claims that, if a quasigroup fA is inreducible, then the set A is
inreducible.

Denote by N (f) the family of inreducible subsets of the set A. Note that, if N (f) �= ∅, then the
set N (f) contains finite elements.

Proposition 5. Let N (f) �= ∅. For every inreducible L there is a maximal element M in N (f)
containing L.

Proof. Consider an arbitrary finite or infinite chain (with respect to inclusion) of inreducible sets {Lβ}.
We claim that the set K = ∪Lβ is inreducible. Let I ⊂ K be a finite family. Then there is a β such
that I ⊂ Lβ , and hence there is a finite inreducible family J ′ for which I ⊆ J ′ ⊆ Lβ ⊆ K. The desired
assertion follows from Zorn’s lemma.

Assuming that the set N (f) is nonempty, we choose some element Mf which is maximal with respect
to inclusion in N (f).

Proposition 6. Let J ∈ N (f), J ′ ∈ I , and J ⊂ J ′. Then there is a representation

{x | x0 = fJ ′(xJ ′)} = {x | q0(xJ0) = F (q1(xJ1), . . . , qm(xJm))}, (2.4)

where qi are ni-ary quasigroups for i ∈ {0, . . . ,m}, F is an inreducible m-ary quasigroup, and
{Ji} is a partition of the set J ′ ∪ {0} ∈ I into families of cardinality n0, . . . , nm. Moreover,
|(J ∪ {0}) ∩ Ji| ≤ 1 for every i, i ∈ {0, . . . ,m}.

Proof. If J is a maximal inreducible subset of J ′, then we obtain the desired statement from Corollary 1.
Otherwise, one should apply Corollary 1 to a maximal inreducible set J ′′, J ⊂ J ′′ ⊆ J ′.

Note that m ≥ |J | in (2.4); however, it is not claimed that the inequality m ≥ |J | holds for all
representations of the set {x | x0 = fJ ′(xJ ′)}. We write [i, j]f,J ′⊃J if in the representation (2.4) for fJ ′

we have i, j ∈ Jl for some l, 0 ≤ l ≤ m.

Proposition 7. For every i �∈ Mf , there is a family J(i) ∈ I for which J(i) ⊆ Mf and a unique
α(i) ∈ Mf ∪ {0} such that [i, α(i)]f,J⊃J(i) for any J ∈ I and i ∈ J with J(i) ⊂ J ⊆ Mf ∪ {0, i}.

Proof. Since i �∈ Mf , it follows that the quasigroup fJ ′∪{i} is reducible for the finite families J ′ ⊂ Mf

exceeding some J(i) ⊆ Mf . Obviously, one can choose the family of indices J(i) to be inreducible. For
the sake of definiteness of our choice, we assume that the set of indices is ordered and the family J(i)
is lexicographically minimal among the possible families. By Proposition 6, the representation (2.4)
holds. If an index α(i) takes distinct values i1, i2 ∈ J(i) for different finite families J ′, J ′′ ⊆ Mf , then,
substituting zero into all arguments except the arguments with indices in {0, i} ∪ J(i) in representations
of the form (2.4) for the quasigroups fJ ′ and fJ ′′ , we arrive at a contradiction to the uniqueness of the
representation of the quasigroup, which is ensured by Statement 1.
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Proposition 8. For any families

J ′, J ′′ ∈ I , i ∈ J ′′, J ′ ⊂ Mf , J(i) ⊂ J ′ ⊂ J ′′,

the relation [i, α(i)]f,J ′′⊃J ′ holds.

Proof. By Proposition 7, [i, α(i)]f,J ′∪{i}⊃J(i). Consider the representation (2.4) for the quasigroup fJ ′′ .
In order to see that [i, α(i)]f,J ′′⊃J ′ holds, it suffices to substitute zero into all arguments except for the
arguments whose indices belong to J ′ ∪ {0, i} and to apply Statement 1.

Corollary 2. For every finite family J ⊂ A \ Mf , there is a family J ′ ∈ I , J ′ ⊂ Mf , such that
[i, α(i)]f,J ′′⊃J ′ for every family J ′′ ∈ I with J ′ ∪ J ⊂ J ′′ and every i ∈ J .

