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Abstract—We construct at least 1
8n2

√
3
eπ
√

2n/3(1 + o(1)) pairwise nonequivalent transitive ex-
tended perfect codes of length 4n as n → ∞.
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INTRODUCTION
The isometries of the Boolean n-cube transforming a given subset A of this n-cube into itself are

called the automorphisms of A. A set is called transitive if it is an orbit under the action of its own
automorphism group. The transitive perfect codes of length 15 were considered in [1]. In [2], there were
constructed �1

2 log2 n�2 nonequivalent transitive perfect (and extended perfect) codes with various values
of the following two parameters: the dimension of the linear span (the rank) and the dimension of the
kernel of the code.

In the present article, using the construction of [5], we prove that (as n → ∞) there are at least
1

8n2
√

3
eπ
√

2n/3(1 + o(1)) pairwise nonequivalent transitive extended perfect codes of length 4n. All

transitive perfect codes of length n constructed in this article have rank n − log2 n.

1. THE MAIN DEFINITIONS
Let Ek = {0, 1, . . . , k − 1}. Denote by En

k the set of all ordered collections (called vertices) of
length n. By the Hamming distance d(x, y) between the collections x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) we mean the number of those positions in which the elements of x and y are distinct.
The set of all vertices at distance not greater than 1 from x is called the ball of radius 1 with center x and
is denoted by B(x). By an edge of direction i we mean the set of vertices differing only in the ith position.

We denote by Ei(x) the edge of direction i containing a vertex x ∈ En
k .

Denote by En
2,0 and En

2,1 the subsets of En
2 consisting of all vertices with even and odd number

of units respectively. A set C ⊂ En
2,0 (C ⊂ En

2,1) is called an extended perfect code (with distance 4)
of length n if |B(x) ∩ C| = 1 for each vertex x ∈ En

2,1 (x ∈ En
2,0). A set M ⊂ En

k is called an MDS-code
(with distance 2) of length n if |Ei(x) ∩ M | = 1 for any i = 1, . . . , n and x ∈ En

k . This definition implies
that an extended perfect code is a cardinality maximal subset of En

2 with distance at least 4 between the
vertices, and an MDS-code is a maximal subset of En

k with distance at least 2 between the vertices.
It is known that extended perfect codes of length n exist for n = 2t where t is a positive integer, and
MDS-codes with distance 2 exist for all positive integers n and k.

A function f : En
k → Ek is called an n-quasigroup of order k if f(x) 	= f(y) for every two vertices

x, y ∈ En
k such that d(x, y) = 1. Let G(f) = {(x, f(x)) | x ∈ En

k } be the graph of f . Obviously, the
mapping G(·) establishes a one-to-one correspondence between the n-quasigroups and MDS-codes
of length n + 1.

Let τ : {1, . . . , n} → {1, . . . , n} be a permutation (i.e., τ ∈ Sn), and let σ = (σ1, . . . , σn) be a collec-
tion of permutations of the form σi : Ek → Ek (i.e., σ ∈ Sn

k ). Given an arbitrary vertex x ∈ En
k , we define

xτ = (xτ(1), . . . , xτ(n)) and σx = (σ1(x1), . . . , σn(xn)). Take A ⊆ En
k . Introduce the notation

Aτ = {xτ | x ∈ A}, σA = {σx | x ∈ A}.
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A set (code) A ⊆ En
k will be called transitive if for every two vertices x and y of A there exist

a permutation τ ∈ Sn of coordinates and some permutations σ ∈ Sn
k of symbols in each coordinate such

that σy = xτ and σA = Aτ . Clearly, one of the vertices in the definition may be fixed.
The main goal of the present paper is to prove the following

Theorem. As n → ∞, there exist at least 1
8n2

√
3
eπ
√

2n/3(1 + o(1)) pairwise nonequivalent tran-

sitive extended perfect codes of length 4n.
Henceforth we will consider the normalized codes, i.e., the codes with the property 0 ∈ A. In case

k = 2 the definition of transitivity of a code A can be written as follows: a code A ⊆ En
2 is transitive if for

each vertex x ∈ A there exists a permutation τ ∈ Sn such that x + A = Aτ . Here and in the sequel the
sum is understood by modulo 2.

