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Abstract—We study cardinalities of components of perfect codes and colorings, correlation
immune functions, and bent function (sets of ones of these functions). Based on results of
Kasami and Tokura, we show that for any of these combinatorial objects the component car-
dinality in the interval from 2k to 2k+1 can only take values of the form 2k+1 − 2p, where
p ∈ {0, . . . , k} and 2k is the minimum component cardinality for a combinatorial object with
the same parameters. For bent functions, we prove existence of components of any cardinality
in this spectrum. For perfect colorings with certain parameters and for correlation immune
functions, we find components of some of the above-given cardinalities.
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1. INTRODUCTION

Denote by En the set of ordered binary tuples (vertices) of length n. The n-dimensional Boolean
cube En is naturally equipped with a vector space structure over the field GF (2). Introduce the
operation [x, y] = (x1y1, . . . , xnyn) and the inner product 〈x, y〉 = x1y1 ⊕ . . . ⊕ xnyn for vectors
x, y ∈ En. The number of ones in a tuple y ∈ En is called the weight of the tuple and is denoted
by wt(y). A face of dimension n− wt(y) is the set En

y (z) = {x ∈ En : [x, y] = [z, y]}.
Let S ⊂ En; by χS we denote the characteristic function of S. The cardinality of S will be

referred to as the weight of χS. A function χS is said to be correlation immune of order n−m if
for any m-face En

y (z) all intersections En
y (z) ∩ S are of the same cardinality. A set S ⊂ En and

its characteristic function χS is referred to as a bitrade of order n−m if for any m-face En
y (z) the

cardinality of the intersection En
y (z) ∩ S is even (possibly, zero). Note that a correlation immune

function of order n−m is a bitrade of order n−m− 1.

TheHamming distance between tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is the number
of positions in which x and y differ; i.e., d(x, y) = wt(x⊕y). The set of vertices that are at distance
at most d form a vertex x is called a ball of radius d centered at x. A sphere of radius 1 centered
at x is the set F (x) = {y ∈ En : d(x, y) = 1}.

A perfect k-coloring of a Boolean n-cube is a map Col : En → {1, . . . , k} satisfying the follow-
ing condition: the cardinality of the intersection |Col−1(i) ∩ F (x)| depends only on colors i and
on Col(x), but not on the vertex x ∈ En. Each perfect coloring corresponds to a parameter matrix

1 Supported in part by the Russian Foundation for Basic Research, project nos. 10-01-00616 and 11-01-00997,
and Federal Target Program “Research and Educational Personnel of Innovation Russia” for 2009–2013,
government contract no. 02.740.11.0362.
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A = {aij}, where aij is the number of vertices of color j in a sphere of radius 1 centered at a vertex
of color i. In what follows, we consider two-colorings only; moreover, we assume for convenience
that the set of colors is {1, 0}. In this case Col is a Boolean function, and Col = χS, where S is
the set of vertices of color 1.

It is known (see, e.g., [1, 2]) that a perfect coloring of a Boolean n-cube with parameter matrix(
n− b b
c n− c

)
is a correlation immune function of order

b+ c

2
− 1.

A perfect code with distance 3 is a subset of a Boolean n-cube that intersects each ball of radius 1
in exactly one vertex. A subset C ⊂ En that intersects each ball of radius 1 in exactly t vertices is
called a t-fold perfect code. It is easily seen that the characteristic function of a t-fold perfect code

C ⊂ En id a perfect coloring χC with a parameter matrix of the form A =

(
t− 1 n− t+ 1
t n− t

)
.

The distance between Boolean functions f and g is defined as d(f, g) = |{x ∈ En : f(x) 	= g(x)}|.
Boolean functions in En for an even n that are at the maximal distance from the set of affine
functions are called bent functions.

