
Discrete Applied Mathematics 135 (2004) 245–254
www.elsevier.com/locate/dam

Redundancy estimates for the Lempel–Ziv
algorithm of data compression�;��

V.N. Potapov
Sobolev Institute of Mathematics, SB RAS, pr. Ak. Koptyuga 4, 630090 Novosibirsk, Russia

Abstract

The problem of non-distorting compression (or coding) of sequences of symbols is considered.
For sequences of asymptotically zero empirical entropy, a modi0cation of the Lempel–Ziv coding
rule is o1ered whose coding cost is at most a 0nite number of times worse than the optimum. A
combinatorial proof is o1ered for the well-known redundancy estimate of the Lempel–Ziv coding
algorithm for sequences having a positive entropy. ? 2002 Elsevier B.V. All rights reserved.

Keywords: Data compression; Lempel–Ziv algorithm

0. Introduction

Lempel and Ziv [18,19] o1ered methods of coding (hereafter called LZ77 and LZ78)
which were widely applied to the data compression problem since then. Nowadays, a lot
of modi0cations of these ideas are known [1,4,5,9,13,14,17]. Using algorithms based on
Lempel–Ziv type rules in software development pushes interest to theoretical bounds on
the quality of compression provided by these rules. In recent years, asymptotic estimates
were obtained for the coding redundancy of various modi0cations of the Lempel–Ziv
algorithm [8,10–12,15,16]. The estimate of special importance for practice is that of
empirical redundancy R(f; xn1) of a coding f of a sequence xn1 consisting of n symbols
from a 0nite alphabet. The value R(f; xn1) is de0ned as the di1erence between the
length of the code f(xn1) of xn1 and the empirical entropy H (xn1) of this sequence,
where the length of the code and the entropy are scaled per symbol of the sequence.

� Translated from Discrete Anal. Oper. Res. 6 (2) (1999) 70–81.
�� Supported by RFBR (Grant 99-01-00531) and Federal Aim Program “Integration” (Grant 473).

0166-218X/$ - see front matter ? 2002 Elsevier B.V. All rights reserved.
PII: S0166 -218X(02)00308 -6

246 V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254

The best known redundancy estimates for the Lempel–Ziv method belong to Savari
[11,12]:

R(f1; xn1) = O
(

1
log n

)
(1)

and

R(f2; xn1)6
CH (xn1) log log n

log n
(1 + o(1)) (2)

as n → ∞ and limn→∞H (xn1)¿ 0, where C=2 and f1 and f2 are obtained according
to LZ78 and LZ77, respectively. By log we mean the logarithm to the base 2. However,
there exist examples of non-periodic sequences x (xn1 being the pre0x of x of length
n) such that

limn→∞
R(f; xn1)
H (xn1)

=∞;

where the coding f is obtained by LZ77 or LZ78.
In the present paper, we o1er a coding rule combining the algorithms LZ77 and

LZ78. For a coding f built according to this rule, the redundancy estimate (2) holds
for C = 1 if limn→∞H (xn1)¿ 0, and the redundancy estimate

R(f; xn1) = O(H (xn1))

holds for an arbitrary non-periodic x. So, unlike LZ77 and LZ78, the algorithm o1ered
guarantees the code of a sequence to be at most a 0nite number of times longer than
its empirical entropy.
Besides, we o1er a direct combinatorial proof of (2) with C=1 for LZ78 and C=3

for LZ77. The estimates obtained are somewhat worse than the known estimates (1)
and (2) resulting from more cumbersome methods of probability theory.

1. Basic de�nitions

Let A= {a1; : : : ; a|A|} be a 0nite alphabet, and A∗ =
⋃∞

n=1 An be the set of all 0nite
sequences of letters of A. Given words x; y, we denote their concatenation by xy. The
word consisting of letters of a word x=ai1 : : : ain starting with the lth letter and ending
by rth one will be denoted by xrl ; so, xrl = ail : : : air . The word consisting of letters
of x following a subword y will be denoted by x(y) = ai1 : : : aim ; so, for each letter
aij ; 16 j6m, occurring in x(y) there exist words xl1 and xnr such that x = xl1yaij x

n
r .