We will call a normalized code A ⊆ En
k isotopically transitive if for each vertex x ∈ A there exists

a collection of permutations σ ∈ Sn
k such that σ(0) = x and A = σA. For k = 2, this notion coincides

with the notion of linearity: A + x = A for every x ∈ A.
Call an n-quasigroup normalized if f(0) = 0. A normalized n-quasigroup is called isotopically

transitive if for every vertex a ∈ En
k there exist permutations σ ∈ Sn

k and σn+1 ∈ Sk such that σ(0) = a,
σn+1(0) = f(a), and f(σx) = σn+1(f(x)) for all x ∈ En

k . These definitions imply the following
Proposition 1. An n-quasigroup f is isotopically transitive if and only if the MDS-code G(f)

of length n + 1 is isotopically transitive.
The codes A,B ⊆ En

k are called equivalent if there exist permutations τ ∈ Sn and σ ∈ Sn
k such

that Aτ = σB (in case A,B ⊂ En
2 , there exist a permutation τ ∈ Sn and a vertex x ∈ En

2 such that
Aτ = x + B).

Proposition 2. Equivalent codes are transitive (isotopically transitive) simultaneously.
The construction in [5] and [6] connects MDS-codes and extended perfect codes. We consider

a particular case of this construction. Fix a linear extended perfect code R ⊂ En
2 (a Hamming code).

Let M ⊂ En
4 be a normalized MDS-code (not depending of r). Define the partitions of E4

2,0 and E4
2,1

into codes by the equality

Cr
a = C0 + (1 + r)e4 + ea,

where r ∈ {0, 1}, a ∈ E4, C0 = {0, 1} ⊂ E4
2 , and ei ∈ E4

2 are the basis vectors with 1 in the ith
coordinate (we assume that e0 = e4). Thus, we have

C0
0 = {(0000), (1111)}, C0

1 = {(0110), (1001)}, C0
2 = {(0101), (1010)},

C0
3 = {(0011), (1100)}, C1

0 = {(0001), (1110)}, C1
1 = {(0111), (1000)},

C1
2 = {(0100), (1011)}, C1

3 = {(0010), (1101)}.

Define a normalized extended perfect code C ⊂ E4n
2,0 by the equality

C =
⋃

r∈R

⋃

a∈M

Cr1
a1

× Cr2
a2

× · · · × Crn
an

. (1)

2. TRANSITIVE CODES

It is easy to see that all extended perfect codes of length 4 can be represented as {v, v + 1}; i.e.,
as cosets Cr

a of the code C0
0 = {0, 1} ⊂ E4

2 . We show that, for k = 4, a permutation of coordinates
corresponds to a permutation of cosets.

Proposition 3. (a) For each b ∈ Ek, there exists a permutation σ ∈ S4 such that

Cr
a + eb + e4 = Cr

σ(a)

for all a ∈ E4 and r ∈ {0, 1}.
(b) For each permutation τ ∈ S4, there exists a permutation σ ∈ S4 such that

(
C0

a

)
τ

= C0
σ(a)

for all a ∈ E4.
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(c) For each permutation σ ∈ S4, there exists a permutation τ ∈ S4 such that

Cr
σ(a) + eσ(0) + e4 =

(
Cr

a

)
τ

for all a ∈ E4 and r ∈ {0, 1}.

Proof. (a), (b). We consider a partition J of E4
2,0 into the codes C0

0 , C0
1 , C0

2 , and C0
3 . It is clear that

a permutation of coordinates and an addition of a vertex with an even number of units transform
the elements of J to the elements of J , i.e., it generates a permutation. Since Cr

a = re4 + C0
a , the

permutation σ does not depend on r ∈ {0, 1}.
(c) We obtain from (a) the equality Cr

σ(a) + eσ(0) + e4 = Cr
τ(a) in which the permutation τ does not

depend on r ∈ {0, 1}. Since Cr
σ(0) + eσ(0) + e4 = Cr

0 , we have τ(0) = 0. Then, it is easy to see that
Cr

τ(a) = (Cr
a)τ for a 	= 0. Moreover, Cr

0 = (Cr
0)π for an arbitrary permutation π that leaves invariant the

last coordinate. Proposition 3 is proved.