Let S1 ⊂ En, and let a function χS1 be a perfect coloring, correlation immune function, or
bent function. We call a set S1 \ S2 a component of the perfect coloring (correlation immune
function, bent function) χS1 if there exists a perfect coloring (correlation immune function, bent
function) χS2 with the same parameters (in the case of a correlation immune function, with the
same order and weight). The component S2 \ S1 of the function χS2 will be called the alternative
to the component S1 \ S2. The union of two alternative components, i.e., the symmetric difference
S1 � S2, will be referred to as a double component.

The question on the cardinality spectrum for components of perfect codes was posed in [3].
Cardinalities of components of perfect codes or cardinalities of intersections of perfect codes were
considered in [4–9]; the minimal cardinality of a component of a perfect code has been known for
long, as well as the minimal cardinality of a component of a bent function (see also [10]). However,
the problem of existence of components of intermediate cardinality between the minimum and
twice the minimum cardinality remained little studied. Below we consider the question of existence
of components of an intermediate cardinality for perfect codes and colorings and for correlation
immune and bent functions. Based on results of [11], we find necessary conditions on the cardinality
of intermediate components, which are sufficient in many cases.

2. ALGEBRAIC DEGREE OF PERFECT COLORINGS
AND CORRELATION IMMUNE FUNCTIONS

Each Boolean function f : En → E can be represented as a Zhegalkin polynomial (in algebraic
normal form)

f(x1, . . . , xn) =
⊕
y∈En

G[f ](y)xy11 . . . xynn ,

where a0 =1, a1 = a, and G[f ] : En → E is a Boolean function.

The algebraic degree of a Boolean function f is the largest degree of a term in its Zhegalkin
polynomial; i.e., deg f = max

G[f ](y)=1
wt(y). By the algebraic degree of a set S ⊂ En, we call the

algebraic degree of its characteristic function.

The following fact is known.

Proposition 1 [2, 12]. For any Boolean function f , we have

G[f ](y) =
⊕
x∈En

[x,y]=x

f(x).
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Since f(x) =
⊕

y∈En

[x,y]=y

G[f ](y), for any Boolean function f we have G[G[f ]] = f .

Proposition 1 immediately implies the following result.

Proposition 2. A Boolean function f : En → E is a bitrade of order n − m if and only if
deg f ≤ m− 1.

Let S1, S2 ⊂ En, and let correlation immune functions χS1 and χS2 have the same order n−m
and the same weight. Clearly, S1 is a bitrade of order n −m− 1, and the component S1�S2 is a
bitrade of order n−m. Thus, Proposition 2 implies the following fact.

Proposition 3. Let f : En → E be a correlation immune function of order n−m. Then

(a) deg f ≤ m (Siegenthaler inequality);

(b) The algebraic degree of a double component of the correlation immune function f is at most
m− 1.

Remark 1. If a correlation immune function f of order n − m has an even number of ones in
each m-face, then f is a bitrade of order n−m. Then from Proposition 2 we have deg f ≤ m− 1.

Since a perfect coloring with parameter matrix(
n− b b
c n− c

)
(1)

is a correlation immune function of order
b+ c

2
− 1 (see, e.g., [1, 2]), Proposition 3 implies the

following statement.

Corollary 1. Let f : En → E be a perfect coloring with parameter matrix (1). Then

(a) deg f ≤ n− b+ c

2
+ 1;

(b) The algebraic degree of a double component of the perfect coloring f is at most n− b+ c

2
.

A perfect code of length n (for n 	= 3) is not only a correlation immune function of order
n− 1

2
but also a bitrade of order

n− 1

2
, since it intersects faces of dimension

n+ 1

2
in an even number of

vertices (see, e.g., [3]). Proposition 3 yields the following result.

Corollary 2. Let C ⊂ En be a perfect code. Then

(a) deg(χC) ≤ n− 1

2
n 	= 3;

(b) The algebraic degree of a double component of the perfect code C is at most
n− 1

2
.

Boolean functions f : En → E can be regarded as elements of a Boolean cube of dimension 2n.
The set of bitrades of order n−m− 1 (Boolean functions of algebraic degree at most m) is called
the Reed–Muller code of type R(m,n) in E2n . In [13], the weight spectrum of Reed–Muller codes
is considered; in particular, the following statements are given.

