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e - E N T R O P Y  OF C O M P A C T  SETS IN C A N D  
T A B U L A T I O N  OF C O N T I N U O U S  F U N C T I O N S  t) 

V. N. P o t a p o v  UDC 517.52 

w 1. I n t r o d u c t i o n  

In the present article we consider two interrelated problems. The first of them consists in esti- 
mating the e-entropy of a set of uniformly continuous functions given on an arbitrary compact metric 
space. The second consists in constructing convenient tables for saving continuous and differentiable 
functions. 

The concept of e-entropy was introduced by A. N. Kolmogorov: the e-entropy of a totally bounded 
space X is defined to be the quantity Hx(e) equal to the logarithm of the minimal number of sets 
of diameter at most 2e needed to cover X. Here and in what follows, the logarithm is to the base 2. 
e-Entropy is an important characteristic of a compact space which reflects massiveness of the space. 
Therefore, there are many articles devoted to studying e-entropy. 

Let F~ stand for the set of w-continuous functions from a compact space X into a compact space Y, 
with w some continuity modulus. The following estimates for HF~(~) were established under the 
assumption that X is a connected compact space and Y is an interval in R: In [1] A. N. Kolmogorov and 
V. M. Tikhomirov proved that the e-entropy of the space of functions satisfying the HSlder condition 

with exponent a is asymptotically 0(2 Hx(el/~ (as e ~ 0). In [2] A. G. Vitushkin generalized this 
estimate for the space F~ with an arbitrary continuity modulus w. It turned out that 2 Hx(46) < 
HF~(w(8)/4) and 2~Zx(6/2) > HF~(2w(6)) as 8 ~ 0..In [3,4] A. F. Timan made Vitushkin's estimate 
more precise under extra conditions, having proved existence of constants C0 and Cx such that 

C02 HX(~) ~ HF~(W(6)/2) < Cx2Hx(6). 

Moreover, A. F. Timan observed that the connectedness of X is not a necessary condition for the 
e-entropy of a function class to be asymptotically independent of the target space. He proved that if 
X is a subset of R k of nonzero Lebesgue measure then the preceding inequalities remain valid. 

In the present article we give a necessary and sufficient condition on X for the e-entropy of the 
function space F~ to be asymptotically O(2Hx(~-1(e))). In [1--4] the above-mentioned estimates for 
the e-entropy were obtained only for the spaces of w-continuous functions given on connected compact 
spaces or on compact spaces of integral metric dimension. Here we derive the same estimates for the 
spaces over disconnected spaces of fractional or infinite dimension. In particular, the above estimates 
for the e-entropy of the space of w-continuous functions on X are valid in the case when X is the 
Cantor set. 

The second question we discuss in the article is the tabulation problem formulated as follows: for 
each function in some function class F, construct a table (a code for the function) with the possibly 
least size of the table and the possibly least complexity of decoding, i.e., the number of operations 
needed for reconstructing an approximate value of the function at an arbitrary point. The set of such 
tables, approximating the functions in the function space F to within e > 0, gives rise to a covering 
of F by sets of diameter at most 2e. For this reason, the number of distinct tables e-approximating 
the functions of F cannot be less than 2//F(e) and the maximum of the sizes of these tables (in bits) 
cannot be less than HF(~). 
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In [1], A. N. Kolmogorov and V. M. Tikhomirov obtained an asymptotically exact estimate for the 
e-entropy of the function space F~, a comprising the real-valued functions given on R k and having the 

nth order derivative satisfying the HSlder condition with exponent a: HF~,o (e) = O(e-k/("+~)). Here 

n > 0 and k > 1 are integers and 0 < a < 1. The construction of an e-net for the space F~, a proposed 
by them maizes it possible to construct-decoding tables of minimal size for differentiable functions; 
however, the complexity of decoding such a table is of the same order (as e -+ 0) as the length of the 
table. The tabulation method proposed by E. A. Asarin in [5] for smooth functions makes it possible 
to construct tables of asymptotically minimal size such that decoding of the values of a function at 
an arbitrary point requires O(log l /e)  arithmetic operations. The method proposed by the author in 
[6] enables us to restore the values of a function from a table by finitely many arithmetic operations 
on preserving the minimal size of the table. However, this method applies suits only to the functions 
given on parailelepipeds of R k. 

In the present article, we describe some method for tabulating the differentiable functions over 
an open bounded set in R k which enables us to construct e-approximating tables of minimal size and 
with the complexity of decoding O(log* I/e) times as large as the minimal complexity. Here log* is 
the iterative logarithm, an extremely slowly growing function whose precise definition is given below. 
We also propose an analogous tabulation method for continuous functions defined on wider classes of 
sets. Thus, the tabulation methods we propose in the article are not worse than the known methods 
as regards the size of a table and, at the same time, they have either less complexity of decoding or 
a larger scope of applicability. 