Lemma 1. Let M be an isotopically transitive MDS-code of length n. Then the extended perfect
code C of length 4n, defined by (1), is transitive.

Proof. Represent the vertex y ∈ C in the form y = (ỹ1, ỹ2, . . . , ỹn) where ỹi = (1 + ri)e4 + ebi
+ δ1,

δ ∈ {0, 1}, and r ∈ R. The linearity of the code R implies that if y = (ỹ1, ỹ2, . . . , ỹn) ∈ C then (ỹ1 +
r1e4, ỹ2 + r2e4, . . . , ỹn + rne4) ∈ C for every r ∈ R. By the definition of Cr

a , we infer that if y =
(ỹ1, ỹ2, . . . , ỹn) ∈ C then (ỹ1 + δ11, ỹ2 + δ21, . . . , ỹn + δn1) ∈ C for every δ ∈ En

2 . Hence

y + C = v(b) + C, (2)

where v(b) = (e4 + eb1 , . . . , e4 + ebn) and b ∈ M . Since the code M is isotopically transitive, there
exists a collection of permutations σ satisfying the equations σM = M and σ0 = b. It follows from
Proposition 3 (c) that there exist permutations τi ∈ S4 (i = 1, . . . , n) such that

Cr
σi(a) + ebi

+ e4 =
(
Cr

a

)
τi

(3)

for all a ∈ E4 and r ∈ {0, 1}. The equalities (1)–(3) imply

y + C = v(b) +
⋃

r∈R

⋃

a∈M

Cr1
a1

× Cr2
a2

× · · · × Crn
an

= v(b) +
⋃

r∈R

⋃

a∈σM

Cr1
a1

× Cr2
a2

× · · · × Crn
an

=
⋃

r∈R

⋃

a∈M

(e4 + eb1 + Cr1

σ1(a1)) × (e4 + eb2 + Cr2

σ2(a2)) × · · · × (e4 + ebn

+ Crn

σn(an)) =
⋃

r∈R

⋃

a∈M

(
Cr1

a1

)

τ1

×
(

Cr2
a2

)

τ2

× · · · ×
(

Crn
an

)

τn

= Cπ

for a suitable permutation π ∈ S4n. Lemma 1 is proved.

3. EQUIVALENT CODES

Denote by I = {I(1), I(2), . . . , I(n)} the partition of {1, 2, . . . , 4n} into the quadruples of the form
I(j) = {4j − 3, 4j − 2, 4j − 1, 4j}. Take τ ∈ S4n. Denote by Iτ the partition consisting of the sets
{τ(4j − 3), τ(4j − 2), τ(4j − 1), τ(4j)}. Let the permutation τ ∈ S4n be such that I = Iτ . Then τ is
generated by the permutation τ∗ ∈ Sn of elements of the partition I and the family of permutations
τ1, τ2, . . . , τn ∈ S4, where τi is a permutation of the set I(j).

Proposition 4. Let C and C ′ be extended perfect codes of length 4n satisfying (1) with MDS-
codes M and M ′ respectively. Assume that the codes C and C ′ are equivalent, i.e., C ′

τ = y + C for
some τ ∈ S4n and y ∈ E4n

2 . If I = Iτ then the MDR-codes M and M ′ are equivalent.
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Proof. Since C and C ′ are normalized, y ∈ C. Represent the vertex y ∈ C as y = (ỹ1, ỹ2, . . . , ỹn) where
ỹi = (1 + ri)e4 + ebi

+ δ1 and δ ∈ {0, 1}. Using Proposition 3 (a), we find the permutations σi ∈ S4,
i = 1, . . . , n, such that

Cr
ai

+ ebi
+ e4 = Cr

σi(ai)
,

where r ∈ {0, 1}. Then from (1)–(2) we infer that

y + C =
⋃

r∈R

⋃

a∈M

(e4 + eb1 + Cr1
a1

) × (e4 + eb2 + Cr2
a2

) × · · · × (e4 + ebn + Crn
an

)

=
⋃

r∈R

⋃

a∈σM

Cr1
a1

× Cr2
a2

× · · · × Crn
an

.

Since C ′
τ = y + C and I = Iτ , (24) implies the equality rτ∗ = r for all r ∈ R.