Proposition 4 [13, ch. 13, Theorems 3 and 5]. For any non-identically zero Boolean function
f = χS , one has

|S| ≥ 2n−deg f .

If |S| = 2n−deg f , then S is a linear code.

Hereinafter, by a linear code we mean an arbitrary affine subset of a Boolean cube En considered
as a vector space over GF (2).
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Proposition 5 [11; 13, ch. 15, Theorem 10]. Let f = χS be a Boolean function in En with
deg f ≥ 2 and 2n−deg f+1 > |S|. Then

|S| = 2n−deg f+1 − 2n−deg f+1−p,

where

p ∈ {1, . . . , μ}, μ = max{(n − deg f + 2)/2,min{n − deg f,deg f}}.

Note that in [11, 14] there are listed (up to affine transformations) all Boolean functions in En

corresponding to vertices of the code R(m,n) in E2n with weights up to 2.5 times the minimum
nonzero weight 2n−m.

Using Propositions 2–5, we prove the following result.

Proposition 6. Let a subset S ⊂ En be a component of a correlation immune function of order
n−m with 2n−m+1 > |S|. Then

|S| = 2n−m+1 − 2p, where p ∈ {0, . . . , n−m}.

Moreover, a component of cardinality 2n−m is a linear code.

Proof. Since the cardinality of a component is half the cardinality of a double component,
from Propositions 3 and 5 we get the desired constraints on component cardinalities. Proposition 4
implies that the double component A = S ∪ S′, |A| = 2n−m+1, of a correlation immune function
of order n −m is a linear code. Then A intersects any face of the n-cube in either the empty set
or a set of cardinality 2t, where t is an integer. Moreover, a nonempty intersection of A with an
(m + 1)-face has cardinality of at least 4. Then the component S is a bitrade of order n −m− 1.
Now Propositions 2 and 4 yield the result. �

Remark 2. A component of a correlation immune function f of order n−m has algebraic degree
of at most 2 deg f . Therefore, for m <

n

2
the component cardinality is even.

Here are consequences of Proposition 6 and Corollaries 1 and 2.

Corollary 3. Let f be a perfect coloring with parameter matrix

(
n− b b
c n− c

)
. Let S ⊂ En

be a component of f , and let 2
b+c
2 > |S|. Then

|S| = 2
b+c
2 − 2p, where p ∈

{
0, . . . ,

b+ c

2
− 1

}
.

Moreover, a component of cardinality 2
b+c
2

−1 is a linear code.

Corollary 4. Let S ⊂ En be a component of a perfect code C ⊂ En, and let 2
n+1
2 > |S|. Then

|S| = 2
n+1
2 − 2p, where p ∈

{
1, . . . ,

n− 1

2

}
.

Moreover, a component of cardinality 2
n−1
2 is a linear code.

3. COMPONENTS OF PERFECT COLORINGS
AND CORRELATION IMMUNE FUNCTIONS

The minimum cardinality (2
n−1
2 ) of a component of a perfect code of length n is well known;

linearity of the minimal component was proved by Avgustinovich [15]. Components of the mini-
mum possible cardinality are contained in any linear code (Hamming code). For perfect colorings,
components of the minimum cardinality were constructed in [16]. Also, it was proved there that
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a component of the minimum cardinality is a linear code, and a family of perfect colorings that

contain components of the minimum cardinality 2
b+c
2

−1 was presented.