The simplest way for tabulating w-continuous functions results from the construction of an e-net 
for the set of uniformly continuous functions which is used in the proof of the Arzelb, Theorem (see, 
for instance, [7]). Namely, let F~ be the space of w-continuous functions from a compact space X 
into a compact space Y. For every 6 > 0, there exist a finite covering R of X by sets of diameter at 
most 6 and a finite w(5)-net S for Y. Denote the sizes of R and S by IRI and IS]. Given a function f 
in F~,, there is a function fs constant over every element of the covering R, taking values in S, and 
approximating the initial function to within 2w(6).. We have thus constructed a covering of F~ by 
sets of diameter at most 4w(6). The number of piecewise constant functions generating this covering 
equals IR] Isl. The complezity of a function is defined as the minimum of the sizes (in bits) of the 
tables specifying the function (see, for instance, [8]). In each function class F comprising finitely 
many functions, there is a function whose complexity is not less than log IFI. Therefore, for some 
function f 6 F,~ the complexity of the function f6 is not less than IRI log ISI. Writing down the values 
of fs on the elements of the covering R, we obtain a 2w(6)-approximating table, for the w-continuous 
function f ,  whose size equals IR[ log IS]; i.e., the complexity of an arbitrary piecewise constant function 
fs does not exceed IR[ log ]S]. The complexity of reconstructing the value of the function at a point 
from such a table is minimal; however, the size of the table cannot be less than Hr(w(6))2 Hx(6/2), 
which considerably exceeds the estimate for the e-entropy of the set F~: HF~ (2w(6)) ---- 0(21tx(~/2)). 

The main idea behind the tabulation method we propose here consists in successively approxi- 
mating an w-continuous function by piecewise constant functions with increasing accuracy. Having 
approximated an arbitrary w-continuous function with a prescribed accuracy e by the sum of finitely 
many piecewise constant functions whose total complexity does not exceed some number H, we thereby 
obtain a table of the w-continuous function having size H and representing the union of the tables of 
these piecewise constant functions. The complexity of decoding such a table is directly proportional 
to the number of piecewise constant functions in the approximating sum. Moreover, as was observed 
above, the maximum of the sizes of the tables of the functions, i.e., the number H, represents an 
upper bound for the e-entropy of the function space F~. We show in Theorem 1 that the so-obtained 
estimate for e-entropy generalizes the results of [2-5]. In Theorem 2 we reveal the extent to which the 
number of summands in the approximating sum may be reduced on preserving the asymptotic mini- 
mality of the size of the table. Likewise, in Theorem 3 we construct tables of differentiable functions 
by using piecewise polynomial functions in place of piecewise constant functions. 

We illustrate the main idea of the proposed tabulation method on the set of real-valued Lips- 
chitz continuous functions. First, we define the sequence of the functions log(i)(t): log(1)(t) = log t, 
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log(i+l)(t) = log(log(i)(t)). The iterative logarithm (log*) of a number t is the smallest integer h such 
that log (h) t < 0. Divide the interval [0, 1] into 1/(e log(l/e)log(2)(1/e)) subintervals of equal lengths. 
Given an arbitrary function f : [0, 1] ~ [0, 1] satisfying the Lipschitz condition with constant 1, we 
can find a function f l  that is constant over each of the subintervals and approximates f to within 
]elog(1/e)log(2)(1/e). The complexity of f l  is at most (log(I/e) + 1)/(elog(1/e)log(2)(1/e)). The 

difference between the initial function f and f l  does not exceed elog(1/e)log(2)(1/e). Now, divide 
the interval [0, 1] into 1/(elog(~)(1/e)log(S)(1/e)) parts and analogously construct a piecewise con- 
stant function f2 that approximates f - f l  to within le  log(2)(1/e)log(3)(1/e). The complexity of f2 
does not exceed (log (2) (1/~) + 1)/(e log (2) ( l /e)  log (s) ( l /e)) .  Likewise we can define piecewise const ant 
functions f3, f4, . . . ,  fh-2, with h = log* 1/~, so that the complexity of each function fi does not ex- 
ceed log(O(1/e)/(elog(O(1/e)log(i+l)(1/e))and the difference between f and ~ = 1  fJ does notexceed 
e log(0(1/e)log(i+l)(1/e). We have thus approximated f by the sum of log* 1 / e -  2 piecewise'constant 
functions with accuracy 2e; moreover, the total complexity of fi 's is a finite number of times as large 
as 1/e. As the table of f we can take the union of the tables of the values of the piecewise constant 
functions f l ,  f 2 ,  . . . , f h - 2 .  

w 2. e - E n t r o p y  and Coverings of To ta l ly  B o u n d e d  Spaces 

In this section we state general assertions pertinent to the concept of the e-entropy of a space. 
Let X be a totally bounded metric space; i.e., for every positive e there exists a finite covering 

of X by sets of diameter at most e. Given e > 0, let Tr stand for the collection of coverings of X by 
sets of diameter at most 2e. Denote by Nx(e)  the minimal number of elements in such covering of 
X; i.e., Nx(e)  -" minReR IRI, where IRI is the number of elements (the size) of a covering R e T~. 
The (absolute) e-entropy of a space X is the quantity Hx(e)  = log Nx(e) .  The e-entropy of a space 
X relative to an ambient metric space W is the quantity HW(e) equal to the logarithm of the size of 
a minimal e-net for X in W. 

A subset A of X is called e-distinguishable if the inequality pX(Xl,X2) > e holds for arbitrary 
zl,  x2 E A, Zl ~ x2, with Px the distance in X. Let A stand for the collection of all e-distinguishable 
subsets of X. Denote by Mx(e)  the size of a maximal e-distinguishable subset of X; i.e., Mx(e)  = 
maxafiA IAI. 

