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ASYMPTOTICS FOR THE NUMBER

OF n-QUASIGROUPS OF ORDER 4
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Abstract: The asymptotic form of the number of n-quasigroups of order 4 is 3n+122
n+1(1 + o(1)).
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An algebraic system consisting of a set Σ of cardinality |Σ| = k and an n-ary operation f : Σn → Σ
uniquely invertible in each of its arguments is called an n-quasigroup of order k. The function f can also
be referred to as an n-quasigroup of order k (see [1]). The value table of an n-quasigroup of order k is
called a Latin n-cube of dimension k (in case n = 2, a Latin square). Furthermore, there is a one-to-one
correspondence between the n-quasigroups and the distance 2 MDS codes of length n+ 1.

It is not difficult to show that for each n there exist only two n-quasigroups of order 2 and 3 · 2n
different n-quasigroups of order 3 which constitute one equivalence class. In this work we study the
properties of n-quasigroups of order 4 and derive the asymptotic representation 3n+122

n+1(1 + o(1)) for
their number. The results of this research were announced in [2]. For k > 4, the asymptotic form of the
number of n-quasigroups and even the asymptotic form of its logarithm remain unknown.

In § 1–§ 4 we give the necessary definitions and propositions concerning the quaternary distance 2
MDS codes and double-codes (§ 1), linear double-codes (§ 2), n-quasigroups of order 4 (§ 3), semilinear
n-quasigroups of order 4 (§ 4). In § 5 we prove that almost all (as n → ∞) n-quasigroups of order 4 are
semilinear and establish asymptotically tight bounds on their number.

In addition to the main result, of special interest are Lemma 1 on a linear antilayer in a double-
MDS-code and Lemma 4 on a semilinear layer in an n-quasigroup as well as Lemmas 2 and 3 on the
decomposability of double-MDS-codes and n-quasigroups which were proved in [3, 4], and their Corol-
lary 3.

§ 1. MDS Codes and Double-Codes
Let Σ = {0, 1, 2, 3} and let n be a natural number. In this paper we study the subsets of Σn and

the functions on Σn with some properties to be specified below. The elements of Σn will be called
vertices. Denote by [n] the set of natural numbers from 1 to n. Given ȳ = (y1, . . . , yn), we put ȳ

(i)#x =
(y1, . . . , yi−1, x, yi+1, . . . , yn).
Assume that x̄ ∈ Σn and k ∈ [n]. The set Ek(x̄) � {x̄(k)#a : a ∈ Σ} is called a k-edge. Two different

vertices in Σn are called neighbor vertices provided that they both belong to some k-edge, i.e., differ in
only one coordinate.

Definition. A set C ⊂ Σn is called a distance 2 MDS code (of length n) (henceforth simply an MDS
code) whenever |Ek(x̄) ∩ C| = 1 for all x̄ ∈ Σn and k ∈ [n]. Note that |C| = |Σn|/4 = 22n−2.
Definition. A set S ⊂ Σn is called a double-code whenever |Ek(x̄)∩S| = 2 for all x̄ ∈ S and k ∈ [n].
Definition. A double-code S ⊂ Σn is called a double-MDS-code whenever |S| = |Σn|/2 = 22n−1.

In other words, a set S ⊂ Σn is a double-MDS-code provided that |Ek(x̄) ∩ S| = 2 for all x̄ ∈ Σn and
k ∈ [n]. Obviously, Σn\S also is a double-MDS-code in this case.
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Denote by Γ(S) the adjacency graph of a double-code S ⊂ Σn with vertex set S and edge set
{(x̄, ȳ) : x̄, ȳ are neighbor vertices in Σn}.
Definition. A nonempty double-code S ⊂ Σn is called prime provided that S is a subset of a double-

MDS-code S′ ⊂ Σn and the graph Γ(S) is connected. By way of illustration, we list all up to equivalence
nonempty double-codes in Σ2 (Fig. 1).

(a) (b) (c) (d)

Fig. 1

The double-codes (a) and (c) are prime; (b) and (c) are double-MDS-codes.

Definition. A double-MDS-code S is splittable provided that S = C1 ∪ C2, where C1 and C2 are
disjoint MDS codes. Unsplittable double-MDS-codes exist in Σn starting from n = 3. A double-MDS-
code S is splittable if and only if Γ(S) is a bipartite graph.

Definition. An isotopy or n-isotopy we call an ordered collection of n permutations θi : Σ → Σ,
i ∈ [n]. Let θ̄ = (θ1, . . . , θn) be an isotopy and S ⊆ Σn. Put θ̄S � {(θ1x1, . . . , θnxn) : (x1, . . . , xn) ∈ S}.
Definition. Some sets S1 ⊆ Σn and S2 ⊆ Σn are called equivalent provided that there exist a coor-

dinate permutation τ : [n]→ [n] and an n-isotopy θ̄ such that
χS1(x1, . . . , xn) ≡ χθ̄S2(xτ(1), . . . , xτ(n)).

Here and in what follows χB denotes the characteristic function of a set B.

Obviously, if two double-codes are equivalent then they have equivalent adjacency graphs; they are
both double-MDS-codes or neither is a double-MDS-code; they are both splittable or neither is splittable;
and both are prime or neither is prime.

Proposition 1. Let S be a splittable double-MDS-code and let γ be the number of the prime
double-codes that S includes. Then the double-code S includes exactly 2γ different MDS codes.