In [3], all possible cardinalities of intersections of linear perfect codes were found. In particular,
it was shown that linear perfect codes may intersect in a quarter of their vertices. One easily
computes that the cardinality of a perfect code in E7 is 24, which is twice the minimum cardinality
of a component. Thus, for n = 7, two linear codes intersecting in a quarter of vertices generate
a component of cardinality 1.5 as large as the minimum. For n > 7, components of perfect codes

(of length n) of an intermediate cardinality between 2
n−1
2 and 2

n+1
2 are not known. Moreover, one

can show that there are no components of intermediate cardinalities in perfect codes (for n > 7)
of rank (dimension of the affine hull) greater by at most two than that of a linear code. Indeed,
in [17] it is proved that all perfect codes of such ranks can be obtained by the Phelps construction
(see [18]) from quaternary MDS codes, and in [19] it is proved that in this construction components
of quaternary codes are in a one-to-one correspondence with components of perfect codes. In [20]
it is shown that quaternary MDS codes have no components of the required cardinality. Below
we construct 2-fold perfect codes with components of an intermediate cardinality between the
minimum and twice the minimum cardinality.

Let Qq be a nonempty set of a finite cardinality q. An MDS code with distance d+1 is a subset
M ⊂ Qn

q that intersects every d-face of the q-ary n-cube Qn
q in exactly one vertex. If every d-face

contains exactly t elements of M , then M is said to be a t-fold MDS code. Thus, the notion of a
multifold MDS code is equivalent to the notion of a Boolean-valued correlation immune function
defined on the q-ary hypercube. Below we consider only MDS codes with distance 2, which are
sometimes called trivial, since they exist for any space dimension n and any alphabet cardinality
q > 1.

The following fact is known.

Proposition 7 [20]. For any t ≥ 3 and p ∈ {0, . . . , t − 1} there exists a 2-fold MDS code
Bp

t ⊂ Qt
4 with a component of cardinality 2t − 2p.

The construction designed in [18] relates MDS codes with perfect codes. In [16], a generalization
of that construction was proposed, which allows one to construct perfect colorings with parameter
matrix (

0 k(2s − 1)
k k(2s − 2)

)
. (2)

Let us briefly repeat the construction. Let m = 2s−2 and n = (2s − 1)k, s ≥ 2. Fix R̃ ⊂ Em−1, a
linear perfect code (Hamming code). Let

r ∈ Ek(m−1), r̃ =

⎛⎝ k⊕
i=1

ri, . . . ,

k(m−1)⊕
i=k(m−2)+1

ri

⎞⎠ , R = {r ∈ Ek(m−1) : r̃ ∈ R̃}.

For any r ∈ R, fix an MDS code Mr ⊂ Qkm
4 (with distance 2). Denote

C0
0 = {0000, 1111}, C0

1 = {1001, 0110}, C0
2 = {0101, 1010}, C0

3 = {0011, 1100},
C1
0 = {0001, 1110}, C1

1 = {1000, 0111}, C1
2 = {0100, 1011}, C1

3 = {0010, 1101},
C0 = {000 , 111 }, C1 = {100 , 011 }, C2 = {010 , 101 }, C3 = {001 , 110 }.

Define the set P ⊂ En, where n = (2s − 1)k, by

P =
⋃
r∈R

⋃
α∈Mr

Qα,r, Qα,r = Cr1
α1

× Cr2
α2

× . . .× C
rk(m−1)
αk(m−1)

× Cαk(m−1)+1
× . . .× Cαkm

. (3)
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Proposition 8 [16]. Let a set P ⊂ En be given by (3). Then χP is a perfect coloring with
parameter matrix (2).

In [21], a generalization of the construction from [18] was proposed, which makes it possible
to construct multifold perfect codes using multifold MDS codes. Similarly, let us use 2-fold MDS
codes instead of 1-fold codes in the construction from [16]. Consider the set

Sp,m,k =
⋃
r∈R

⋃
α∈Bp

km

Qα,r, Qα,r = Cr1
α1

× Cr2
α2

× . . . × C
rk(m−1)
αk(m−1) × Cαk(m−1)+1

× . . .× Cαkm
, (4)

where Bp
km is a 2-fold MDS code defined in Proposition 7.

