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Abstract—The spectrum of a Hamiltonian cycle (of a Gray code) in an n-dimensional Boolean
cube is the series a = (a1, . . . , an), where ai is the number of edges of the ith direction in the cycle.
The necessary conditions for the existence of a Gray code with the spectrum a are available: the
numbers ai are even and, for k = 1, . . . , n, the sum of k arbitrary components of a is at least 2k. We
prove that there is some dimension N such that if the necessary condition on the spectrum is also
sufficient for the existence of a Hamiltonian cycle with the spectrum in an N-dimensional Boolean
cube then the conditions are sufficient for all dimensions n.
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INTRODUCTION

In the chapter of [8] dealing with the Gray codes (Hamiltonian cycles of a Boolean n-cube), D. Knuth
pointed out the three problems unresolved at the time of publication. The first problem is to estimate the
number of distinct Gray codes in a Boolean n-cube. The degree of the logarithm of this number is found
in [1], and the asymptotic behavior of the logarithm of this number as n → ∞ is determined in [6]. The
second problem poses the question that was earlier brought up by G. Kreweras [9]: Can each perfect
matching of a Boolean n-cube be extended to a Hamiltonian cycle? The affirmative answer to this
is given by J. Fink [7]. In the case when the matching contains the edges only of a few directions, the
extendability of a perfect matching to a Hamiltonian cycle is proved in [1]. In the third problem, the
question is put whether the necessary conditions (formulated in the annotation) on the spectrum of
a Hamiltonian cycle are also sufficient for the existence of a Gray code with such a spectrum.

In this article, some asymptotic solution is offered as a solution to the last problem. Namely, if the
necessary conditions are sufficient in a Boolean n-cube for a reasonably large n then they are sufficient
for all n. This result is announced in [4]. Note that several methods are available for construction of some
Gray codes with various properties; in particular, in [5, 10], the Hamiltonian cycles are constructed with
a totally balanced spectrum.

1. DEFINITIONS

The Boolean n-cube is the set Qn of the binary words of length n. A graph GQn with vertices from Qn

in which two vertices are connected if and only if the corresponding words differ in exactly one position
is also called a Boolean n-cube. Each edge {u, v} of GQn has direction i ∈ {1, . . . , n} if i is equal to the
number of the position in which the words u and v differ. A collection P of edges of a graph G is called
a perfect matching if each vertex of G is incident to exactly one edge from P . A Hamiltonian cycle of G
is a cycle including each vertex exactly once. In a bipartite graph and, in particular, in GQn, the vertices
of each Hamiltonian cycle can be decomposed into some two perfect matching. The spectrum of a
Hamiltonian cycle of the Boolean n-cube is the series a = (a1, a2, . . . , an), where ai is the number
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of edges of the ith direction in the cycle. The spectrum of a perfect matching of GQn is defined in
a similar fashion. It is known [2] that an arbitrary series of integers (a1, . . . , an) that meets the following
conditions

1) ai is a nonnegative even number for i = 1, . . . , n;

2)
∑n

i=1 ai = 2n−1

is a spectrum of some perfect matching of GQn. These conditions are not only sufficient, but necessary
as well [2]. The necessary conditions for a set of integers (a1, . . . , an) to be a spectrum of some
Hamiltonian cycle of GQn are also available [8]:

(∗) ai is a nonnegative even number for i = 1, . . . , n;

(∗∗)
∑n

i=1 ai = 2n;

(∗ ∗ ∗)
∑k

i=1 aπ(i) ≥ 2k for every permutation π ∈ Sn and k = 1, . . . , n − 1.

The conditions (∗) and (∗∗) are evident, and (∗ ∗ ∗) follows from the connectivity of the cycle.
Without loss of generality we can assume that the spectrum of a Hamiltonian cycle is ordered so that

ai ≤ aj if i ≤ j. Then (∗ ∗ ∗) can be rewritten as

k
∑

i=1

ai ≥ 2k for k ≤ n.

Define the nonnegative function µa of an ordered spectrum as

µa(k) =
k

∑

i=1

ai − 2k.

If a series of integers satisfies the above necessary conditions (∗)–(∗ ∗ ∗) then we call it admissible.
Denote the set of admissible n-dimensional series by Dn. It is clear that each Hamiltonian cycle of GQn

contains the edges of all directions, while a perfect matching of GQn can contain the edges from 1 to n
directions inclusively. Let us call a matching of GQn that contains the edges from all n directions a
matching of full rank. We call a Hamiltonian cycle that contains a perfect matching of full rank a cycle
of full rank.

Proposition 1. If each admissible integer-valued series is a spectrum of a Hamiltonian cycle
of GQn for some n then the same holds for all m such that 2 ≤ m ≤ n.