The length of x will be denoted by |x|.
The empirical entropy (of order 0) of a word xn1 ∈An (see [6]) is

H (xn1) =
|A|∑
i=1

ri
n
log

n
ri
; (3)

V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254 247

where ri is the number of occurrences of ai to xn1. Using the Stirling formula and (3),
we obtain

H (xn1) =
1
n
log

n!
r1!r2! : : : r|A|!

+ �(xn1); (4)

where �(xn1)¿ 0 and �(xn1)6 �′(n) → 0 as n → ∞.
The empirical entropy of order k of a word xn1 ∈An (see [3]) is the value

Hk(xn1) =
∑
y∈Ak

n(y)
n

H (xn1(y)); (5)

where n(y) = |xn1(y)|.
A coding is an injection f : A∗ → E∗ (E = {0; 1}) taking each word on A to a

binary sequence, the code of this word. A coding f is called pre0x if for any distinct
words xn1 and yn

1 of length n on A the code f(xn1) is not equal to a pre0x of f(yn
1).

In what follows, we shall use the pre0x code �(n) for positive integers o1ered by
Elias [2]. (For similar earlier codes, see [7].) For each positive integer n, we have

|�(n)|= 2�log(�log n�+ 1)�+ �log n�+ 1: (6)

The (empirical) redundancy of order k of a coding f for a word xn1 is

Rk(f; xn1) =
1
n
|f(xn1)| − Hk(f; xn1): (7)

Let us consider the set X (xn1) ⊂ An consisting of words in which the number of
occurrences of ai;6 i6 |A|, is the same as in xn1. Then for every pre0x coding f and
x∈A∞ the equalities (4) and (7) imply

lim
n→∞

(
sup

z∈X (xn1)
R(f; z)

)
¿ 0:

Analogously, it can be shown that

lim
n→∞

(
sup

z∈Xk (xn1)
Rk(f; z)

)
¿ 0;

where Xk(xn1) ⊂ An is the set of z ∈An such that z(y) and xn1(y) have the same set of
frequencies of letters for all y∈Ak .

2. Lempel–Ziv coding rule and its modi�cations

The algorithm LZ77 [18] consists in dividing the word xn1 ∈An to be coded to
subwords �i; 16 i6m, as follows. Let a pre0x of xn1 be already divided, i. e.,
let it be equal to the concatenation of subwords �1; �2; : : : ; �i and xn1 be equal to
�1 : : : �ixnli . We choose the longest sequence xrili which already occurred in the pre-
0x xri−1

1 of xn1, i. e., x
ri
li = xri−ni

li−ni , where 16 ni ¡ li. De0ne the next subword �i+1 as
�i+1 = xrili api ; where api is the letter of xn1 following xrili . The code of each subword

248 V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254

�i+1 is the triplet (ri − li; ni; pi). For example, the sequence a2a1a2a1a1a2a1a1a2a2
divides to subwords a2; a1; a2a1a1; a2a1a1a2a2 and is coded by the sequence of triplets
(0; 0; 2); (0; 0; 1); (2; 2; 1); (4; 3; 2). We write the 0rst number in a triplet (ri − li; ni; pi)
by the coding �, and the second and third ones as binary numbers of length �log n�+1
bits and �log|A|�+ 1 bits, respectively. Then due to (6) we have

|f1(xn1)|6
m∑
i=1

(log n+ log|�i|+ 2 log(1 + log|�i|) + log|A|+ 3); (8)

where the coding f1 is built by the rule LZ77, and m is the number of subwords �i
to which the sequence xn1 is divided by the algorithm LZ77. By the construction, f1

is a pre0x coding.
The di1erence between the algorithm described above and LZ78 [19] is that in the

latter, at each step we choose the longest pre0x of xnli coinciding with some sub-
word �j; j¡ i, and add a letter to it, i. e., �i+1 = �japi . The code of a subword
�i+1 is de0ned as the pair (j; pi). For example, the sequence a2a1a2a1a1a2a1a2a1 is
divided to subwords a2; a1; a2a1; a1a2; a1a2a1 and is coded by the sequence of pairs
(0; 2); (0; 1); (1; 1); (2; 2); (4; 1). The LZ78 coding f2 is de0ned as the sequence of pairs
(j; s), where the 0rst number of the ith pair is written by �log i�+ 1 binary bits, and
the second one by �log|A|�+ 1 binary bits. Then