Proof. Consider a finite family J ′ ⊂ Mf such that fJ ′ is an inreducible quasigroup and J(i) ⊂ J ′ for
every i ∈ J . The desired statement follows from Proposition 8.

Lemma 1. If a set A is reducible and Nf �= ∅, then the quasigroup f : F → Σ is reducible.

Proof. Consider the set Mf ; by assumption, Mf �= A. For every m ∈ Mf , we introduce the set of
indices

Am = {i �∈ Mf | α(i) = m} ∪ {m}.

Without loss of generality, we may assume that 1 ∈ Mf and |A1| ≥ 2. Let B = A \ A1. We claim that,
for any families of arguments yB, yA1 , y′A1

, the equation f(yA1, 0B) = f(y′A1
, 0B) implies the equation

f(yA1, yB) = f(y′A1
, yB). Consider arbitrary elements y, y′ ∈ F and the finite family

J = supp yB ∪ supp yA1 ∪ suppy′A1
.

By Corollary 2, there is a family J ′ ⊆ Mf , J ∩ Mf ⊂ J ′, such that [i, α(i)]f,J ′′⊃J ′ for every finite family
J ′′, J ′ ∪ J ⊂ J ′′ and for every i ∈ J \ Mf . Then

fJ ′′(xA1∩J ′′ , xB∩J ′′) = g(h(xA1∩J ′′){1}, xB∩J ′′).

Let f(yA1, 0B) = f(y′A1
, 0B). Then h(yA1∩J ′′) = h(y′A1∩J ′′) and

f(yA1, yB) = fJ ′′(yA1∩J ′′ , yB∩J ′′) = fJ ′′(y′A1∩J ′′ , yB∩J ′′) = f(y′A1
, yB).

Proposition 2 implies the desired assertion.

Approaches similar to those used above were applied in [5] to study properties of reducible n-ary
quasigroups.

3. COMPLETE REDUCIBILITY

According to the definition, all 2-ary quasigroups are inreducible. A reducible n-ary quasigroup f
is said to be completely commutatively reducible if all its retracts of dimension greater than 2 are
reducible and all retracts of dimension 2 are isotopic to commutative groups.

In what follows, we assume that Σ = {0, 1, 2, 3}, i.e., we speak only of n-ary quasigroups of order 4.
As is well known (see, e.g., [1]), all 2-ary quasigroups of order 4 are isotopic to either the group Z2 × Z2

or to the group Z4. Therefore, reducible n-ary quasigroups of order 4 that do not contain inreducible
retracts of dimension exceeding two are completely commutatively reducible. The following statement
is an immediate corollary to a theorem in [3].

MATHEMATICAL NOTES Vol. 93 No. 3 2013



484 POTAPOV

Statement 2. One can represent every completely commutatively reducible n-ary quasigroup
f : Σn → Σ in the form

f(xJ1, . . . , xJk
) = q1(xJ1) ∗ · · · ∗ qk(xJk

), (3.1)

where ∗ stands for a commutative group operation and qj are nj-quasigroups for j ∈ {1, . . . , k}
that cannot be represented in the form qj(xJ ′

j
, xJ ′′

j
) = q′(xJ ′

j
) ∗ q′′(xJ ′′

j
). Moreover, in this represen-

tation, the finite families {Jj} and the operation ∗ are determined uniquely (for a chosen neutral
element of the group).

To a completely commutatively reducible n-quasigroup f with the representation (3.1) we assign a
rooted tree T (f) whose inner vertices are labeled by operations and the leaves by arguments of functions.
Let us construct the tree by recurrence. Suppose that T (gj) is a tree corresponding to a function qj ,
j ∈ {1, . . . , k}; then the tree of the n-ary quasigroup f is defined as the root labeled with the operation ∗
with k edges issuing from the root; moreover, the tree T (qj) is joined to the jth edge.