Proofs of the following two well-known assertions can be found in [1]. 

Asser t ion  1. If  X is a totally bounded metric space and if  e > 0 then 

Yx(2e) < Mx(2e) _< Nx(e) .  

Observe that N x  and M x ,  viewed as functions of e, are monotone decreasing by definition. 

Asser t ion  2. If  X is an open bounded subset of a normed k-dimensional vector space and if 
> 0 then g x ( e )  = (1 + o(1))klog(~) as e --+ 0. 

Let V be a finite-dimensional normed vector space. Then every bounded subset of V, in particular 
a unit ball, is totally bounded. Define the function hv(e) : R + ~ R +, hv(e) = HV(0,U(e), where 
B(0, 1) is the ball in V with radius 1 and center 0. Since V is a normed vector space, the (re)-entropy 
(relative to V) of the ball with radius r and center an arbitrary point x E V equals hv(e); i.e., 

= 

The next lemma provides a lower bound for the growth of the e-entropy of a connected set as e 
decreases. Here and in what follows, by a connected set we mean a set that comprises at least two 
points and is not representable as the union of two closed (relative to the set) nonempty subsets. 

L e m m a  1. Lf X is a connected totally bounded metric space then there exists an eo > 0 such 
that the inequality 

Hx(e)  >_ 1 + Hx(4e) 

holds for every e, eo/4 > e > 0. 
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PROOF. By hypothesis, X comprises at least two points. Let e0 be a positive number such that 
eo < pX(Xl,X2) for some Xl,X2 E X, xl ~ x2. Suppose that  e0 > e > 0. Consider a 4e-distinguishable 
subset P of X such that IPI _> Nx(4e). The existence of such P is guaranteed by Assertion 1. Let R 
be a covering of X by sets of diameter 2e such that IRI = Nx(e ) .  We may assume that the elements 
of R axe closed, since the diameter of a set equals that of its closure. 

Let/;Y be the collection of the elements of R containing points of P. Since the diameter of each 
element r E R does not exceed 2~ and the distance between arbitrary two points of P is certainly 
greater than 4e, each element r E R ~ contains exactly one point of P and the elements of R ~ are 
disjoint pairwise. On the other hand, R is a covering of X and so of P. Therefore, I/~l = IPI. 

Given r E R k R ~, denote by s the union of r and all elements of R ~ meeting r. Let S denote the 
collection of all s corresponding to the various r E R \ R ~. The diameter of each s E S is at most 6e. 

Suppose that there exists x E X such that x belongs to none of the elements s E S. Then there 
exists r ~ E R ~ containing z and disjoint from any element of R \ R ~. Since the elements .of R I are 
palrwise disjoint, X can be represented as the union of two closed sets: r t and Ur over all r E R \  {r~}. 
The latter is nonempty by the choice of e. This fact contradicts connectedness of X. Hence, the 
supposition of existence of z E X lying in no s E S is false and so S is a 6e-covering of X. It follows 
that 1,5'1 _> Nx(3e). However, ISI = [R \//~1 and I//#l >_ gx(4e) .  Therefore, 

Nx(e) = IRI = IR \ R I-4- IRq Nx(3e)  + Nx(4e)  > 2Nx(4e), 

because N x  is monotone decreasing. Thus, Hx(e )  >_ 1 + Hx(4e) and the proof of Lemma 1 is 
complete. 

Lemma 1 shows that the order of growth of the e-entropy of a connected space is bounded from 
below as e decreases. We distinguish a special class of totally bounded spaces whose e-entropy increases 
steadily and rather quickly as e decreases. 

DEFINITION.. A totally bounded metric space X is a convex-type space if there exists a (downward) 
convex function f : R + -+ R +, f(0) = 0, such that f ( t )  • N x ( 1 / t )  as t -+ co. 

Here and below, f ( t )  x g(t) as t -~ to means that f ( t )  = O(g(t)) and g(t) = O( f ( t ) )  as t ~ to. 
Examples of convex-type spaces are an arbitrary convex set in R k, a set of positive Lebesgue 

measure in R t (see [3]), and the spaces of Lipschitz continuous, differentiable, and analytic functions 
(see [1]). 

L e m m a  2. I f  X is a totally bounded convex-type space then there exist C > 1 and e0 > 0 such 
that the inequality 

Nx(e2) < 
N x ( e l )  -- e2 

holds for arbitrary el a~d $2, s < e2 < co. 

PROOF. For an arbitrary convex function f : R + --+ R + with f(0) = 0 and arbitrary numbers 
e2 > el > 0, the following inequality holds: 

$1 (1) /(1/e2) < - - .  
f ( l / e l )  - e 2  

The definition of a convex-type space implies that there are a positive convex function f,  f(0) = 0, 
and a constant C > 1 such that 

/ ( t )  
< ~r < c f ( t )  (2) 

c 

for t > l/e0, with e0 some positive number. 
From (1) and (2) we infer that the inequalities 

Nx(e2) <_ 2f(l/e2) C261 
Nx(el) C _< e2 
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hold for 0 < el < $2 < e0. This completes the proof of Lemma 2. 
It follows from Lemma 2 that 

Nx(2C2e) 1 

Nx(e) 
HX(2C2r + 1 <_ Hx(e) 

for e < ~o/2C 2. Thus, the e-entropy of totally bounded convex-type spaces satisfies a condition similar 
to that proven in Lemma 1 for connected spaces. 