|f2(xn1)|=
m∑
i=1

(log i + log|A|+ 2)6m(logm+ log|A|+ 2); (9)

where m is the number of subwords �i to which xn1 is divided by LZ78. By the
construction, f2 is a pre0x coding.
The modi0cation of the Lempel–Ziv algorithm o1ered here (and from now on de-

noted by LZP) is based on both methods LZ77 and LZ78. When choosing the next
subword, we always use LZ78 or LZ77; the latter is chosen only if ni ¡ ri − li. The
0rst or the second method is pointed by 0 or 1, respectively; each time we select the
method that extracts the longer subword. The subwords are coded by the same way
as in LZ78 and LZ77; the only di1erence is that in the second case, �log(ri − li)�
bits are used to code ni. For example, the word a1a2a1a1a1a1a1a1a2 will be divided
into the words a1; a2; a1a1; a1a1a1a1a2 and coded by three triples and a quadruple
(0; 0; 1); (0; 0; 2); (0; 1; 1); (1; 4; 2; 2). Clearly, the length of the code |f3(xn1)| in the LZP
algorithm is bounded as follows:

|f3(xn1)|6m1logm

+2
∑
�i∈B2

(log|�i|+ log(1 + log|�i|)) + m(log|A|+ 3); (10)

where m1 is the number of subwords obtained by the 0rst method, B2 is the set of
all subwords obtained by the second method, and m= m1 + |B2| is the number of all
subwords into which the word xn1 is divided. The coding f3 is a pre0x one by the
construction, as well as f1 and f2.

V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254 249

All subwords of xn1 obtained by the algorithms LZ77, LZ78, and LZP are distinct,
possibly except for the last subword, which can coincide with one of the previous
words. In what follows, to simplify the calculations, we suppose that all the subwords,
including the last, are distinct.

3. Main results

The following lemma will be used to estimate the coding redundancy of the algorithm
LZP for sequences with asymptotically zero entropy.

Lemma 1. If xn1 ∈An and xn1 = �1 : : : �m for the words �i; 16 i6m; selected by the
algorithm LZP; then

nHk(xn1)¿
∑

|�i|¿|A|k
max(log(|�i|=|A|k); 1):

Proof. Let us denote �′
i = zi�i; where zi is the subword consisting of k letters standing

directly before �i in xn1 (for several initial �i; the subwords zi may consist of fewer
letters). Suppose that y∈Ak and �′

i(y) contains di1erent letters. Then it follows from
(3) that

|�′
i(y)|H (�′

i(y))¿ log|�′
i(y)|: (11)

Since
∑

y∈Ak |�′
i(y)|= |�i| and |�i|¿ |A|k ; there exists a y∈Ak such that

|�′
i(y)|¿ |�i|=|A|k ; |�′

i(y)|¿ 2: (12)

If �′
i(y) contains the last letter of �i; then; according to the LZP algorithm; �′

i(y)
contains at least two di1erent letters; and inequality (11) holds. Let �′

i(y) do not
contain the last letter of �i and be a power of some one letter ai(y). Let y=ai1ai3 : : : aik .
Consider the word y1 = ai2ai3 : : : aik ai(y). Then from the de0nition of y1 it follows that
|�′

i(y1)|¿ |�′
i(y)|¿max(|�i|=|A|k ; 2): If y1 is not a power of one letter; then (11)

holds. Otherwise; let us de0ne the letters y2; y3; y4; and so on similarly to y1; that
is; y2 = ai3 : : : aik ai(y)ai(y1); etc. Since yj ∈Ak; the sequence y1; y2; y3; : : : is either 0nite
or periodic. If it is periodic; then all k-element blocks of the subword �i are elements
of y1; y2; y3; : : :; contradicting the LZP algorithm of choosing �i. Thus; if |�i|¿ |A|k ;
then there exists a word y∈Ak for which (11) and (12) hold.

Since the function log x is convex, it follows from the Jensen inequality and the de0-
nition of entropy (3) that

|xn1(y)|H (xn1(y))¿
m∑
i=1

|�′
i(y)|H (�′

i(y)):

Then (5), (11), (12), and the last inequality imply the statement of Lemma 1.