Let a quasigroup f : F → Σ be such that the set N (f) is empty. Denote T (fJ) by TJ , where J ∈ I .
Consider a minimal subtree in TJ which contains a pair of arguments with indices i1, i2 ∈ J , and denote
by C(J, i1, i2) ∈ I the set of indices corresponding to hanging vertices of this subtree. The fact that the
tree TJ and the set C(J, i1, i2) are well defined follows from Statement 2. The set C(J, i1, i2) ∈ I can
equivalently be defined in terms of the existence of the following representation:

fJ(xJ ) = g((h1(xC1) ∗ h2(xC2)){i1}, xJ\(C1∪C2)),

where C1 ∪ C2 = C(J, i1, i2) for i1 ∈ C1 and i2 ∈ C2, and the quasigroup (h1(xC1) ∗ h2(xC2)) corre-
sponds to the minimal subtree containing the pair of arguments with the indices i1, i2 ∈ J .

Proposition 9. Let J ⊂ J ′ ∈ I , i1, i2 ∈ J . Then C(J, i1, i2) = C(J ′, i1, i2) ∩ J .

Proof. We have

fJ ′(xJ ′) = g((h1(xC1) ∗ h2(xC2)){i1}, xJ ′\(C1∪C2)),

where C1 ∪C2 = C(J ′, i1, i2) for i1 ∈ C1 and i2 ∈ C2. Substituting zero into all the arguments in J ′ \ J ,
we obtain the desired representation for the quasigroup fJ .

Lemma 2. Let a quasigroup f : F → Σ be such that N (f) = ∅. Then f is reducible.

Proof. Without loss of generality, we may assume that f is reduced. If a quasigroup f is linear or f
is isotopic to an iterated group of Z4, then f is reducible. Otherwise there is a family J = {i1, i2, i3}
such that fJ(xJ) = (xi1 ∗1 xi2) ∗2 xi3 , where ∗1 and ∗2 are distinct group operations. Consider the
set C =

⋃
C(J, i1, i2), where the union is taken over all finite families J containing i1 and i2. It

follows from Proposition 9 that i3 �∈ C. Moreover, for every finite family J ∈ I , i1, i2 ∈ J , we have
C(J, i1, i2) = C ∩ J . Indeed, if j ∈ (C ∩ J) \ C(J, i1, i2), then j ∈ C(J ′, i1, i2) for some finite family J ′.
Then it follows from Proposition 9 that j ∈ C(J ′ ∪ J, i1, i2), and hence j ∈ C(J, i1, i2).

We claim that f(xA) = g(h(xC ){i1}, xA\C). By Proposition 2, it suffices to prove that the equation
f(yC , 0A\C) = f(y′C , 0A\C) implies the equation f(yC , yA\C) = f(y′C , yA\C) for every arguments yA\C ,
yC , and y′C . Consider arbitrary y, y′ ∈ F ; write J = supp y ∪ supp y′ ∪ {i1, i2, i3}. Then

f(y) = fJ(yJ) = g(h(yJ∩C){i1}, yJ\C).

It follows from the equation f(yC , 0A\C) = f(y′C , 0A\C) that h(yJ∩C) = h(y′J∩C) = a for some a ∈ Σ.
Then

f(yC , yA\C) = fJ(yC , yA\C) = g(a{i1}, yA\C)

= g(h(y′J∩C){i1}, yA\C) = fJ(y′C , yA\C) = f(y′C , yA\C).
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4. SEMILINEARITY

A quasigroup f : F → Σ of order 4 is said to be semilinear if it satisfies the equation

f({0, 1}A ∩ F) = {0, 1}
or if f is isotopic to a quasigroup satisfying this equation. In particular, a reduced linear quasigroup
f(xA) =

∑
β∈A

xβ is semilinear. Here the addition which is assumed is isomorphic to the group
operation in Z2 × Z2. The quasigroups isotopic to the reduced linear quasigroup are also referred to
as linear ones.

It can readily be seen (see also [2]) that the semilinear quasigroups can be partitioned into three
classes Q1, Q2, Q3, in such a way that Qa contains the quasigroups principally isotopic to quasigroups
satisfying the equation f({0, 1}A ∩ F) = {0, a}.

The following statement was proved in [2].

Statement 3. For a �= b, the set Qa ∩ Qb coincides with the set of linear n-ary quasigroups.

A description of the n-quasigroups of order 4 in the above terms was obtained in [6]. Namely, the
following statement was proved.