Proof. The number of the MDS codes that S includes equals the number of the ways of choosing
part of the bipartite graph Γ(S). Since in each of the γ connected components of Γ(S) such a part can
be chosen independently, the number of the ways is 2γ . �
Definition. Let S ⊆ Σn, k ∈ [n], and y ∈ Σ. The set

Lk;yS � {(x1, . . . , xk−1, xk, . . . , xn−1) : (x1, . . . , xk−1, y, xk, . . . , xn−1) ∈ S}
is called the yth layer of S in direction k.

Proposition 2. Let S, S′ ⊆ Σn be some sets, k ∈ [n], and {a, b, c, d} = Σ.
(a) If S is a double-code (splittable double-code, double-MDS-code) then Lk;aS also is a double-code

(splittable double-code, double-MDS-code) in Σn−1.
(b) If k < k′ ∈ [n] then Lk;b(Lk′;aS) = Lk′−1;a(Lk;bS).
(c) Lk;a(S ∩ S′) = Lk;aS ∩Lk;aS

′.
(d) If S and S′ are double-codes and Lk;aS = Lk;aS

′, Lk;bS = Lk;bS
′, Lk;cS = Lk;cS

′ then
Lk;dS = Lk;dS

′.
(e) If S is a double-MDS-code and Lk;aS = Lk;bS then Lk;cS = Lk;dS = Σ

n−1\Lk;aS.
Let us show that a double-MDS-code is completely defined by any of its nonempty subsets that are

double-codes.
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Proposition 3 (on unique extension of a double-code). Let S1, S2 ⊂ Σn be double-MDS-codes.
Then
(a) if S0 ⊆ S1 ∩ S2 is a nonempty double-code then S1 = S2;
(b) if S0 ⊆ S1\S2 is a nonempty double-code then S1 = Σn\S2.
Proof. We will prove (a) by induction on n. For n = 1 the claim is trivial. Assume that (a) holds

for n = m−1; let us show that it holds for n = m. By Proposition 2(a), we have: L1;aS0 is a double-code,
L1;aS1 andL1;aS2 are double-MDS-codes for each a ∈ Σ. By Proposition 2(c), L1;aS0 ⊆ L1;aS1∩L1;aS2.
Then, by the inductive assumption, L1;aS1 = L1;aS2 for all a ∈ Σ such that L1;aS0 is not empty. By
the definition of a double-code, at least two of the four sets L1;aS0, a ∈ Σ, are nonempty. If there are
three nonempty sets then the equality S1 = S2 follows from Proposition 2(d). Assume that two sets, say
L1;2S0 and L1;3S0, are empty. Then L1;0S0 = L1;1S0, because |E1(x̄) ∩ S0| = 2 for all x̄ ∈ S0. Hence
L1;0S1 = L1;1S1 = L1;0S2 = L1;1S2, by the inductive assumption. Then, by Proposition 2(e), we obtain
S1 = S2.
(b) Consider S′2 � Σn\S2. Since S′2 is a double-MDS-code and S0 ⊆ S1 ∩ S′2, it follows from (a) that

S′2 = S1. �

§ 2. Linear Double-Codes
Definition. A nonempty double-code S ⊂ Σn is called linear whenever

χS(x1, . . . , xn) ≡ χS1(x1)⊕ χS2(x2)⊕ · · · ⊕ χSn(xn) (1)

where Si (1 ≤ i ≤ n) are subsets of Σ and ⊕ is the modulo 2 addition. Obviously, Si are double-MDS-
codes in Σ. A linear double-code in Σ2 is illustrated in Fig. 1(b).

In the following two propositions, some elementary properties of linear 2-codes are proved.

Proposition 4 (properties of the class of linear double-codes). (a) The linear double-codes constitute
an equivalence class.
(b) A linear double-code is a splittable double-MDS-code.
(c) The complement of a linear double-code is a linear double-code.
(d) A double-code S is linear if and only if there exists a prime double-code S0 ⊂ S equivalent

to {0, 1}n.
(e) A linear double-code is uniquely defined by the subset of all its vertices of type 0̄(i)#y, i ∈ [n],

y ∈ Σ.
(f) The number of linear double-codes in Σn is 2 · 3n.
Proof. The properties (a)–(c) follow from definitions.

(d) Necessity. By (a), we may assume without loss of generality that χS(x1, . . . , xn)≡
⊕n
i=1 χ{2,3}(xi).

In this case S0 � {2, 3} × {0, 1}n−1 is a subset of S.
Sufficiency. Suppose that a double-code S0 ⊂ S is equivalent to {0, 1}n. Without loss of gen-

erality assume that S0 = {2, 3} × {0, 1}n−1. Then S0 is a subset of the linear double-code S′ where
χS′(x1, . . . , xn) ≡

⊕n
i=1 χ{2,3}(xi). By Proposition 3(a), we have S = S

′.
(e) Indeed, let a double-code S be represented as in (1). Put χ0 � χS(0̄) and χi(y) � χS(0̄(i)#y),

i ∈ [n]. We have
χS(x1, . . . , xn) ≡ χ0 ⊕

n⊕

i=1

(χi(xi)⊕ χ0), (2)

which can be easily checked on using (1) for χS .
(f) follows from (2). Indeed, we can choose χ0 in two ways. Then each of the functions χi, i ∈ [n], can

be chosen in three ways, taking into account that χi is the characteristic function of a double-MDS-code
in Σ and χi(0̄) = χ0. �
The set {0, 1}n, as well as the graph Γ({0, 1}n), is called the Boolean n-cube. The next proposition

follows from definitions and Proposition 2.
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Proposition 5 (on heritable properties of linear double-codes). (a) If S ⊂ Σn is a linear double-code
then Lk;yS is a linear double-code.
(b) Let S ⊂ Σn be a double-code. If two layers of S by some direction are linear and coincide then

S is a linear double-code.