The redundancy estimate for the Lempel–Ziv coding is based on the following
statement:

250 V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254

Lemma 2. Let xn1 ∈An and xn1 = �1�2 : : : �m; where �i
= �j for i
= j. Then for each
integer k¿ 0 the inequality

nHk(xn1)¿m logm−
m∑
i=1

log|�i| − 2
m∑
i=1

log(1 + log|�i|)− Cm

holds; where the constant C¿ 0 depends only on k and |A|.

Proof. Let a0
= ai; 16 i6 |A|. Denote Â=A∪a0 and zk1=a0a0 : : : a0; and also �̂i=zk1�i
and x̂n1 = �̂1 : : : �̂m. Let Sm be the set of permutations of length m. Let �∈ Sm. Denote
�(x̂n1) = �̂�(1) : : : �̂�(m). Then �(x̂n1)
= �′(x̂n1) for �
= �′ because a0 ∈ Â \ A and the words
�(x̂n1); �

′(x̂n1) are uniquely divided into subwords �i which are all distinct by assumption.

Consider y∈ Â
k
and the word �̂1(y)�̂2(y) : : : �̂m(y). If �∈ Sm, then it follows that

�̂�(1)(y)�̂�(2)(y) : : : �̂�(m)(y) is a permutation �(y) of letters of the word �̂1(y)�̂2(y) : : :
�̂m(y). Let !(y) be the set of all such permutations �(y) for �∈ Sm. If y∈Ak , then
�̂1(y)�̂2(y) : : : �̂m(y)=�1(y)�2(y) : : : �m(y) and |�1(y)�2(y) : : : �m(y)|6 |xn1(y)|. More-
over, the number of occurrences of a letter ai ∈A, 16 i6 |A|, to �1(y)�2(y) : : : �m(y)
is not greater than the number of its occurrences to xn1(y). Thus,

|!(y)|6 n(y)!
r1(y)!r2(y)! : : : r|A|(y)!

; (13)

where n(y) = |xn1(y)| and ri(y) is the number of occurrences of ai ∈A to xn1(y). If

y∈ Â
k \ Ak , then |�̂1(y)�̂2(y) : : : �̂m(y)|6m and

|!(y)|6 |Â|m: (14)

Each word �(x̂n1) from Sm can be uniquely assigned by 0xing the number of letters
between consecutive subwords zk1 in the word �(x̂n1): |�̂�(1)|; |�̂�(2)|; : : : ; |�̂�(m−1)| and 0x-

ing the permutations �(y)∈!(y) for all y∈ Â
k
. This, (6), and the equality |Sm|=m!

imply

logm!6
∑
y∈Âk

�log|!(y)|�

+
m−1∑
i=1

�log|�i|�+ 2
m−1∑
i=1

�log(1 + log|�i|)�+ m: (15)

It follows from the de0nition of �̂i that the number of di1erent words y∈ Â
k \ Ak

contained in �̂i is not greater than k|A|. Using (4), (13), (14), we get∑
y∈Âk

�log|!(y)|�6
∑
y∈Ak

⌈
log

n(y)!
r1(y)!r2(y)! : : : r|A|(y)!

⌉
+ k|A|�log(|Â|m)�

6
∑
y∈Ak

n(y)H (xn1(y)) + km|A|log|Â|+ (|A|+ 1)k :

V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254 251

The statement of Lemma 2 now follows from (5), (15), the inequality logm!¿m logm−
m=ln 2 and the last inequality.

In the next lemma, we obtain a lower bound for the number of distinct subwords to
which the word can be divided.

Lemma 3. Let �1; �2; : : : ; �m ∈A∗; where �i
= �j for i
= j; then

1
m

m∑
i=1

|�i|¿ logm
2 log|A| − 1:

Proof. Since the number of the words �i of length k is not greater than |A|k ; we have

�log|A|m	−2∑
k=1

∑
|�i|=k

16

�log|A|m	−2∑
k=1

|A|k6 m
|A| :

So;

∞∑
k=�log|A|m	−1

∑
|�i|=k

1¿m− m
|A|¿

m
2

and

1
m

m∑
i=1

|�i|¿ 1
m

m
2
(�log|A|m� − 1)¿

logm
2 log|A| − 1:

The lemma is proved.