We now introduce some class of totally bounded spaces X which contains convex-type spaces as 
well as connected spaces. 

DEFINITION. A totally bounded metric space X is a uniform-type space if the e-entropy of X 
enjoys the following property: there are real numbers/~ > 1, C > 0, and e0 > 0 such that the 
inequality 

Hx(~e) + C <_ HX(~) 

holds for every e < e0. 
The following lemma provides an example of a disconnected uniform-type space. By the Cantor 

set we mean the subset of the interval [0, 1] which results from dividing the interval into three parts 
and deleting the middle parts. 

L e m m a  3. The Cantor set is a uni[orm-type space. 
PROOF. Denote the Cantor set by X. The definition of the Cantor set easily implies that 

Nx(e) = 1 for e > 1/2 and Nx(1/(2.3"))  = 2" for a natural n. The last equality and monotonicity 
of Nx yield 2 '~ < Nx(e) < 2 "+1 for 1 / (2 .3  '~+1) < e < 1 / (2 .3") .  Therefore, 

Llog3(l/2e)J _< Hx(e) < Llogs(l/2e)J + 1, 

where [ J stands for the integral part of a number. Assume that e < 1/27. Then the preceding 
inequalities imply that 

1 
Hx(27 ) < logs - 2 < H x ( e )  - 1; 

i.e., X is a uniform-type space, which completes the proof of Lemma 3. 
A covering R of a set X is said to be an e-covering if the diameter of each elements of R is at 

most 2e. Suppose that el > e0 > 0. An el-covering R1 of a set X is said to be a covering generated 
by an co-covering Ro of X if each element of R1 is the union of some elements of R0. 

Our next lemma shows that if el is much larger than e0 then for every e0-covering of a set X there 
is a generated el-covering of X whose size is close to the minimal size. 

L e m m a  4. Let X be a totally bounded metric space, let Ro be an eo-covering of X, and let 
0 < to < eI/2. Then there exists an el-covering R1 Of X generated by Ro and such that [RI[ <_ 
N x ( e ,  - 2 o). 

PROOF. Consider an (el - 2e0)-covering R of X such that [R[ = NX(gl  - 2e0). Enumerate the 
elements of R, R = {ri}. 

Denote by sl the union of the elements of R0 meeting rl E R. The diameter of sl does not exceed 
the sum of the maximal diameter of the elements of R and the doubled maximal diameter of the 
elements of R0, i.e., 2el. 

Among the remaining elements of R0, choose the elements that meet r2 E R and denote their 
union by s2. Continuing likewise, construct the finite sequence si, with si representing the union of 
the elements of Ro meeting ri but disjoint from any rj with j < i. 

Since R is a covering of X, each element of R0 meets at least one ri. Therefore, the collection of 
si is a covering of X. Denote it by R1. By construction, R1 is an el-covering of X generated by R0; 
furthermore, [Rx[ _< [R[ < NX(Zl  - 2 e 0 ) ,  which completes the proof of Lemma 4. 

It is seen from the proof of Lemma 4 that if the elements of R0 are pairwise disjoint then we can 
construct a covering R1 generated by R0 so that all elements of R1 be pairwise disjoint. Henceforth 
we consider only coverings with disjoint elements. 
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w 3. e - E n t r o p y  of  C o m p a c t  S e t s  in C 

Let X and Y be totally bounded metric spaces with respective metrics px and py. Denote by 
C(X, Y) the space composed of continuous functions from X into Y and endowed with the metric 

Pc(f,9) = sup py(f(z),9(z)). 
zEX 

If f 6 C(X, Y) then the continuit~l modulus of f is the function 

 s(t) = sup py(f(zx),f(z2)). 
px(,,,,,)<_' 

The continuity modulus wf of an arbitrary continuous function f is a nonnegative semi-a~iditive 
function (i.e., col(t1 + t2) <_ col(t1)+col(t2)) vanishing and continuous at zero. If an arbi trary function 
w possesses these properties then we call co a continuity modulus. 

A s s e r t i o n  3. Let co be a continuity modulus. Then co is nondecreasing, w(nt) ~_ nco(t) (for every 
integer n > 0), and co(At) ~_ (A + 1)co(t) (/'or every real A > 0). 

Call tv a polynomial-type continuity modulus if co is a continuity modulus and co(t) • t ~ as t -+ 0 
for some a,  0 < ct _~ 1. 

A s s e r t i o n  4. Let co be a polynomial-type continuity moduIus. Then there are numbers a~ 
(a~ _> 1), a (0 < a _< 1), and to (to > 0) such that the inequality 

a .  
w(t) >_ - - co  /'or all t, to > t > 0 

t l  w 

is vaJid for a11 real numbers A > O. 
PROOF. Since co is a polynomial-type continuity modulus, there are constants  C > 1 and to > 0 

such that  the inequalities Ct ~ >_ co(t) >_ t a l c  hold for t < to. These inequalities imply that  

Ct~ C 2 
co(t/a) < -L~ < -L#co(t), 

which completes the proof of Assertion 4. 
Given a continuity modulus w, denote by Fw(X, Y), or by F~, in case this  notation does not lead 

to misunderstanding, the subset of C(X, Y) that  consists of the functions whose continuity moduli do 
not exceed co: 

F~(X,Y) = {f  G C(X,Y) : (Vzl,z2 G X) pr(f(zl),f(z2)) <_ co(PxCzl,z2))}. 