Statement 4. For every finite n, every n-ary quasigroup of order 4 is either reducible or semilin-
ear.

Using Statement 4, let us prove the following lemma for infinite-dimensional quasigroups.

Lemma 3. Let f be a quasigroup of order 4 and M ∈ N (f). Then the quasigroup fM is semilinear.

Proof. Without loss of generality, we may assume that f is reduced. If M is finite, then the desired
assertion follows from Statement 4. Below, we assume that the set M is infinite. Since M ∈ N (f),
there is a direction S ⊆ I which converges to M . Let

Ba = {J ∈ I | J ∈ S, fJ ∈ Qa}.

It follows from Proposition 3 that at least one of the sets Ba, a ∈ {1, 2, 3}, forms a direction convergent
to M . As is well known (see, e.g., [2]), if J ∈ Ba J ′ ⊂ J , then J ′ ∈ Ba. Hence, Ba consists of all finite
subsets of M .

If there are a �= b such that the directions Ba and Bb converge to M , then all quasigroups fJ ,
J ∈ S, are linear by Statement 3. Then the quasigroup fM is linear. If only one of the directions Ba,
a ∈ {1, 2, 3}, converges to M , then we set c0 = a.

We similarly define ci for every i ∈ M . Namely, let us define the quasigroup f
(i)
M as the inversion of

the quasigroup f with respect to the ith argument, i.e., in such a way that

{(x, y) | xi = f
(i)
M (xM\{i}, y{i})} = {(x, y) | y = fM (xM )}.

After this, we find an element c0 ∈ {1, 2, 3} for the quasigroup f
(i)
M and denote this element by ci.

Let θi = (1, ci). Consider the quasigroup gM (xM ) = θ0fM(θMxM ). It can readily be seen that
gJ({0, 1}|J |) = {0, 1} for every J ⊆ M , J ∈ I . Then the quasigroups gM and fM are semilinear.

As is well known (see, e.g., [2]), every n-ary quasigroup of order 2 is of the form

f(x1, . . . , xn) = x1 + · · · + xn + σ mod2,

where σ ∈ {0, 1}, and every n-ary quasigroup of order 3 is isotopic to the n-quasigroup

f(x1, . . . , xn) = x1 + · · · + xn + σ mod3.

Using an approach similar to that used above, one can readily prove the following proposition.
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Proposition 10. (a) Let f : F → {0, 1} be a quasigroup of order 2. Then f(xA) = p(xA) + σ, where
σ ∈ {0, 1} and

p(xA) =
∑

i∈A

xi mod2.

(b) Let f : F → {0, 1, 2} be a quasigroup of order 3. Then f is isotopic to a quasigroup g, for
which

g(xA) =
∑

i∈A

xi mod 3.

The function p is referred to as the parity check function. Let J ∈ I . Introduce a function
χ : I → {0, 1}A by the equation χ(J) = δ, where δi = 1 if and only if i ∈ J .

Proposition 11. Let g be a semilinear quasigroup of order 4. Then g is isotopic to some
quasigroup f whose restrictions fJ = f |{2,3}J×{0,1}A\J are of the form

fJ(x) = 2p(χ(J)) + (p(xmod 2) + σJ) mod 2.

Proof. By the definition of semilinearity, the quasigroup g is isotopic to a quasigroup f satisfying the
equation f({0, 1}A ∩ F) = {0, 1}. Then, by the definition of quasigroup,

f({2, 3}J × {0, 1}A\J ∩ F) =

{
{0, 1} for p(χ(J)) = 0,
{2, 3} for p(χ(J)) = 1.

The desired assertion follows from Proposition 10(a).

5. MAIN RESULT

Theorem 1. Let f : F → Σ be a quasigroup of order 4.
(a) The set A is inreducible if and only if the quasigroup fA is.
(b) The quasigroup f is either reducible or semilinear.

Proof. (a) If A is finite, then the assertion is obvious. If A is infinite, then the assertion follows from
Proposition 4 and from Lemmas 1 and 2.

(b) If A is finite, then we apply Statement 4. If A is infinite, then the assertion of part (b) follows from
part (a) and from Lemma 3.
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