Now let us estimate the redundancy of coding the sequence having asymptotically
positive entropy.

Theorem 1. Consider A = {a1; : : : ; a|A|}; x∈A∞; and an integer k¿ 0 such that
limn→∞Hk(xn1)¿ 0. Then

Rk(f; xn1)6
CHk(xn1) log log n

log n
(1 + o(1));

where C = 1 for the codings built according to the rules LZ78 and LZP; and C = 3
for the coding built according to LZ77.

Proof. Let the algorithm LZP divide a word xn1 ∈An to subwords �1; �2; : : : ; �m. Since∑m
i=1 |�i|=n; and log x is a convex function; it follows from the Jensen inequality that

m∑
i=1

log|�i|6m log

(
m∑
i=1

|�i|=m
)

= m log
n
m
: (16)

252 V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254

Analogously; since log log x is a convex function; we have
m∑
i=1

log(1 + log|�i|)6m
(
1 + log log

n
m

)
: (17)

Now (10); (16) and (17) for the coding f built by the rule LZP imply

|f(xn1)|6m1 logm+ 2m2 log
n
m2

+ 2m log log
n
m

+ m(log|A|+ 5); (18)

where m1 and m2 are the numbers of subwords selected from xn1 by the 0rst and the
second rule; respectively.
Since −t log(t=c)6 c for c¿ 0 and t ¿ 0, we have 2m2 log n=m26m2 logm + 2

(n=
√
m). Since all �i are mutually distinct by the construction, it follows from Lemma

2, (7),(16)–(18) and the last inequality that

Rk(f; xn1)6
m
n
log

n
m

+ 4
m
n
log log

n
m

+ C′m
n
+

2√
m
; (19)

where C′ ¿ 0 is a constant.
Lemma 3 implies that m=n → 0 as m → ∞. Using (19), we obtain that lim supn→∞

Rk(f; xn1)6 0. Without loss of generality we may assume that lim supn→∞ Rk(f; xn1) =
limn→∞ Rk(f; xn1) (if it is necessary, we pass to an appropriate subsequence). If
limn→∞ Rk(f; xn1)¡ 0, then the theorem obviously holds. Otherwise, it follows from
limn→∞Hk(xn1)¿ 0 and limn→∞ Rk(f; xn1)=0 that Hk(xn1) ∼ (1=n)|f(xn1)| ∼ (m=n) logm
and Hk(xn1)=logm ∼ m=n; logm=Hk(xn1) ∼ n=m for n → ∞. These equivalences and (19)
imply the theorem for the coding built by the rule LZP. For the codings constructed
by LZ77 and LZ78, the theorem can be proved analogously with the use of Lemma
2, (8), and (9). Theorem 1 is proved.

Let us consider an example of the sequence x such that

|f(xn1)|=nH1(xn1) → ∞ (20)

as n → ∞, where the coding f is built by LZ78.
Let x be the sequence on 2 letters de0ned as follows: xi = a1 if i = 2k for some

integer k, and xi = a2 otherwise. Then it follows from (3) and (5) that H1(xn1) =
(log2 n=n)(1+o(1)). The algorithm LZ78 divides this sequence to at least

√
n subwords,

since the lengths of subwords cannot grow faster than the members of some arithmetic
progression. Then it follows from (9) that

|f(xn1)|=
√
n
2

log n(1 + o(1))

for the coding f, i. e., that

|f(xn1)|=nH1(xn1) =
√
n

2 log n
(1 + o(1)) → ∞

as n → ∞.

V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254 253

The examples of sequences whose code satis0es (20) also exist for the rule LZ77.
But as the following theorem shows, for the code built by LZP the limit from (20) is
always 0nite.

Theorem 2. Let A = {a1; : : : ; a|A|}; x∈A∞; limn→∞Hk(xn1) = 0; and let the sequence
x∞i be non-periodic for each integer i¿ 0. Then

1
n
|f(xn1)|=O(Hk(xn1));

where the coding f is built according to the LZP rule.