Call the members of F~,(X, Y) co-continuo~ functions. 
The Arzelk Theorem asserts that  Fw is a totally bounded set for every cont inui ty modulus co and 

conversely: each totally bounded set in C(X, Y) lies in F~ for some continuity modulus co. 
However, some totally bounded sets in C(X, Y) are essentially smaller t han  the ambient sets F~. 

For example, let X be an open bounded subset of R k with the norm I]z - z'[[ = max/=1 ..... k [zi - z'i[, 
and let Y be an interval in R. Consider the set F~, a comprising the functions of C(X, Y) whose nth 
order derivatives satisfy the H61der condition with constant 1 and exponent a (0 < a _< 1): 

F~,~(X,Y) = ( f  E C(X ,Y)  : ID~'f(zx) - D~'f(x2)l < Ilxl - x211"}, 

where p are multi-indices of length n (I/zl = n). 
In [2], A. G. Vitushkin derived the following lower bound on the size of a 6-distinguishable set in 

F=,(X,Y) for an arbitrary X and Y = [0,1]: 

>_ 2 

A. G. Vitushkin's  proof of this result can be extended to wider classes of continuous functions. 
This is implemented in the following lemma. 
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L e m m a  5. Let X be a totally bounded metric space, let Y be a totally bounded set in a normed 
vector space which includes a segment, and let w be a polynomial-type continuity modulus. Then 
there are numbers a,~ (aw >_ 1), 6o (60 > 0), and a (0 < a _< 1) such that the inequality 

MF~(W(6)) >_ (A"~a~ Mx(~A,) 
\ a,,, / 

holds for all A (A ~' > a,,) and 6 (60 > 6 > 0). 

PROOF. Let YO,Yl E Y be such that  the segment tyo + (1 - t ) y l ,  t E [0, 1], lies in Y. Let P be 
a 2A6-distinguishable subset of X such that IPI = Mx(2A6). Since w is a polynomial-type continuity 
modulus, there are a~, > 1, 60 > 0, and 0 < a < 1 such that  w(A6) > --~w(6) for every 6, 60 > 6 > 0. 

Enumerate the elements of P somehow to obtain P = {zi, i = 1 , . . . ,  IPI}. Given a multi-index k, 
A a k 6 NI/'I such that  ki = 0, 1 , . . .  ,K  with K = [~--J, define the function fk  : X --+ Y as follows: 

fk (z  ) = ( ~ ~ w ( a 6 -  px(x, zi)) + yo if pX(Z, xi) < a6; 
Yo if px(x, xi) > A6 for all y E P. 

The definition of fk  is sound since P is a 2A6-distinguishable subset. 
Prove that  fk  E F~,. We have to examine four possible cases. 
1. Consider z', x u E X satisfying px(z', xi) < A6 and px(x", xi) <_ A6 for some xi E P. Then 

the semi-additivity of a continuity modulus implies that  

Ilfk(z ') - fk(x")ll < ~l~o(m6- px(z ' ,  z~) ) -  w ( A 6 -  px(z",zi))l  

< w(lpx(x',zi) - px(x",zi)l) < w(px(x',z")). 
2. Consider x ~, x" 6 X satisfying px(z', zi) < A6 for some zi E P and px(z", y) > A6 for every 

y E P.  Then 

IIP(~') - fk(x")ll < ~ ( a 6 -  px(~', z0).  
From the monotonici ty of w and the inequality px(x", xi) > A6 we infer that  

w ( a 6 -  px(z' ,zi))  < w(px(z",zi) - pX(Z',zi)) <_ w(px(z',z")). 
X I !  ~ �9 3. Consider x', E X satisfying px(x',xi) < A6 and px(x" ,z j )  < A6 for some xi,xj E P,i • j 

Then px(x ~, zi) > A6 and px(z  u, zi) > A& The monotonicity of w implies that  

I l f k ( z ' ) -  fk(z")l[ <_ [ ~ w ( A 6 - p x ( z ' , z i ) ) - k ~ ; w ( A 6 - p x ( x " , z i ) ) [  

< m a x ( w ( A 6 -  px(z ' , x i ) ) ,w(A6-  px(z",zi)))  < w(px(z',x")). 
4. Consider the case of px(z' ,y)  > A6 and px(z",y)  > A6 for some y E P.  Then 

IIP(z') - fk(z")ll - 0. 
We have thus demonstrated that ft, 6 F~. Prove that  pc( f  k, f t)  > w(6) for k ~ I. Indeed, if 

k r 1 then there exists i, 1 < i < IPI, such that  ki ~ li. From the definition of the number K and the 
functions f/c and f t  we infer that  

Pc(fk, f t) > [Ifik(xi)- sl(x,)ll > Ik,- l~lw(a6)/K > w(6). 