The main result of this section is the following lemma, presenting a partial conversion of Item (a)
and a partial strengthening of Item (b) of Proposition 5. The lemma claims that the existence of a linear
layer in a splittable double-MDS-code implies the existence of a layer (“antilayer”) in the same direction
that complements the former.

Lemma 1 (on a linear antilayer). Let S ⊂ Σn be a splittable double-MDS-code and let L � Lk;aS
be a linear double-code for some k ∈ [n] and a ∈ Σ. Then
(a) there is b ∈ Σ such that Lk;bS = Σ

n−1\L;
(b) Σn\S is a splittable double-MDS-code.
Before proving Lemma 1 we introduce the notation ¬(α1, α2, . . . , αn) � (α1 ⊕ 1, α2 ⊕ 1, . . . , αn ⊕ 1)

where αi ∈ {0, 1} and prove two auxiliary propositions.
Proposition 6. Let {P1, P2, P3} be a partition of the Boolean n-cube with n ≥ 4 into three

nonempty sets: P1 ∪ P2 ∪ P3 = {0, 1}n. Moreover, the following holds:
(∗) for every k ∈ [n] and every b ∈ {0, 1} at least one set (layer) of Lk;bP1, Lk;bP2, Lk;bP3 is empty.
Then {P1, P2, P3} = {{ᾱ}, {¬ᾱ}, {0, 1}n\{ᾱ,¬ᾱ}} where ᾱ ∈ {0, 1}n.
Proof. Denote by Ni ⊆ [n] the set of coordinates k whose values are not fixed in Pi, i.e., Lk;0Pi �= ∅

and Lk;1Pi �= ∅. It is easy to see that N1, N2, and N3 are pairwise disjoint (if, for example, k ∈ N1 ∩N2
then (∗) implies Lk;0P3 = ∅ and Lk;1P3 = ∅, which contradicts the nonemptiness of P3). So, the

obvious relation 2n = |P1| + |P2| + |P3| ≤ 2|N1| + 2|N2| + 2|N3| yields {N1, N2, N3} = {∅,∅, [n]} and
{P1, P2, P3} = {{ᾱ}, {β̄}, {0, 1}n\{ᾱ, β̄}}. The hypothesis (∗) implies that β̄ = ¬ᾱ. �
Proposition 7. Let S be a double-MDS-code in Σn, n ≥ 3, and k ∈ [n]. Let P0, P1, P2, and P3 be the

intersections of the four layers of S in direction k with the Boolean (n−1)-cube, i.e., Pi � Lk;iS∩{0, 1}n−1.
Assume that at least one of the following holds:
(a) n = 3, Pi = {0, 1}2 for some i, and Pi �= ∅ for all i ∈ {0, 1, 2, 3};
(b) {P0, P1, P2, P3} = {{0, 1}n−1, {ᾱ}, {β̄}, {0, 1}n−1\{ᾱ, β̄}} where ᾱ ∈ {0, 1}n−1 and β̄ = ¬ᾱ.
Then the double-codes S and Σn\S are unsplittable.
Proof. (a) There are two nonequivalent cases for the choice of Pi. It is not difficult to check (we

leave this to the reader) that in each case an attempt to recover the double-MDS-code S leads to an
unsplittable double-MDS-code with the unsplittable complement.
(b) Without loss of generality we may assume that k = n, ᾱ = 0n−1, β̄ = 1n−1,

P0 = {0, 1}n−1, P1 = {ᾱ}, P2 = {β̄}, P3 = {0, 1}n−1\{ᾱ, β̄}
(otherwise we can select a suitable coordinate permutation and isotopy and consider an equivalent double-
code that satisfies this assumption). We will argue by induction on n. The base of induction, the case
of n = 3, is considered in Item (a). Assume that the statement holds for n = m − 1. Let us show that
it holds for n = m as well. Consider the intersections of the layers Lk;0S, Lk;1S, Lk;2S, Lk;3S with the

set E � {2, 3} × {0, 1}n−2, which is equivalent to the Boolean (n− 1)-cube {0, 1}n−1 and is a “neighbor
cube” to it:

Qi � {2, 3} × {0, 1}n−2 ∩L1;iS.

Fig. 2 illustrates the situation.
(∗) We claim that the sets Q0, Q1, Q2, and Q3 are defined up to four elements. More exactly,

Q0 = ∅, Q1 = E\{ᾱ′}, Q2 = E\{β̄′}, Q3 = {ᾱ′′, β̄′′}, (3)
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where ᾱ′, ᾱ′′ ∈ {(2, 0, . . . , 0), (3, 0, . . . , 0)} and β̄′, β̄′′ ∈ {(2, 1, . . . , 1), (3, 1, . . . , 1)}. Indeed, the set
{0, 1}n−1 ∪ E can be split into the 1-edges of type E1(x̄), x̄ ∈ {0} × {0, 1}n−2. Since S is a double-
MDS-code; therefore, every such 1-edge contains two vertices from Pi ∪ Qi for each i ∈ {0, 1, 2, 3}.
In particular,
• if such 1-edge contains two vertices from Pi then it does not contain vertices from Qi;
• if it does not contain vertices from Pi then it contains two vertices from Qi.

Fig. 2. An Illustration of Proposition 7.