Consider the vertices of the codes C and C ′ which have an even number of units in each four
coordinates with indices 4i + 1, 4i + 2, 4i + 3, and 4i + 4 (where i is a positive integer). By C ′

τ = y + C
and (4), we have

⋃

a∈σM

C0
a1

× C0
a2

× · · · × C0
an

=
⋃

a∈M ′

(C0
aτ∗(1)

)τ1 × (C0
aτ∗(2)

)τ2 × · · · × (C0
aτ∗(n)

)τn .

Then, by Proposition 3 (b), we obtain
⋃

a∈σM

C0
a1

× C0
a2

× · · · × C0
an

=
⋃

a∈M ′

C0
σ′
1(aτ∗(1))

× C0
σ′
2(aτ∗(2))

× · · · × C0
σ′

n(aτ∗(n))

=
⋃

a∈σ′(M ′
τ∗)

C0
a1

× C0
a2

× · · · × C0
an

.

Thus, σM = σ′(M ′
τ∗), i.e., the MDS-codes M and M ′ are equivalent. Proposition 4 is proved.

We call by an orthogonal complement to the code A ⊆ En the linear space

A⊥ = {x ∈ En | 〈x, y〉 = 0 for all y ∈ A}.

It is known that the orthogonal complement R⊥ to the linear code R ⊆ En is the Hadamard code and it
has dimension log2 n + 1. Here and in the sequel log n = log2 n.

Put r4 = (rrrr), where r ∈ {0, 1}, and, for a vertex p ∈ En, p4 = (p4
1, p

4
2, . . . , p

4
n). Let p ∈ R⊥. Then

p4 ∈ C⊥, where the code C is defined by (1). Obviously, the set R⊥4 = {p4 | p ∈ R⊥} is a linear subspace
of dimension log n + 1 of C⊥. It was shown in [4] that the dimension of C⊥ must be equal to either
log n + 1, or log n + 2, or log n + 3; and in the last case the extended perfect code C is linear.

Proposition 5. Let τ, π ∈ S4n. If (R⊥4)τ = (R⊥4)π then Iτ = Iπ.

Proof. Without loss of generality, we may assume that π is the identity permutation.
Let Iτ 	= I. Without loss of generality we may assume that the permutation τ sends to the first

and second positions the elements from different members of the partition, i.e., τ−1(1) ∈ I(i) and
τ−1(2) ∈ I(j), where i 	= j. From the well-known property of the Hadamard code we find a vertex
p ∈ R⊥ such that pi 	= pj . Let v = p4

τ . Then the choice of p implies that v1 	= v2. Hence v 	∈ R⊥4.
Proposition 5 is proved.

Let M(C) be the set of the MDS-codes that correspond to the codes equivalent to the extended
perfect code C, i.e., M ′ ∈ M(C) if there exists an extended perfect normalized code C ′ that is equivalent
to C and satisfies the equality (1) with the MDS-code M ′.

The formulation and proof of the following lemma belong to D. S. Krotov.
Lemma 2. Let C be a nonlinear extended perfect code of length 4n satisfying (1). Then M(C)

contains at most 2n − 1 equivalence classes of MDS-codes.
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Proof. Let M ′ and M ′′ be nonequivalent MDS-codes of M(C). Then there exist codes C ′ and C ′′

satisfying (1) with the MDS-codes M ′ and M ′′ respectively and, moreover,

C ′
τ ′ + y = C = C ′′

τ ′′ + z (4)

for some permutations τ ′, τ ′′ ∈ S4n and vertices y, z ∈ C.
It follows from Proposition 4 that Iτ ′ 	= Iτ ′′ , and Proposition 5 implies

(R⊥4)τ ′′ 	= (R⊥4)τ ′ . (5)

By (4), we see that (C ′⊥)τ ′ = (C ′′⊥)τ ′′ = C⊥. Therefore, (R⊥4)τ ′′ ⊆ C⊥ and (R⊥4)τ ′ ⊆ C⊥; moreover,
as it was noted earlier, the dimension of (R⊥4) is log n + 1, and the dimension of C⊥ is log n + 2 (the
dimension log n + 1 is impossible by (5), and log n + 3 is impossible by nonlinearity of C).