Thus, we constructed an w(6)-distinguishable subset in F,o whose size equals (1 + K) lel _> 

This completes the proof Lemma 5. 
In the next lemma we give an estimate for the complexity of a piecewise constant function ap- 

proximating an w-continuous function with accuracy e. Recall that  the complexity of a function that 
is constant over each element of a covering R and takes ISI distinct values does not exceed IRI log ISI. 
The complexity of a piecewise polynomial function on R does not exceed (n + 1)[R[ log ISI, where n 
is the maximal degree of polynomials each of whose coefficients takes at most ISl values. 
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L e m m a  6. Suppose that ~ > O, X is a totally bounded metric space, R is a 5-covering of X ,  
V is a tinite-dimensional vector space, to is a continuity modulus, and f : X --+ V is a bounded 
function (i.e., II/(x)ll --- d for all  �9 ~ x with some constant d) to-continuous over each element of R. 
Then there exists a piecewise constant function f6, whose complexity does not exceed hv(2w(ii)/d)[R[ 
(hv(t) = H~co,1)(t)), such that Pc(f, f6) <_ 4w(,5). 

PItOOF. Let Q be a 2w(&)-net in the ball Be(0, d) such that Iql - 2 hv(2~'(a)/d). For each element 
ri of R, choose an arbitrary point zi E ri. There is yi E Q such that Ill(x,) - viii < 2~(5). Define the 
piecewise constant f6 : X --+ V as identically equal to yi on each element ri of the covering R. The 
definition is correct, because the elements of R are pairwise disjoint. The complexity of f~ does not 
exceed hv(2w(di)/d)[R[. We demonstrate that Pc(f ,  f6) < 4w(6). Suppose that x e ri. Then 

IIf6(~)-  f(x)ll _< l i b ( x ) -  f(x~)ll + IIf(x~)-  f(x)ll _< I ly~-/(x,) l l  + IIf(x~) - f(ar)ll 
< 2~(~) + to(26) < 4~(6), 

which completes the proof of Lemma 6. 
We can prove an analogous result on approximating differentiable functions by piecewise polyno- 

mial functions. Let R be a covering of a set X. We write f e F~,a[R](X,Y) if f i r  e Fkn,a(r,Y) for all 
r E R .  

L e m m a  7. Suppose that X is an open bounded subset of R/~, 6 > 0; R is a 6/2-covering of X; 
Y is an interval in R; and f : X --~ Y is a function of the class F~,a[R](X, Y); moreover, the inequality 

~'f(x)l) 
1 + e k S d(n+a) over each r E R 

holds for all z E X and all multi-indices ~ (0 < [/~[ < n), with e the base of  the natura/logarithm 
and d some constant. Then there exists a piecewise polynomial function f6 whose complexity does 
not exceed Ck[R[ log ~, with C some constant, and for which the inequality 

IDa(f- ft)(x)l.) 
I + e k _< &("+~) over each r E R. 

holds for al~ ~ (0 < [.I < n) and x �9 x .  
We omit the proof of Lemma 7, since the only difference between it and the proof of Lemma 6 

is that the initial function is approximated over each element of the covering by a partial sum of the 
Taylor series rather than a constant. In [1,6], there is a proof of an assertion analogous to Lemma 7. 

In [2], the following estimates were obtained for the e-entropy of the set F~(X, Y): 

HF,~(to(6)/4) >_ Nx(46) (3) 

if X is an arbitrary totally bounded space and 

HF~(4w(6)) < CNx(6),  (4) 

with C some constant, if X is a connected compact space. 
The following theorem gives a necessary and sufficient condition on X for the e-entropy of F~(X, Y) 

to satisfy (4) under some constraints on to and Y. 
The proof of the theorem relies on the successive approximation method. In this aspect it differs 

principally from A. G. Vitushkin's approach to proving (4), which is based on using the connectedness 
of X. 
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T h e o r e m  1. Suppose that X a totally bounded metric space, V is a finite-dimensional vector 
space, Y is a bounded subset of V including some segment, w is a polynomial-type continuity modulus, 
and Fw is the set of w-continuous function from X into Y. Then 

HF~(4w(//)) = 0(2 Hx(@) as 6 -+ 0 

if and only if  X is a uni fo~- type  space. 
PROOF. Su~iciencT. By definition, a totally bounded uniform-type space X possesses the follow- 

ing property: there are/3 > 1, C > 0, and e0 > 0 such that the inequality 

Hx(~s)  + C < Hx(e) (5) 

holds for all s < e0. Without loss of generality, we may assume that/3 > 3, since if (5) holds for some 
/3 then it also holds (with other e0 and C) for/3i, with i natural. Since Y is a bounded set, there 
exists a number d such that [[f(z)[[ < d < oo for all x 6 X. 

Suppose t~hat//< e0 and let R1 be a//-covering of X such that JR1[ = Nx(//). Define the following 
sequence: //1 = / /and/ / i+1  =/3//i. Let n be such that e0 _<//n </3~0. Then n = O(log ~). 

By Lemma 4, to each i _< n there is a///-covering R /o f  X generated by/74-1 and such that 

I-~l N x ( / / i -  2//i-1). (6) 

Suppose that f E F~(X, Y). According to Lemma 6, there exists a function gn constant over 
each element of the covering/~ and such that pv( f ,  gn) ~ 4w(//n) and the complexity of gn does not 
exceed 

The function f l  = f - 9n is w-continuous over each element of the covering P~-I ,  since the 
covering P~ is generated by R,~-I and the function gn .is constant over each element of Rn. According to 
Lemma 6, there exists a function 9n-1 which is constant over each element of the covering R,,-x, whose 

h ~ 6.-t complexity does not exceed v( )lP -xl, and for which the inequality pc(f l ,g , , -1)  <_ 4w(&~-l) 
holds. 