According to (3) these two rules define all vertices of Qi, i = 0, 1, 2, 3, except for the four cases
(Fig. 2(a), the bold horizontal lines):
• the 1-edge E1(0, 0, . . . , 0) contains exactly one vertex (0, 0, . . . , 0) from P1,
• the 1-edge E1(0, 0, . . . , 0) contains exactly one vertex (1, 0, . . . , 0) from P3,
• the 1-edge E1(0, 1, . . . , 1) contains exactly one vertex (1, 1, . . . , 1) from P2,
• the 1-edge E1(0, 1, . . . , 1) contains exactly one vertex (0, 1, . . . , 1) from P3.
In each of the cases we have a choice of a vertex of Qi for the respective i. This choice corresponds

to the choice of α′, α′′, β′, β′′. The claim (∗) is proved.
Since S is a double-MDS-code, every vertex from E belongs to exactly two sets Qi. So, it follows

directly from (3) that ᾱ′ = ᾱ′′ and β̄′ = β̄′′. Without loss of generality we may assume that ᾱ′ =
ᾱ′′ = (2, 0, . . . , 0). Thus, it suffices to consider the two cases: β̄′ = β̄′′ = (2, 1, . . . , 1) (Fig. 2(a)) and
β̄′ = β̄′′ = (3, 1, . . . , 1) (Fig. 2(b)).
1. Case β̄′ = β̄′′ = (2, 1, . . . , 1) (Fig. 2(a)). In this case we can use the inductive assumption. Indeed,

consider the set Σn−1\L1;2S. Its layers in the last direction intersected with the Boolean (n − 2)-cube
coincide with {0, 1}n−2, {(0, . . . , 0)}, {(1, . . . , 1)}, and {0, 1}n−1\{(0, . . . , 0), (1, . . . , 1)} (see Fig. 2(a), the
dotted lines). By the inductive assumption, the double-codes Σn−1\L1;2S and L1;2S are unsplittable.
Hence, Σn\S and S are unsplittable.
2. Case β̄′ = β̄′′ = (3, 1, . . . , 1) (Fig. 2(b)). In this case we can find a cyclic path of odd length 2n+3

in Γ(S):
(0000 . . . 00, 1000 . . . 00, 1100 . . . 00, 1110 . . . 00, · · · , 1111 . . . 10

︸ ︷︷ ︸
n−1

, 1111 . . . 12,

2111 . . . 12, 2011 . . . 12, 2001 . . . 12, · · · , 2000 . . . 02
︸ ︷︷ ︸

n−1
, 3000 . . . 02, 3000 . . . 01, 0000 . . . 01)

(Fig. 2(b), the dotted lines); this implies that the graph is not bipartite and the double-code S is unsplit-
table by definition. Similarly, the odd cyclic path
(2000 . . . 00, 3000 . . . 00, 3100 . . . 00, 3110 . . . 00, · · · , 3111 . . . 10

︸ ︷︷ ︸
n−1

, 3111 . . . 12,

0111 . . . 12, 0011 . . . 12, 0001 . . . 12, · · · , 0000 . . . 02
︸ ︷︷ ︸

n−1
, 1000 . . . 02, 1000 . . . 01, 2000 . . . 01)

in Γ(Σn\S) shows that the double-code Σn\S is unsplittable. �
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Proof of Lemma 1. (a) We prove the claim by induction. The base of induction, the case of n = 2,
is trivial. Assume that the lemma holds for n = m−1. Let us show that the claim is true for n = m ≥ 3.
By Proposition 4(d) the splittability and linearity of a double-code are preserved under isotopy

and coordinate permutation, without loss of generality we may assume that k = n, a = 0, and the
linear double-code L includes {0, 1}n−1. Let P0, P1, P2, and P3 be defined as in Proposition 7; i.e.,
Pi � {0, 1}n−1 ∩Ln;iS.
It is enough to show that at least one of the sets P1, P2, and P3 is empty. Then by Proposition 3(b)

the corresponding layer of S will be the complement of L.
(∗) Assume the contrary, i.e., that each of the sets P1, P2, and P3 is nonempty.
(∗∗) Then we claim that P1, P2, and P3 satisfy the hypothesis of Proposition 6. Since S is a double-

MDS-code, its layers in the given direction constitute a twofold covering of Σn−1; and the sets P0, P1,
P2, and P3 constitute a twofold covering of {0, 1}n−1. Since P0 = {0, 1}n−1, we see that P1, P2, and
P3 are pairwise disjoint and P1 ∪ P2 ∪ P3 = {0, 1}n−1. It remains to show that for all r ∈ [n − 1]
and b ∈ {0, 1} at least one of the sets Lr;bP1, Lr;bP2, Lr;bP3 is empty. This fact follows from the
inductive assumption. Indeed, the double-code Lr;bS fully satisfies the hypothesis of the lemma, and, by
the inductive assumption, it has a layer Ln−1;iLr;bS, i ∈ {1, 2, 3}, complementary to the “linear” layer
Ln−1;0Lr;bS. Using Proposition 2(b),(d) and the inclusion Ln−1;0Lr;bS ⊃ {0, 1}n−2, we infer

Lr;bPi = Lr;b
({0, 1}n−1 ∩Ln;iS

)
= {0, 1}n−2 ∩Lr;bLn;iS = {0, 1}n−2 ∩Ln−1;iLr;bS = ∅.

The claim (∗∗) is proved.
By Proposition 6, S satisfies the hypothesis of Proposition 7. This means that the double-code S is

unsplittable, which contradicts the hypothesis of the lemma. Thus, the assumption (∗) is not true, and
one of the sets P1, P2, and P3 is empty.
Suppose Pj = ∅. Then b = j, {0, 1}n−1 ⊂ L\Ln;bS; therefore Ln;bS = Σ

n−1\L by Proposition 3(b).
Item (a) of the lemma is proved.
(b) As shown in Item (a), two layers of the double-MDS-code S in direction k are complements to

each other (with respect to Σn−1). The definition of a double-code implies that the other two layers also
are complements to each other. Hence an appropriate permutation of layers converts S to its complement
Σn\S and the splittability of the former means the splittability of the later. �
Examples show that the layer linearity hypothesis in Lemma 1 is essential for the existence of a layer

complementary to a given one in a splittable double-MDS-code.