The linear code R is contained in En
2,0; hence, 1 ∈ R⊥. The number of possible choices of distinct

hypersubspaces in C⊥, containing the vertex 1, is equal to one-half of the size of C⊥ minus 1; i.e.,
2n − 1. Since for each pair of the nonequivalent MDS-codes M ′ and M ′′ there exists a pair of distinct
hypersubspaces in C⊥, the set M(C) splits at most into 2n − 1 equivalence classes. Lemma 2 is
proved.

4. THE NUMBER OF TRANSITIVE CODES

Define on the set E4 the following binary operations: We will denote by ⊕ the addition that is
isomorphic to the addition in the group Z2 × Z2; and by ∗, the addition isomorphic to the addition in
the group Z4. The tables of these operations are as follows:

∗ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

⊕ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

The following are well known and easily verified:
Proposition 6. There are no permutations σ0, σ1, σ2 ∈ S4 such that σ0(σ(x1) ∗ σ(x2)) = x1 ⊕ x2.
Proposition 7. (a) The n-quasigroup f(x1, x2, . . . , xn) = x1 ∗ x2 ∗ · · · ∗ xn is isotopically tran-

sitive.
(b) The n-quasigroup h(x1, x2, . . . , xn) = x1 ⊕ x2 ⊕ · · · ⊕ xn is isotopically transitive. More-

over, for every vertex a ∈ En
4 and each permutation σ0 ∈ S4 such that σ0(0) = h(a), there exists

a family of permutations σ ∈ Sn
4 for which the equalities σ0 = a and h(σx) = σ0(h(x)) hold.

Proof. (a) Let a1 ∗ a2 ∗ · · · ∗ an = a0. Let σi(y) = y ∗ ai for all i = 0, . . . , n. The associativity and
commutativity of ∗ imply the equality

f(σx) = (x1 ∗ a1) ∗ (x2 ∗ a2) ∗ · · · ∗ (xn ∗ an) = x1 ∗ x2 ∗ · · · ∗ xn ∗ a0 = σ0(f(x)).

(b) Let ϕ ∈ S4 be such that ϕ(0) = 0. We will show that

ϕ(a) ⊕ ϕ(b) = ϕ(a ⊕ b) (6)

for arbitrary a, b ∈ E4. Consider the three cases:
1) If a = 0 (b = 0) then ϕ(0) ⊕ ϕ(b) = ϕ(b ⊕ 0).
2) If a = b then ϕ(a) ⊕ ϕ(a) = 0 = ϕ(0) = ϕ(a ⊕ a).
3) Let a 	= 0, b 	= 0, and a 	= b. Denote by c the forth element of E4 (a 	= c, b 	= c, and 0 	= c). We see

from the table for operation ⊕ that a ⊕ b 	∈ {a, b, 0} and ϕ(a) ⊕ ϕ(b) 	∈ {ϕ(a), ϕ(b), 0}, i.e., a ⊕ b = c
and ϕ(a) ⊕ ϕ(b) = ϕ(c).
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Let a1 ⊕ a2 ⊕ · · · ⊕ an = a0. For the permutation σ0 ∈ S4 (σ0(0) = a0), we define the permutation
ϕ(y) = σ0(y) ⊕ a0. It is clear that ϕ(0) = 0. Let σi(y) = ϕ(y) ⊕ ai for all i = 1, . . . , n. Then, by (6), we
have

h(σx) = (ϕ(x1) ⊕ a1) ⊕ (ϕ(x2) ⊕ a2) ⊕ · · · ⊕ (ϕ(xn) ⊕ an) = ϕ(h(x)) ⊕ a0 = σ0(h(x)).

Proposition 7 is proved.

Proposition 8. Let f be an isotopically transitive n-quasigroup and

h(y1, y2, . . . , ym) = y1 ⊕ y2 ⊕ · · · ⊕ ym.

Then the (n + m − 1)-quasigroup f(x1, . . . , xi−1, h(y), xi+1, . . . , xn) is isotopically transitive.