Proof. Indeed, let (a1, . . . , am) be an admissible series. Then the series

(a1, . . . , am, 2m, . . . , 2n−1)

is also admissible. And the projection of a Hamiltonian cycle with spectrum

(a1, . . . , am, 2m, . . . , 2n−1)

onto the first m direction produces a Hamiltonian cycle with spectrum (a1, . . . , am). The proof is over.

Each (in particular, Hamiltonian) cycle C of a graph GQn can be associated with a cyclical transient
word X in the alphabet {1, . . . , n} in which the jth letter xj is defined as the direction of the jth edge
in C. Let S(X) = (s1, . . . , sn) denote the series constituted by the word X modulo 2; i.e., si = 0 if the
letter i ∈ {1, . . . , n} occurs evenly many times in S(X) and si = 1 otherwise.

Proposition 2 [3]. A cyclic word X in the alphabet {1, . . . , n} defines a simple cycle of a graph

GQn if and only if S(X) = 0 and S(Y ) 6= 0. for each subword Y 6= X.

From this we immediately obtain

Corollary 1. A cyclical word X in the alphabet {1, . . . , n} defines a Hamiltonian cycle in GQn

if and only if the length of X equals 2n, S(X) = 0, and S(Y ) 6= 0 for each subword Y 6= X.
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2. CONSTRUCTION OF A HAMILTONIAN CYCLE

The purpose of this article is to prove that each admissible series is a spectrum of some Hamiltonian
cycle in Boolean n-cube if this is so for a Boolean N-cube for a sufficiently large N . Let us construct
a Hamiltonian cycle by using the representation of a Boolean n-cube as the Cartesian product of the
cubes of dimensions k and n − k.

Consider a Hamiltonian cycle of GQk that consists of the edges from some disjoint perfect matchings
P1 and P2. We embed P1 into GQn in a natural way. Since each vertex of GQk in the Cartesian product
GQk × GQn−k corresponds to a Boolean (n − k)-cube; therefore, each edge of P1 can be associated
with a pair of parallel (n − k)-cubes; i.e., one (n − k + 1)-cube. Let us replace each edge v ∈ P1 with
a Hamiltonian cycle Hv in the (n − k + 1)-cube containing this edge. By removing P1 from the union of
P2 and the cycles Hv, v ∈ P1, we obtain a new Hamiltonian cycle of

GQk × GQn−k = GQn.

We formulate the above construction as

Lemma 1. Let some matchings of GQk with spectra (b1, . . . , bk) and (b′1, . . . , b′k) make up a

Hamiltonian cycle, and let there be 2k−1 Hamiltonian cycles in GQn−k+1 with spectra
(

ai
1, . . . , a

i
n−k, c

i
)

, i = 1, . . . , 2k−1.

Then there is a Hamiltonian cycle of GQn with spectrum (d1, . . . , dn), where

dk+j =

2k−1

∑

i=1

ai
j , j = 1, . . . , n − k,

dj = bj +

sj+1
∑

p=sj+1

(cp − 1), j = 1, . . . , k,

sj =

j−1
∑

p=1

b′p.

Proof. Let

X = x1y1x2 . . . x2k−1y2k−1

be a transient word of a Hamiltonian cycle of GQk, where the matchings that correspond to the words
x1x2 . . . x2k−1 and y1y2 . . . y2k−1 have the spectra (b1, . . . , bk) and (b′1, . . . , b′k) correspondingly. Let yiZ

i

denote a transient word in a Hamiltonian cycle of GQn−k+1 in the alphabet {k + 1, . . . , n, yi} with the
spectrum

(ai
1, . . . , a

i
n−k, c

i), i = 1, . . . , 2k−1,

where yi occurs ci − 1 times in Zi.

Consider the word Z obtained from X by replacing the letters yi with the words Zi; i.e.,

Z = x1Z
1x2Z

2 . . . x2k−1Z2k−1

.

Let us show that Z is a transient word of some Hamiltonian cycle of GQn. Consider an arbitrary subword

W = Uixi+1Z
i+1 . . . Zj−1xjVj

of Z, where Ui is a suffix of the word Zi and Vj is a prefix of Zj (the prefix and/or suffix can be empty).
If i = j then S(W ) 6= 0 since W is a subword of the transient word yiZ

i. Let i < j and, without loss of
generality, yi = 1 and yj ∈ {1, 2}. Consider the case when yj = 1. Let

0 = S(W )t = S(xi+1yi+1 . . . xj)t = S(yixi+1yi+1 . . . xj)t, t = 2, . . . , k.
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Since either S(xi+1yi+1 . . . xj)1 = 0 or S(yixi+1yi+1 . . . xj)1 = 0; therefore, we have a contradiction to
the fact that X is a transient word of a Hamiltonian cycle. The case when yj = 2 can be considered in a
similar way. It is easy that

S(Z) = S(X) = 0.