§ 3. MDS Codes and n-Quasigroups
Definition. Let G ⊆ Σn = {0, 1, 2, 3}n; a function f : G → Σ is called a partial n-quasigroup of

order 4 provided that the equation

f(ā(i)#x) = f(a1, . . . ai−1, x, ai+1, . . . an) = b (4)

has at most one solution x ∈ Σ for all ā ∈ Σn and b ∈ Σ. If, in addition, G = Σn then the function f is
called an n-quasigroup of order 4 (in what follows we omit the words “of order 4”). In this case (4) has

exactly one solution for all ā ∈ Σn and b ∈ Σ. By f 〈i〉 we denote the inversion of the n-quasigroup f in
the ith argument, which is defined by the relation

f 〈i〉(x̄) = b ⇐⇒ f(x̄(i)#b) = xi.

Obviously, the inversion of an n-quasigroup f in each argument also is an n-quasigroup.

Definition. An n-quasigroup g : Σn → Σ is called an extension of a partial n-quasigroup f : G→ Σ
provided that f = g|G. A partial n-quasigroup that have at least one extension is called extendable.
Definition. An n-quasigroup f is called reduced provided that f(0̄(i)#a) = a for all i ∈ [n] and

a ∈ Σ. A permutation τ : Σ→ Σ is called reduced provided that τ(0) = 0.
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Definition. An n-quasigroup f is called decomposable if there exist an integer m, 2 ≤ m < n, an
(n−m+ 1)-quasigroup h, an m-quasigroup g, and a permutation σ : [n]→ [n] such that

f(x1, . . . , xn) ≡ h
(
g(xσ(1), . . . , xσ(m)), xσ(m+1), . . . , xσ(n)

)
.

Take f : Σn → Σ and define the sets
C(f) � {(x̄, f(x̄)) : x̄ ∈ Σn}, Ca(f) � {x̄ ∈ Σn : f(x̄) = a}, Sa,b(f) � Ca(f) ∪ Cb(f).

The following is straightforward from definitions:

Proposition 8. (a) The mapping C(·) is a one-to-one correspondence between the set of all n-qua-
sigroups and the set of all MDS codes of length n+ 1.
(b) A function f : Σn → Σ is an n-quasigroup if and only if the sets Ca(f) are pairwise disjoint

MDS-codes for all a ∈ Σ.
(c) A function f : Σn → Σ is an n-quasigroup if and only if for all different a and b in Σ the set

Sa,b(f) is a splittable double-MDS-code.

Definition. n-Quasigroups f and g are called equivalent provided that there exist a permutation
σ : [n]→ [n] and an (n+ 1)-isotopy τ̄ = (τ0, τ1, . . . , τn) such that

f(x1, . . . , xn) ≡ τ0g(τ1xσ(1), . . . , τnxσ(n)).
A set of n-quasigroups is called closed under equivalence provided that it contains n-quasigroups together
with their equivalence classes.

It follows from definitions that if n-quasigroups f and g are equivalent then the MDS codes C(f) and

C(g) are equivalent too. Moreover, an n-quasigroup f and its inversion f 〈i〉, i ∈ [n], correspond to the
equivalent MDS codes C(f) and C(f 〈i〉). For n ≥ 3, there are examples in which an n-quasigroup and its
inversion are not equivalent. Thus the equivalence of MDS codes does not imply that the corresponding
n-quasigroups are equivalent. However, we easily see

Proposition 9. (a) Equivalent n-quasigroups are decomposable or nondecomposable simultane-
ously.
(b) If an n-quasigroup f is decomposable then so are its inversions f 〈i〉, i ∈ [n].
Proposition 10. Let f : Σn→Σ be an n-quasigroup. Then there are a unique isotopy (τ0, τ1, . . . , τn)

with τ0 = (0, a), a ∈ Σ, and reduced permutations τ1, . . . , τn : Σ→ Σ such that
f(x̄) ≡ τ0g(τ1x1, τ2x2, . . . , τnxn) (5)

where g is a reduced n-quasigroup, x̄ = (x1, x2, . . . , xn).

Proof. From (5) we deduce

τ0(0) = f(0, . . . , 0), i.e., τ0 = (0, f(0, . . . , 0)),

τi(b) = τ
−1
0 f(0̄

(i)#b), i = 1, . . . , n,

g(x̄) = τ−10 f
(
τ−11 x1, τ

−1
2 x2, . . . , τ

−1
n xn

)
,

(6)

which yields the uniqueness of the representation. On the other hand, it is straightforward that if we
define τ0, τ1, . . . , τn and g by (6) then the conditions of the proposition will be satisfied. �
Let Vn be the set of all n-quasigroups of order 4. Denote by Rn ⊆ Vn the set of all decomposable n-

quasigroups and by V �n ⊂ Vn the set of all reduced n-quasigroups. Given an arbitrary subset of Vn denoted
by a capital letter with index, for example Wn, we introduce the following notation: W

�
n � Wn ∩ V �n ,

wn � |Wn|, and w�n � |W �n |.
The following is immediate from Proposition 10:
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Corollary 1. Let Wn ⊆ Vn be a set of n-quasigroups of order 4 closed under equivalence. Then
wn = 4 · 6nw�n.
A partial n-quasigroup g : G→ Σ is called compatible with an n-quasigroup f whenever f(x̄) �= g(x̄)

for every x̄ from G. Denote by F (g) the set of all n-quasigroups compatible with an n-quasigroup g.