Theorem 1. Let p ∈ {0, . . . , km − 1}, and let the set Sp,m,k ⊂ En be given by (4). Then

(a) χSp,m,k is a perfect coloring with parameter matrix(
k k(2s − 2)
2k k(2s − 3)

)
, (5)

where n = (2s − 1)k and m = 2s−2, s ≥ 2, k ≥ 1, km ≥ 3;
(b) The perfect coloring χSp,m,k has a component of cardinality (2km − 2p)2km.

The proof of claim (a) of Theorem 1 is quite similar to that of Proposition 8 [16, Theorem 2].
Claim (b) follows from Proposition 7.

As is stated above, for perfect colorings there is an estimate for their correlation immunity
that depends on parameters of the coloring only. In particular, the function χSp,m,k is correlation
immune of order 2km− 1. Let f : En → E be a correlation immune function of order i. Then the
function g : En+n′ → E given by g(x, y) = f(x)⊕y1⊕ . . .⊕yn′ is correlation immune of order i+n′.
Thus, Theorem 1 in the case of m = 1 yields the following result.

Corollary 5. Let n = 3k + n′ and r = 2k + n′ − 1, k ≥ 3. For any p ∈ {0, . . . , k − 1} there
exists a correlation immune function g : En+n′ → E of order r having a component of cardinality
(2k − 2p)2k+n′

.

4. COMPONENTS OF BENT FUNCTIONS AND MOBILE SETS

The set of functions a : En → Q can be considered as a 2n-dimensional vector space V over Q.
It is known that functions of the form f v(u) = (−1)〈u,v〉, v ∈ En, form an orthogonal basis of V.
The Fourier transform of a function a is a function â whose values

â(v) =
∑
u∈En

a(u)(−1)〈u,v〉

are inner products of the vectors a and f v in V. Introduce the notation σf for the function
σf (x) = (−1)f(x). The numbers σ̂f (v), v ∈ En, are called Walsh–Hadamard coefficients of the
Boolean function f .

Correlation immune functions and perfect colorings can be described in terms of the Walsh–
Hadamard coefficients.

Proposition 9 (see [2, 12]). A Boolean function f = χS is correlation immune of order m if
and only if σ̂f (v) = 0 for any v ∈ En such that 0 < wt(v) ≤ m.

Proposition 10 [22]. (a) Let f be a perfect coloring with parameter matrix

(
n− b b
c n− c

)
.

Then σ̂f (v) = 0 for any v ∈ En with wt(v) 	= 0,
b + c

2
.

(b) Let a Boolean function f be such that σ̂f (v) = 0 for any v ∈ En with wt(v) 	= 0, k. Then f is
a perfect coloring.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 48 No. 1 2012



52 POTAPOV

Let f : En → E be a Boolean function, and let w ∈ En. By

wt(fw) = |{x ∈ En | f(x) = 1, [x, 1 ⊕ w] = x}|

we denote the number of ones of a subfunction obtained by substituting 0 in all arguments xi of f
such that wi = 1.

Proposition 11 ([23]; see also [2]). For any Boolean function f : En → E, one has∑
v∈En

[v,w]=v

σ̂f (v) = 2n − 2wt(w)+1wt(fw) (Sarkar identity).

From the Sarkar identity, one easily obtains the following fact.

Proposition 12. Let f be a Boolean function, and let σ̂f (v) ≡ 0 (mod 2k) for any v ∈ En.
Then deg f ≤ n− k + 1.

Proof. Let deg f > n−k+1. Consider a nonzero term of the maximum degree in the Zhegalkin
polynomial of f . Let G[f ](y) = 1 and wt(y) = deg f . Then wt(fy⊕1) ≡ 1 (mod 2). For the Sarkar
identity, we have∑

v∈En

[v,y⊕1]=v

σ̂f (v) = 2n − 2n−wt(y)+1 wt(fy⊕1) ≡ 1 (mod 2n−wt(y)+2) 	≡ 0 (mod 2k). �

The Sarkar identity and Proposition 9 imply the following result (see, e.g., [2]).