Proof. Without loss of generality, we assume that i = n. Let b ∈ Em
4 , h(b) = an, and a ∈ En

4 . The
assumptions imply that there exist permutations σ ∈ Sn

4 and σ0 ∈ S4 satisfying the equations σ0 = a,
σ0(0) = f(a), and f(σx) = σ0(f(x)) for all x ∈ En

4 . It follows from Proposition 7 that there exists
a family of permutations τ ∈ Sm

4 such that h(τy) = σn(h(y)) and τ0 = b. Then

f(σ1(x1), . . . , σn−1(xn−1), h(τy)) = f(σ1(x1), . . . , σn−1(xn−1), σn(h(y)))
= σ0(f(x1, . . . , xn−1, h(y))).

Proposition 8 is proved.

Lemma 3. Let p(n) be the number of distinct representations of n as a nonordered sum of some
positive integers. Then the number of equivalence classes of isotopically transitive MDS-codes
of length n + 1 is at least p(n).

Proof. Let {x1, x2, . . . , xn} be the set of coordinates. Consider a partition J = {J(1), J(2), . . . , J(k)}.
By the specter of the partition, we call the vector Sp(J) = (|J(i1)|, |J(i2)|, . . . , |J(ik)|), where |J(i1)| ≤
|J(i2)| ≤ · · · ≤ |J(ik)|. Define the function

h(x̃J(i)) = xj1 ⊕ · · · ⊕ xj|J(i)| ,

where J(i) = {j1, . . . , j|J(i)|} and gJ(x) = h(x̃J(1)) ∗ h(x̃J(2)) ∗ · · · ∗ h(x̃J(k)). We will prove by contra-
diction that distinction of the specters Sp(J) 	= Sp(I) implies nonequivalence of the MDS-codes G(gJ )
and G(gI). Assume that there exist the permutations τ ∈ Sn+1 and σ ∈ Sn+1

4 such that

{(x1, x2, . . . , xn+1) | gJ(σx) = σn+1(xn+1)} = {(x1, x2, . . . , xn+1) | gI(xτ ) = xτ(n+1)}.

Without loss of generality we can set |I| ≤ |J |. Since Sp(J) 	= Sp(I), there exist variables xi and xj

from two different elements of the partition J such that xτ−1(i) and xτ−1(j) belong to the same element
of I. In the equalities gJ (σx) = σn+1(xn+1) and gI(xτ ) = xτ(n+1), we substitute zeros for all variables,
but xi, xj , and xn+1. From the first equality, we obtain σi(xi) ∗ σj(xj) ∗ c = σn+1(xn+1), where c ∈ E4,
or, in other form,

σ0(σi(xi) ∗ σj(xj)) = xn+1, (7)

where σ0 ∈ S4. From the second equality, in dependence on which element of the partition I contains
the variable xτ−1(n+1), we obtain

xi ⊕ xj = xn+1, or xi ⊕ xj ⊕ xn+1 = 0, or (xi ⊕ xj) ∗ xn+1 = 0.

By Proposition 6, each of these equalities contradicts (7). This implies that (7) is false.
Propositions 7 and 8 imply the translational transitivity of the MDS-codes G(gI) for an arbitrary

partition I. The MDS-codes corresponding to distinct specters are nonequivalent. It is clear that the
number of distinct specters Sp(I) equals p(n). Lemma 3 is proved.

Now, we estimate the number of nonequivalent transitive extended perfect codes.
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Proof of the theorem. It follows from Lemma 3 that there are p(n − 1) pairwise nonequivalent isotopi-
cally transitive MDS-codes of length n. Lemma 1 implies that, inserting any of these MDS-codes in (1),
we obtain a transitive extended perfect code of length 4n. It is easy to see that among these codes the only
perfect extended code, which corresponds to the n-quasigroup h(x) = x1 ⊕ x2 ⊕ · · · ⊕ xn−1, is linear.
Then Lemma 2 implies that at most 2n − 1 extended perfect codes constructed above may be found in
the same equivalence class. It was shown in [3] that

p(n) =
1

4n
√

3
eπ
√

2n/3(1 + o(1)) as n → ∞.

Hence, as n → ∞, there exist at least

p(n − 1) − 1
2n − 1

=
1

4n
√

3
eπ
√

2n/3(1 + o(1))

pairwise nonequivalent transitive extended perfect codes of length 4n. The theorem is proved.
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