Proof. Let the LZP algorithm divide the word xn1 ∈An to subwords �1; �2; : : : ; �m. Since
for each integer i¿ 0 the sequence x∞i is non-periodic; the procedure of selecting the
next word by the LZP algorithm is always 0nite. Let the coding f : A∗ → E∗ be built
by the LZP rule. Due to Lemma 2 and (10); for each integer k¿ 0 we have

|f(xn1)| − nHk(f; xn1)6 6
m∑
i=1

log|�i|+ Cm; (21)

where C¿ 0 depends only on k and |A|. Due to Lemma 1; we have

nHk(f; xn1)¿
m∑
i=1

log|�i| − mk log|A| − |A|2k log|A|

and

m6 nHk(f; xn1) + |A|k log|A|:
Now Theorem 2 follows from (21) and the two last inequalities.

References

[1] R.P. Brent, A linear algorithm for data compression, Austral. Comput. J. 19 (2) (1987) 64–68.
[2] P. Elias, Universal codeword sets and representations of integers, IEEE Trans. Inform. Theory 21 (2)

(1975) 194–203.
[3] V.D. Goppa, Codes and Information, Uspehi Mat. Nauk 39 (1) (1984) 77–120 (in Russian).
[4] A.V. Kadach, E1ective algorithms of non-distorting text data compression, Candidate Thesis,

Novosibirsk, Ershov Institute of Informatics Systems, 1997 (in Russian).
[5] J. Kie1er, W. Finamore, P. Nunes, A class of noiseless data compression algorithms based on Lempel–

Ziv parsing trees, in: Proceedings of the IEEE International Symposium on Information Theory,
Piscataway, NJ, 1994, p. 6.

[6] R.E. Krichevsky, Universal Compression and Retrieval, Kluwer Academic Publishers, Dordrecht, 1994.
[7] V.I. Levenstein, On redundancy and deceleration of separably coding positive integers, Problemy

Kibernetiki 20 (1968) 173–179 (in Russian).
[8] G. Lounchard, W. Szpankowski, On the average redundancy rate of the Lempel–Ziv code, IEEE Trans.

Inform. Theory 43 (1) (1997) 1–7.
[9] V.S. Miller, M.N. Wegman, Variations on a theme by Ziv and Lempel, in: Combinatorial Algorithms

on Words, Springer, Berlin, 1985, pp. 131–140.
[10] E. Plotnick, M.J. Weinberger, J. Ziv, Upper bounds on the probability of sequences emitted by 0nite-state

source and on the redundancy of the Lempel–Ziv algorithm, IEEE Trans. Inform. Theory 38 (1) (1992)
66–72.

254 V.N. Potapov /Discrete Applied Mathematics 135 (2004) 245–254

[11] S.A. Savari, Redundancy of the Lempel–Ziv incremental parsing rule, IEEE Trans. Inform. Theory 43
(1) (1997) 8–16.

[12] S.A. Savari, Redundancy of the Lempel–Ziv string matching code, IEEE Trans. Inform. Theory 44 (2)
(1998) 787–792.

[13] J.A. Storer, T.G. Szymansky, Data compression via textual substitution, J. Assoc. Comput. Mach. 25
(4) (1982) 928–951.

[14] T.A. Welch, A technique for high-performance data compression, IEEE Comput. 17 (6) (1984) 8–19.
[15] A.J. Wyner, The redundancy and distribution of phrase lengths of the 0xed-database Lempel–Ziv

algorithm, IEEE Trans. Inform. Theory 43 (5) (1997) 1452–1464.
[16] A.D. Wyner, A.J. Wyner, Improved redundancy of a version of the Lempel–Ziv algorithm, IEEE Trans.

Inform. Theory 41 (3) (1995) 723–731.
[17] A.D. Wyner, J. Ziv, Fixed data base version of the Lempel–Ziv algorithm, IEEE Trans. Inform. Theory

37 (3) (1991) 723–731.
[18] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform. Theory

23 (3) (1977) 337–343.
[19] J. Ziv, A. Lempel, Compression of individual sequences via variable-length coding, IEEE Trans. Inform.

Theory. 24 (5) (1978) 530–536.

	Redundancy estimates for the Lempel--Ziv algorithm of data compression,
	Introduction
	Basic definitions
	Lempel--Ziv coding rule and its modifications
	Main results
	References