By analogy, we construct the sequence gi, i = n - -  2 , . . . ,  1. By Lemma 6 we have (n) 
i = 1  

and the complexity of each function gi does not exceed 

(w(//,) 
hy k2w(//i+l),] [ R / [ .  

(8) 

Assertion 3 implies that w(//i+,) = w(fl//i) <_ (/3 + 1)w(//i), while the monotonicity of hv implies 
the inequality 

( w ( / / , )  
hv , ~ ( / / , + 1 ) ) - <  ~v (2 ( /3~  1))  " (9) 

From (5) and (6) we infer that 

IRi+l[  N x ( / / i  - 2//i-1) 2_c .  (10) 

Since/3 >_ 3 and N x  does not increase, we have 

IRll = Nx(6) >_ Nx( 6- 2//) = IR21. (11) 
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From (8)-(11) we infer that  the sum of the complexities of the functions g2 , . . .  , g , - a  does not exceed 

.-1 n-1 / 
Z h v  t' IR, I \,,,(2ai+t)] IRil _< IRxl ~ hv \,,,(2ai+,) I/hi 
i=1 /----I 

<_hv 2(13+1) i=0 

where 

(12) 

lt--3 / 
c'= bY(2(/31 I +1i) I+Z - 

i=0 

The complexity of gn does not exceed the constant hv(2~(~-91)Nx(eo - 2e0/fl); denote th~s constant 
by C". 

As was observed in the introduction, the e-entropy of the set F~ is dominated  by the maximum 
of the sums of the complexities of the functions g l , . . .  ,g , .  Thus, if X is a uniform-type space then 
(12) implies that  

HF~(4w(6)) <_ C'Nx(6) + C" for 6 < e0. 

Necessity:. Suppose that  X is a totally bounded but not uniform-type space. Then, for arbitrary 
> 1, C > O, and e0 > O, there exists an e < e0 such that  

Hx(~e) + C > Hx(e). (13) 

Since w is a polynomial-type continuity modulus, Assertion 4 implies existences of constants 
0 < a < 1, Q > 0, and a,~ > 1 such that 

aw 
1/a for all 6 < 60 and A > A0 = a~, . Introduce the notation b,,, = 1~(Saw) 1/a. Then 

w(6)/2 >_ 4w(b,o6). (14) 

From Lemma 5 and Assertion 1 we infer that 
A a HF~ (~ -) >_ log(-a-j)Nx(2A6) (15) 

for all A > A0 and 6o > 6 > 0. If follows from (14), (15), and the monotonicity of HF~ that 

HF,~(4w(b,,,6) ) >_ log(-~-j) Nx (~b, , ,6) .  (16) 

Insert (13) in (16) with/3 = 2A/b,,,, 61 = min(e0,~0/A), and e = b,,,6. Then for arbitrary A > A0 and 
C > 1 we can find 0 < 6 < 61 such that (m-) 

HF~(~(b~6)) _> 2 - c  log ~ gx(b~6). 

Since b., < 1, whereas A > A0 and C > 1 are arbitrary; therefore, for any C'  > 0 and 6a > 0 there 
exists a (5' < 61 such that 

HF~(4w(6')) >_ C'Nx(6'). 
This completes the proof of Theorem I. 

In the proof of sufficiency, we did not use the conditions that  w is a polynomial-type continuity 
modulus and that  Y includes a segment. Since by Lemma 1 every connected totally bounded space 
is a uniform-type space, Theorem 1 thus generalizes estimate (4) of A. G. Vitushkin to a wider set 
of function spaces. In particular, Lemma 3 and Theorem 1 imply that  the s-entropy of the space of 
Lipschitz continuous functions on the Cantor set is O((1/s)  1~ as e ~ 0. 
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w 4. Tabulation of Continuous and Differentiable Functions 

In the proof of Theorem 1, an w-continuous function was approximated to within 4w(6) by the 
sum of O(log 1/6) piecewise constant functions. In the following theorem we propose a method for 
approximating a continuous function with the same accuracy by the sum of O(log* 1/6) piecewise 
constant functions whose total complexity is O(Nx(6)) .  

Lemma 8. Let the sequence of numbers ~I, . . .  a i , . . ,  be given recursively as follows: cq = 1 and 
a i + l  = 2 a i - i + l .  Then a 2 ( l o g .  N ) + 4  > N for a / / N  > 0. 

PROOF. Consider the sequence ~1 , . . . ,  f l i , . . ,  given recursively as follows: /31 = 1 and/~i+1 - -  2 ~ i .  

Define "71,..., 7 i , . . .  by the rule 72i = ~ i - 1 ,  " /2 i+1  - "/2i. The definitions of/~i and 7i imply that 
")'2(log* N)+4 = ]~(log" N)+I ~ g .  _ . 

We prove by induction that ")'2i < (~2i. Straightforward verification demonstrates that ~i > 7i for 
�9 " �9 "r2i ~--2i+1 �9 i _< 6 while 72i-2 > 6z and 2(72i-2 - 2, + 1) _< 2 - for z > 6. 