Proposition 11. Let g be an n-quasigroup and let Wn ⊆ Vn be a set of n-quasigroups which is
closed under equivalence. Then |F (g) ∩Wn| ≤ 3n+1w∗n.
Proof. Consider the set T ⊂ Σn that consists of the vertices differing from (0, . . . , 0) ∈ Σn in at

most one position. Given a partial n-quasigroup t : T → Σ, consider the set Wn(t) of its extensions from
the class Wn, i.e., Wn(t) � {f ∈Wn : f |T = t}. Since Wn is closed under equivalence, |Wn(t)| = w�n.
It is easy to see that there are exactly 3n+1 different partial n-quasigroups t : T → Σ compatible

with a given n-quasigroup g. Since an n-quasigroup f ∈ Wn(t) is compatible with g only if t = f |T is
compatible with g, the number of the n-quasigroups from Wn that are compatible with g does not exceed
3n+1w�n. �

Let q : Σn−1 × A→ Σ be a partial n-quasigroup, A ⊆ Σ, and let α be an element of A. We call the
subfunction

qα(x1, . . . , xn−1) � q(x1, . . . , xn−1, α).

a layer of q. The following is straightforward from Proposition 11 and Corollary 1:

Corollary 2. Let Un be the set of partial n-quasigroups g : Σ
n−1×{a, b} → Σ such that their layers

gα, α ∈ {a, b}, belong to a set Wn−1 closed under equivalence. Then |Un| ≤ (3w2n−1)/2n+1.
Proposition 12 (a representation of a decomposable n-quasigroup by the superposition of subfunc-

tions). Let h and g be (n−m+ 1)- and m-quasigroups and

f(x, ȳ, z̄) � h(g(x, ȳ), z̄),

h0(x, z̄) � f(x, 0̄, z̄), g0(x, ȳ) � f(x, ȳ, 0̄), δ(x) � f(x, 0̄, 0̄), (7)

where x ∈ Σ, ȳ ∈ Σm−1, and z̄ ∈ Σn−m. Then

f(x, ȳ, z̄) ≡ h0(δ−1(g0(x, ȳ)), z̄). (8)

Proof. It follows from (7) that

h0(·, z̄) ≡ h(g(·, 0̄), z̄), g0(x, ȳ) ≡ h(g(x, ȳ), 0̄), δ−1(·) ≡ g〈1〉(h〈1〉(·, 0̄), 0̄).

Inserting these representations of h0, g0, and δ
−1 to (8), we can readily verify its validity. �

Proposition 13 (on the number of decomposable n-quasigroups). If r�n is the number of reduced
decomposable n-quasigroups then

r�n ≤
n−1∑

m=2

(
n

m

)

v�n−m+1v
�
m.

Proof. By Proposition 12 a reduced decomposable n-quasigroup can be represented (maybe am-
biguously) as a superposition of reduced (n −m + 1)- and m-quasigroups with m ∈ {2, . . . , n− 1}. For
every such m, the number of ways of splitting the set of arguments into two groups equals

(
n
m

)
; and

the numbers of ways of choosing (n − m + 1)- and m-quasigroups equal respectively v�n−m+1 and v�m.
The order of arguments in each of the groups is not essential, because a reduced m-quasigroup goes into
a reduced m-quasigroup under a coordinate permutation. �
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§ 4. Semilinear n-Quasigroups
Definition. An n-quasigroup f is called semilinear provided that there are a, b ∈ Σ such that

Sa,b(f) is a linear double-code. An n-quasigroup f is called linear provided that for all a, b ∈ Σ, a �= b,
the double-code Sa,b(f) is linear.

Proposition 14. The reduced linear n-quasigroup is unique.

Proof. The statement follows from Proposition 4(e) and the fact that every n-quasigroup f is
uniquely defined by the double-MDS-codes S0,1(f) and S0,2(f). �
Denote by Kn ⊆ Vn the set of all semilinear n-quasigroups and by Kn(a, b) the set of semilinear

n-quasigroups f such that the double-code Sa,b(f) is linear. The following proposition is easy:

Proposition 15. For all different a, b, c in Σ the intersection Kn(a, b) ∩ Kn(a, c) is the set of all
linear n-quasigroups.

Using Proposition 5(a), we easily prove by induction on m the following

Proposition 16. Let f be a semilinear n-quasigroup. Then for all (a1, . . . , am) ∈ Σm the function
g(x1, . . . , xn−m) � f(x1, . . . , xn−m, a1, . . . , am)

is a semilinear (n−m)-quasigroup.
Proposition 17. (a) Equivalent n-quasigroups are or are not semilinear simultaneously.

(b) If f is a semilinear n-quasigroup then its inversions f 〈i〉, i ∈ [n], also are semilinear n-quasigroups.
Proof. Item (a) follows from the fact that the set of linear double-codes is closed under equivalence

(Proposition 4(a)).
Let us prove (b). It is straightforward that the semilinearity of f is equivalent to the existence of

a0 = a, b0 = b, a1, . . . , an, b1, . . . , bn such that ai �= bi and
n⊕

i=0

χ{ai,bi}(xi) = 0 (9)

for all x0, x1, . . . , xn satisfying x0 = f(x1, x2, . . . , xn). Since (9) is symmetric with respect to the choice
of the dependent variable, the claim is proved. �
Remark. The reduced linear n-quasigroup f can be represented as f(x1, . . . , xn) = x1 ∗ · · · ∗ xn

where (Σ, ∗) is a group isomorphic to Z2 × Z2, with the addition table

∗ 0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

The following two lemmas were proved in [3, 4]. The first concerns a representation of a nonprime
double-MDS-code by prime double-codes of smaller dimensions. The second lemma, an essential corollary
of the former, connects the decomposability property of an n-quasigroup q with the nonprimality property
of Sc,d(q).