Therefore, the word Z satisfies the conditions of Corollary 1, and Z is a transient word of a Hamiltonian
cycle of GQn. By construction, the Hamiltonian cycle that corresponds to Z has the required spectrum.

The proof of Lemma 1 is complete.

Remark 1. If a matching with spectrum (b′1, . . . , b
′

k) and at least one of the cycles of GQn−k+1 used
in the construction have full rank then we can obtain a Hamiltonian cycle of full rank as a result of the
construction (Lemma 1).

3. THE MAIN RESULT

We now prove two lemmas about spectra of Hamiltonian cycles that can be produced using the above
construction.

Lemma 2. If every admissible series of integers of length n − k + 1 is the spectrum of some
Hamiltonian cycle of GQn−k+1 and there is a Hamiltonian cycle of GQk with the spectrum
(b1, . . . , bk) then each admissible series of integers (b1, . . . , bk, ak+1, . . . , an) is the spectrum of
a Hamiltonian cycle of GQn.

Proof. Consider the lexicographical order on the set of ordered admissible integer-valued series

A = {a ∈ Dn | ai = bi, 1 ≤ i ≤ k}.

The minimal series (b1, . . . , bk, 2
k, . . . , 2n−1) in this order is the spectrum of a Hamiltonian cycle

of GQn. Indeed, it is enough to choose (2, 4 . . . , 2n−k, 2) as the spectrum of
(

ai
1, . . . , a

i
n−k, c

i
)

for all

i = 1, . . . , 2k−1 in the above construction.
Suppose that some admissible series in A are not spectra of Hamiltonian cycles constructed by

Lemma 1. Choose a lexicographically minimal d ∈ A among these series. Consider the preceding
series d′ ∈ A within the lexicographical order. It is clear that d and d′ differ in the two positions
i, j ∈ {k + 1, . . . , n}, i < j, where

d′i = di − 2, d′j = dj + 2, d′j ≥ d′i + 4.

Then, for the spectrum f of one of the Hamiltonian cycles of GQn−k+1 used to construct a cycle with the
spectrum d′, fj − fi ≥ 4 holds (or fj − fi = 2 in the spectra of the two cycles). Obviously, if we change
fi with fi + 2 in the integer-valued series f and fj with fj − 2 then, by hypothesis, the new series f ′ will
also be a spectrum of a Hamiltonian cycle of GQn−k+1.

Replacing the cycle with spectrum f in Lemma 1 with a cycle with spectrum f ′, we see that the series
d is the spectrum of a Hamiltonian cycle; a contradiction. In the case when fj − fi = 2 in two spectra,
we interchange the amounts of edges of directions i and j and apply the same construction.

The proof of Lemma 2 is complete.

Lemma 3. Let 4 ≤ s < k < n− 1; let all admissible integer-valued series of length n− s + 1 be
spectra of Hamiltonian cycles; let, for some admissible ordered series b ∈ Dn,

(i) there be an admissible series b′ ∈ Ds that is the spectrum of a Hamiltonian cycle of full
rank such that b′i ≤ bi for i = 1, . . . , s;

and let the equations

(ii) bs ≤ 2n−s−1, (iii)
∑k

i=s+1 bi ≥ 2k − 2s
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hold for k such that 2k−s−1 ≤ bs.

Then the series b is the spectrum of a Hamiltonian cycle.

Proof. Let di = bi − b′i for i = 1, . . . , s and d =
∑s

i=1 di.

From the proof of Lemma 2 it follows that the integer-valued series (b′1, . . . , b
′

s, 2
s, . . . , 2n−1) is the

spectrum of a Hamiltonian cycle of GQn constructed by the above construction with s = k. Let m be
the least integer such that 2m−s−1 > bs. Since di ≤ bs < 2m−s−1, the series

(2, . . . , 2m−s−1, 2m−s − di, 2
m−s+1, . . . , 2n−s, 2 + di)

is admissible for all i = 1, . . . , s.
Let us now interchange s Hamiltonian cycles (one for each direction) with spectrum

(2, 4, . . . , 2n−s, 2)

in this construction with a Hamiltonian cycle with spectrum

(2, . . . , 2m−s − di, 2
m−s+1, . . . , 2n−s, 2 + di)

so that as a result we have a cycle with spectrum

(b1, . . . , bs, 2
s, . . . , 2m − d, 2m+1, . . . , 2n−1).

Consider the set of ordered admissible integer-valued series

A = {a ∈ Dn | ai = bi, 1 ≤ i ≤ s, the spectrum a satisfies condition (iii)}.

It is proven above that the lexicographically least spectrum from A belongs to a Hamiltonian cycle
obtained with by our construction (Lemma 1). Suppose that some of the series a ∈ A are not spectra
of so-obtained Hamiltonian cycles. Then there is the lexicographically least spectrum among them. By
analogy with the proof of Lemma 2 we have a contradiction.