Assume that  i >_ 7. Suppose that 72{-2 < (~2i-2. Then 

log 72i - -  "Y2i-2 _< 2") '2i-2 - -  6i = 2 ( " f 2 i - 2  - 2i - 1) + 2 - 2i < 2 3 ' ~ i - 2 - 2 i - 1  A- 2 - -  2i 
< 2 .2i-2-(2i-2)+1 - (2i - 1) + 1 < 2 a2i-2-(2i-2)+1 - (2i - 1) + 1. 

These inequalities and the definition of the sequence c q , . . . , a i , . . ,  imply that ")'2i < ~ 2 i  for all i. 
Since "y2i+l = 72i < Ot2i < ~ 2 i + 1  ; therefore, "/i < ~ i  f o r  a l l  i .  Hence, ~2(log* N ) + 4  --> N ,  a s  desired. 

T h e o r e m  2. Suppose that X is a totally bounded convex-type space, V is a finite-dimensional 
vector space, Y is a bounded subset of V, w is a continuity modulus, and f : X ~ Y is an w-continuous 
function. Then there is 60 > 0 such that, for every 0 < 6 < 60, there exists a function f~ with the 
following properties: 

(1) .fs is the sum of O(log* ])  piecewise constant functions; 

(2) the sum of the complexities of the functions in item (1) is O(2Hx(s)) as 6 - ,  0; 
(3) p c ( f 6 , / )  ___ 
PROOF. Since Y is bounded, there exists d such that  [[f(x)[[ _< d < co for all x E X. Since X is 

a convex-type space, Lemma 2 implies existence of g0 such that the inequality 

Nx(g2) < c, el (17) 
Nx(gl )  - g2 

holds for all 0 < Sl < g2 < g0 with some constant C'. Assume that  0 < 6 < g0 and let a l , . . . , a i , . . .  
be the sequence constructed in Lemma 8. Define the sequence 61,. . .  , 6 i , . . .  as follows: 60 = 6 and 
6i = 2ai6. Let n be the smallest number for which 8,+1 > g0. Then n = O(log* ~) as 6 -> 0, since by 

L e m m a  8 a21og* e0 /6+4  > gO~6 and 621og. ~0/$+4 = 62a~mg*'o Is+4 > go. 
Construct a finite sequence R0 , . . . ,  Rm, where Ri is a 6i-covering of X, i = 0 , . . .  ,n,  such that the 

covering Ri is generated by Ri-1; moreover, 

[Pro[ = Nx(6),  IRil = N x ( 6 i -  26i_1) for i = 1 , . . .  ,n. 

According to Lemma 6, there is a sequence of piecewise constant functions g0 , . . . ,  gn such that (n) 
PC f ,  Z g i  <_ 4w(6) 

i----0 

and the complexity of each function gi does not exceed 

(w(ai) 
hv \2w(6i+1))I&l for i =  O , . . . , n -  1. (18) 
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The complexity of gn does not exceed 

hv ") IR.I < hv k2~(6.+x) - la.i, 

because w(eo) < w(6,~+1). Since w is a continuity modulus, the following inequalities hold: 

~(6~+1) = ~(2~'+'6) = ~(2~'+1-~'6~) < 2~'+'-~'~(6~), 
~(6~) > 2 o, > 

w(6i+1) - 2~'+ I - 2re+t" 

Since V is finite-dimensional; the monotonicity of hv, Assertion 2, and the last inequality imply that 

hv \2~(6i+x)] <- hv \2x+~i+ x / _ Cai+l, (19) 

with some constant C. In accordance with (18) and (19), the sum of the complexities of the functions 
g0, . . . ,g , ,  does not exceed 

d " d 
Clog ~ + c ~ ~+11~1 - Clog 

i=0 

n 

+ ClP~I ~,~+~ IR~I (20) 
I-~01" i=0 

From (17) we infer that 

[Ri[ _ Nx(6i - 26i-z) C'6 C' 
[ROI- NX(6) <- ~(2 ~ --2 a ' - '+ l )  <- 2 a'" (21) 

Inserting (21) in (20) and using the definition of the sequence al,..., c~i,..., we conclude that 
the sum of the complexities of the functions go,..., g• is O(Nx(6)) as 6 -+ 0, which completes the 
proof of Theorem 2. 

A similar assertion is valid for differentiable functions. 

T h e o r e m  3. Suppose that X is an open bounded subset of R k, Y is a segment in R, and 
f E F~,a(X, Y). For some 60 > 0 and each 0 < 6 < 60 there exists a function f6 with the following 
properties: 

(1) f6 is the sum of O(log* ])  piecewise polynomial functions; 
(2) the sum of the complexities of the functions of item (1) is 0(2 ~x(6/2)) as 6 -~ 0; 
(3) Pc(fs, f )  <_ (1 + ek)6 n+a, with e the base of the natural logarithm. 
The proof of Theorem 3 is analogous to that of Theorem 2, the difference being that Lemma 7 is 

used in place of Lemma 6 and the role of hv is played by log. 
The complexity of the approximating function in Theorem 3 is minimal, since, as shown in [1], 

HF~,o(6 "+~) • (1/6) k • 2/r provided that the departure space X of the function class F~, a is 

an open bounded subset of R k. 
In conclusion, I express my sincere gratitude to Yu. G. Reshetnyak for the helpful remarks he 

made while discussing the results of the article and to R. E. Krichevskil and V. A. Aleksandrov for 
numerous pieces of advice in preparation of the results of the article to publication. 
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