Lemma 2 (on decomposition of a double-MDS-code) [3, 4]. Let S be a double-MDS-code. Then
there exists k = k(S) ∈ [n] such that
(a) the characteristic function χS can be represented as

χS(x̄) ≡
k⊕

j=1

χSj (x̃j) (10)
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where x̃j = (xij,1 , . . . , xij,nj ) are disjoint collections of variables from x̄, Sj ⊂ Σnj are prime double-MDS-
codes for j ∈ [k]; the representation is unique up to substitution of double-MDS-codes Sj\Σnj for some
double-MDS-codes Sj ;

(b) S is a union of 2k−1 pairwise disjoint prime double-codes of the same cardinality; Σn\S is a union
of 2k−1 pairwise disjoint prime double-codes of the same cardinality.

Lemma 3 (on decomposability of n-quasigroups) [3, 4]. Let S ⊂ Σn be a double-MDS-code that
satisfies (10), c �= d ∈ Σ, and let q be an n-quasigroup such that Sc,d(q) = S. Then

q(x̄) ≡ q0(q1(x̃1), . . . , qk(x̃k)) (11)

where qj , j ∈ [k], are nj-quasigroups, q0 is a semilinear k-quasigroup, and the collections of variables
x̃j = (xij,1 , . . . , xij,nj ), j ∈ [k], and the numbers k, nj are defined by Lemma 2.
Corollary 3. Let {a, b, c, d} = Σ, let q be an n-quasigroup, and let a partial n-quasigroup g �

q|Σn−1×{a,b} have more than two extensions. Then q ∈ Rn ∪Kn.
Proof. It follows from definitions that Ca(f

〈n〉) = C(fa) for an arbitrary n-quasigroup f and its
inversion in the nth argument f 〈n〉. Let

S � Σn\(C(ga) ∪ C(gb)).
Then for every extension f of the partial n-quasigroup g we see that

S = Σn\(C(fa) ∪ C(fb)) = C(fc) ∪ C(fd) = Sc,d(f 〈n〉).
By hypothesis, the partial n-quasigroup g has more than two extensions f . Each of the extensions is
uniquely defined by its layer fc. Hence the double-MDS-code S includes more than two different MDS
codes C(fc). By Proposition 1, the double-MDS-code S = Sc,d(q

〈n〉) consists of more than one prime
double-code. According to Lemmas 2 and 3, the number k in (11) is not less than 2. If k < n then (11)

implies the decomposability of q〈n〉; if k = n then (10) implies the semilinearity. So, q〈n〉 ∈ Kn ∪ Rn.
Then by Propositions 9(b) and 17(b) we obtain q ∈ Kn ∪Rn. �

§ 5. On the Number of n-Quasigroups
In this section, we evaluate the number of n-quasigroups of order 4 by establishing that the subclass

of semilinear n-quasigroups is asymptotically dominant. We first calculate the number of the semilinear
n-quasigroups.

Theorem 1 (on the number of semilinear n-quasigroups). k�n = 3 · 22n−n−1 − 2 and kn = 3n+1 ·
22
n+1 − 236n.
Proof. An arbitrary n-quasigroup f in K�n(0, 1) can be defined by firstly choosing the linear double-

code S0,1(f) and secondly, the MDS codes C0(f) ⊂ S0,1(f) and C2(f) ⊂ Σn\S0,1(f). A linear double-code
can be chosen in 2 · 3n ways (Proposition 4(f)); an MDS code, in 22n−1 ways (Proposition 1). So,

|Kn(0, 1)| = 2 · 3n · 22n−1 · 22n−1 = 3n · 22n+1.
By Corollary 1 we find that |K�n(0, 1)| = 22n−n−1 and, similarly,

|K�n(0, 2)| = |K�n(0, 3)| = 22
n−n−1.

It follows from Propositions 14 and 15 that the pairwise intersections of K�n(0, 1), K
�
n(0, 2), K

�
n(0, 3)

contain only one element. Then, by the inclusion and exclusion formula,

k�n = |K�n(0, 1) ∪K�n(0, 2) ∪K�n(0, 3)| = 3 · 22
n−n−1 − 3 + 1.

By Corollary 1, kn = 4 · 6nk�n. �
Remark. The lower bound vn ≥ 3n+1 · 22n+1 − 236n was established in [5].
As a result of a numerical experiment, we have the values:

v�1 = 1, v
�
2 = 4, v

�
3 = 64 [6], v�4 = 7132, v

�
5 = 201538000. (12)

The following lemma shows that the existence of a semilinear layer in a n-quasigroup yields an
arrangement of its structure.
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Lemma 4 (on a semilinear layer). Let q be an n-quasigroup and there exists α ∈ Σ such that
qα ∈ Kn−1. Then q ∈ Kn ∪Rn.
Proof. Assume that qα ∈ Kn−1 for some α ∈ Σ and so the double-MDS-code Sa,b(qα) is linear for

some a, b ∈ Σ. Consider Sa,b(q); we have Sa,b(qα) = Ln;α(Sa,b(q)). Then, by Lemma 1, there is β ∈ Σ,
β �= α, such that