The proof of Lemma 3 is complete.

Proposition 3. Let 2 ≤ s ≤ k ≤ n, a ∈ Dn, and let k be such that

k
∑

i=s+1

ai < 2k − 2s, 2k−s−1 ≤ as. (A)

Then µa(s) − µa(k) ≥ 2 and k ≤ 2s + log µa(s).

Proof. Since

2k−s−1 ≤ as ≤ 2s−1 + µa(s) ≤ 2s−1µa(s),

we have k ≤ 2s + log µa(s). From the first inequality in (A) it follows that

k
∑

i=s+1

ai ≤ 2k − 2s − 2.

Therefore,

µa(k) =

k
∑

i=1

ai − 2k =

s
∑

i=1

ai − 2s +

k
∑

i=s+1

ai − 2k + 2s ≤ µa(s) − 2.

The proof is complete.

Theorem. There is a number N such that if all admissible integer-valued series of length N is

the spectrum of some Hamiltonian cycle (of full rank in the case when
∑k

i=1 ai > 2k for all k < N)
then, for every integer n ≥ 2, each admissible integer-valued series of length n is the spectrum
of some Hamiltonian cycle of GQn.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 6 No. 3 2012



344 POTAPOV

Proof. Take a ∈ Dn. It is easy to prove by simple exhaustive search through the admissible series that
a2 ≥ 4 and a4 ≥ 6, except for the case when a1 = a2 = 2 and a1 = a2 = a3 = a4 = 4. The Hamiltonian
cycle of GQ4 with the transient series 1213414243212343 has the spectrum (4, 4, 4, 4). The existence
of a Hamiltonian cycle with the spectrum a ∈ Dn for n ≥ 5 and a1 = a2 = a3 = a4 = 4 (a1 = a2 = 2)
follows from Lemma 2.

Assume that a2 ≥ 4 and a4 ≥ 6. It is easy that a1 ≥ 2 and a3 ≥ 4 in every ordered admissible
sequence. There is a Hamiltonian cycle of full rank in GQ4 with the transient series 4212312141312313
and the spectrum (2, 4, 4, 6). Thus, if s = 4 then the condition (i) of Lemma 3 and the hypothesis of
Lemma 2 hold. Consider the conditions (ii) and (iii) of Lemma 3 for s = 4. Let n ≥ 35, then

a4 ≤
2n

n − 3
≤ 2n−5.

Suppose that the condition (iii) fails; i.e., for some k ≥ 5, we have

2k−5 ≤ a4.

k
∑

i=5

ai < 2k − 24.

Then

(k − 4)2k−5 ≤ (k − 4)a4 < 2k − 24,

whence it follows that k ≤ 35 and a4 < 235
−24

31 . Therefore,

µa(4) < µ∗ = 4 ·
235 − 24

31
.

Take

n ≥ N = 22µ∗/2(4+log µ∗)

and induct. Suppose that, for m < n, all admissible series is a spectrum of a Hamiltonian cycle (I) and if
m > 4 and

∑k
i=1 ai > 2k for any k < m then the series a ∈ Dm is the spectrum of a Hamiltonian cycle

of full rank (II). To perform the inductive step, we check that the hypotheses of Lemma 2 and 3 are met.
The condition (i) of Lemma 3 is true by inductive hypothesis. It is easy that

as ≤
2n

n − s + 1
.

Therefore, the inequality (ii) as ≤ 2n−s−1 holds for

s ≤ 2µ∗/2(4 + log µ∗) − 1.

If µa(4) ≥ µ∗ then, as shown above, the condition (iii) holds. Take µa(4) < µ∗. We define the sequence
of numbers si recurrently. Let s0 = 4. If si is already selected then, for si+1, we select minimal k such
that the condition (iii) of Lemma 3 fails; i.e.,

si+1
∑

i=si+1

ai < 2si+1 − 2si .

By Proposition 3, there are at most M = µ∗/2 elements in the sequence s1 < s2 < · · · < sM such that
µa(si) > 0. Moreover, by Proposition 3,

sM ≤ 2M (4 + log µ∗) − 1.

If the next sj cannot be selected then we use Lemma 3 to construct the desired Hamiltonian cycle; and
if µa(sj) = 0 then we use Lemma 2. Thus, the inductive hypothesis (I) is proven. The hypothesis (II)
follows from Remark 1.

Proposition 1 completes the proof of the theorem.

To obtain the complete solution for the problem of spectra of the Gray codes we need to provide
the base of induction to apply the theorem. The Hamiltonian cycles of GQn for n ≤ N with arbitrary
admissible spectra can be built using the above construction as well as other known constructions such
as Bakos’s construction [10].
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