Proposition 13. Let f : En → E be a correlation immune function of order m, m ≤ n − 1.
Then σ̂f (v) ≡ 0 (mod 2m+1) for any v ∈ En.

Note that Proposition 3 (a) can be proved independently using Propositions 12 and 13.

Paper [7] uses the notion of a shifting set in En, which is a union of two codes C1 and C2 with
distance 3 having the same neighborhood. Define a function h : En → Q by h = χC1 − χC2 . It is
seen from the definition that the sum of values of h over any ball of radius 1 is 0, i.e., the function h
is 0-centered. The following fact is known.

Proposition 14 [24]. Let h : En → Q be a 0-centered function. Then ĥ(v) = 0 if wt(v) 	= n+ 1

2
.

In particular, this proposition implies that shifting sets can be contained in Boolean cubes of
odd dimensions only.

Proposition 15. Any shifting set C ⊂ En is a bitrade of order
n− 1

2
.

Proof. By the definition, a shifting set C is a union of codes C1 and C2 with distance 3,
and h = χC1 − χC2 is a 0-centered function. The subspace of V generated by all functions f v

with wt(v) ≤ m contains characteristic functions of all faces of dimensions at least n − m. Then

Proposition 14 implies that the inner product (h, χF ) is zero for any face G of dimension
n+ 1

2
.

Hence, |C1 ∩G| = |C2 ∩G|, and |C ∩G|is even. �
From Propositions 2, 4, 5 and 15, we get the following result.

Corollary 6. Let S ⊂ En be a shifting set, and let 2
n+3
2 > |S|. Then

|S| = 2
n+3
2 − 2p, where p ∈

{
1, . . . ,

n+ 1

2

}
.

Moreover, a shifting set of cardinality 2
n+1
2 n is a linear code.

Note that pairs of alternative components of 2-fold perfect codes constructed in Section 3, i.e.,

pairs of perfect colorings with parameter matrix

(
1 (2s − 2)
2 (2s − 3)

)
, are shifting sets.

PROBLEMS OF INFORMATION TRANSMISSION Vol. 48 No. 1 2012



CARDINALITY SPECTRA OF COMPONENTS 53

A Boolean function f is a bent function if and only if σ̂f (v) = ±2n/2 for any v ∈ En and n is
even (see, e.g., [25]).

Theorem 2. (a) Let a set S ⊂ En be a component of a bent function f , and let 2
n
2 > |S|.

Then

|S| = 2
n
2 − 2p, where p ∈ {0, . . . , n/2− 1}.

Moreover, a component of cardinality 2
n
2
−1 is a linear code.

(b) For any p ∈ {0, . . . , n/2 − 1} there exists a bent function f : En → E having a component of
cardinality 2

n
2 − 2p.

Proof. Similarly to the proof of Proposition 12, one can easily get from the Sarkar identity that
deg f ≤ n/2 for any bent function f in En (see also [12]). Then (a) follows from Propositions 4 and 5.
Let us construct a bent function with components of the required cardinalities. Let x, y ∈ En/2,
and let λ be an arbitrary Boolean function in En/2. It is known (see, e.g., [12,25]) that the Boolean
function f(x, y) = 〈x, y〉 ⊕ λ(y) is a bent function. Then the functions

f1(x, y) = 〈x, y〉 ⊕ y1 . . . yn/2,

f2
p (x, y) = 〈x, y〉 ⊕ y1 . . . ypxp+1 . . . xn/2

are bent functions; moreover,

wt(f1 ⊕ f2
p ) = 2p

(
2

n
2
−p+1 − 2

)
.

Hence, the bent function f1 has a component of cardinality 2
n
2 − 2p. �

Properties of minimum-cardinality components of bent functions were considered in [10,26,27].
In particular, in [10] it is proved that a component of a bent function of cardinality 2

n
2
−1 is a linear

code, and in [26] it is proved that if a bent function is affine on an affine set of dimension n/2, then
this set is a double component.
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