Sa,b(qβ) = Ln;β(Sa,b(q)) = Σ
n−1\Sa,b(qα),

i.e., the (n− 1)-quasigroup qβ is semilinear.
(∗) We claim that the partial n-quasigroup g � q|Σn−1×{α,β} has two semilinear extensions. Let

{a, b, c, d} = {α, γ, β, δ} = Σ and let σ � (ab)(cd) be a permutation of symbols of Σ. Then the function
f defined by the equalities

f(x1, . . . , xn−1, α) � q(x1, . . . , xn−1, α), f(x1, . . . , xn−1, β) � q(x1, . . . , xn−1, β),

f(x1, . . . , xn−1, γ) � σq(x1, . . . , xn−1, α), f(x1, . . . , xn−1, δ) � σq(x1, . . . , xn−1, β)
is an extension of the partial n-quasigroup g. It is clear that Sa,b(fγ) = Sa,b(fα) = Sa,b(qα); therefore
the double-codes Ln;α(Sa,b(f)) = Ln;γ(Sa,b(f)) are linear. Hence, by Proposition 5(b), the double-

code Sa,b(f) also is linear. So, the n-quasigroups f and f
′(x̄) � f(x1, . . . , xn−1, τ(xn)) with τ � (γ, δ)

satisfy (∗).
We note finally that either q coincides with one of the f and f ′, and thus q ∈ Kn; or g has more

than two extensions (q, f , f ′), and q ∈ Kn ∪Rn by Corollary 3. �
Theorem 2 (on the number of n-quasigroups). If n ≥ 5, then 3n+122n+1 ≤ vn ≤ (3n+1 + 1)22n+1.
Proof. Put q ∈ Vn and consider the partial n-quasigroup gα,β = q|Σn−1×{α,β} for arbitrary α, β ∈ Σ.

If gα,β has more than two extensions then, by Corollary 3, we obtain q ∈ Kn ∪ Rn. If qα ∈ Kn−1 or
qβ ∈ Kn−1 then q ∈ Kn ∪ Rn by Lemma 4. Hence if q �∈ Kn ∪ Rn then for all α, β ∈ Σ we have
qα, qβ �∈ Kn−1 and the partial n-quasigroup gα,β has two extensions.
Introduce the notation Tn � Vn\Kn and Wn � Tn\Rn. It follows from Propositions 9(a) and 17(a)

that the sets Tn and Wn are closed under equivalence. Then q ∈ Wn implies qα ∈ Tn for all α ∈ Σ and,
by Corollary 2,

wn ≤ 3t
2
n−1
2n
. (13)

(∗) We claim that the following three inequalities hold. We will prove them by induction on n.
(a) k�n ≤ v�n ≤ 2k�n whenever n ≥ 1;
(b) tn ≤ 22n+1 whenever n ≥ 5;
(c) vn ≤ (3n+1 + 1)22n+1 whenever n ≥ 5.
When n ≤ 5, the conditions (a)–(c) are verified by using the exact values of k�n, v�n, vn, tn = vn − kn

((12), Theorem 1). By the inductive assumption, (a) holds for n ∈ [m], and (b), (c) hold for n = m ≥ 5.
Let us show the validity of (a)–(c) for n = m+ 1. From (a) and Theorem 1 with m ≥ 5, m− 1 > i > 2
the following holds:

v�m−i+1v
�
i ≤ 4k�m−i+1k�i < 4 · 9 · 22

m−i+1+2i−m−3 < 4 · 3 · 22m−1−m−1 = v�2k�m−1 ≤ v�m−1v�2.
Since v�2 = 4, from the estimate for r

�
n (Proposition 13) we derive

r�m+1 ≤
m∑

i=2

(
m+ 1

i

)

v�(m+1)−i+1v
�
i ≤

m∑

i=2

(
m+ 1

i

)

v�mv
�
2 < 2

m+1 · v�m · 4.

Inserting (c) with n = m, we have

rm+1 < 2
m+3(3m+1 + 1)22

m+1 < 22
m+1
. (14)
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Moreover, from (13) and (b) with n = m we deduce the inequality

wm+1 ≤ 3t
2
m

2m+1
≤ 3 · 2

2m+1+2

2m+1
< 22

m+1
. (15)

By the definitions of Tm and Wm we have tm+1 ≤ wm+1 + rm+1 and vm+1 = tm+1 + km+1. Then from
(14) and (15) we derive (b) with n = m + 1, and from Theorem 1 and (b) we obtain (a) and (c) with
n = m+ 1. The claim (∗) is proved.
It remains to show the lower estimate for vn. We prove first that the following holds for n ≥ 4:

t�n ≥ t�3v�n−2. (16)

Let g ∈ T �3 and h ∈ V �n−2. Then Proposition 16 implies that the n-quasigroup

f(x1, . . . , xn) � h(g(x1, x2, x3), x4, . . . , xn)

is not semilinear. It is easy to check that the different pairs of the reduced (n − 2)-quasigroup h and
3-quasigroup g correspond to the different reduced n-quasigroups f . Inequality (16) is proved.
From (12) and Theorem 1 we see that t�3 = 18. Thus, (16) and Theorem 1 imply v

�
n = k

�
n + t

�
n ≥

3n22
n−n−1 for n ≥ 4. Then from Corollary 1 we deduce the inequality vn ≥ 3n+122n+1 for n ≥ 4. �
The following is straightforward from Theorem 2 and Proposition 8:

Corollary 4 (the asymptotic forms of the number of n-quasigroups and the number of MDS
codes). Let mn be the number of MDS-codes in Σ

n and let vn be the number of n-quasigroups of
order 4. Then

vn = 3
n+122

n+1(1 + o(1)), mn = 3
n22

n−1+1(1 + o(1)).
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