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On the number of n-ary quasigroups of finite

order

V. N. POTAPOV and D. S. KROTOV

Abstract — Let Q.n; k/ be the number of n-ary quasigroups of order k. We derive a recurrent

formula for Q.n; 4/. We prove that for all n � 2 and k � 5 the following inequalities hold:

�

k � 3

2

�n=2 �

k � 1

2

�n=2

< log2Q.n; k/ � ck.k � 2/n;

where ck does not depend on n. So, the upper asymptotic bound for Q.n; k/ is improved for

any k � 5 and the lower bound is improved for odd k � 7.
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1. INTRODUCTION

An algebraic system in a set † of cardinality j†j D k and an n-ary operation

f W†n ! † is called an n-ary quasigroup of order k if the unary operation obtained

by fixing any n � 1 arguments of f by any values from † is always bijective. The

corresponding function f is often also called an n-ary quasigroup (the value table of

such function is known as a Latin hypercube and as a Latin square for n D 2).

Let us fix the set† D f0; 1; : : : ; k�1g. Denote byQ.n; k/ the number of different

n-ary quasigroups of order k (for fixed†). Sometimes, by the number of quasigroups

we mean the number of mutually nonisomorphic quasigroups. It is known that for

every n there exist only two n-ary quasigroups of order 2. There are exactlyQ.n; 3/ D

3 � 2n different n-ary quasigroups of order 3, which form one equivalence class. In [9]

it is proved that

Q.n; 4/ D 3nC122nC1.1C o.1//
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576 V. N. Potapov and D. S. Krotov

as n ! 1. In Section 4 we suggest a recurrent way to calculate the numbersQ.n; 4/

and give the first 8 values. Before, only five values of Q.n; 4/ were known; further-

more, the numbers Q.n; 5/ and Q.n; 6/ are known for n � 5 and n � 3 respectively

(see [7]), and the numberQ.2; k/ for k � 11 (see [6] and the references there).

The asymptotics of the number and even of the logarithm of the number (and even

of the logarithm of the logarithm of the number) of n-ary quasigroups of orders more

than 4 is unknown. In [5], the following lower bounds are derived:

Q.n; 5/ � 23n=3�c ; c < 0:072I

Q.n; k/ � 2.k=2/n

; k is evenI

Q.n; k/ � 2n.k=3/n

; k � 0 mod 3I

Q.n; k/ � 21:5bk=3cn

; k is arbitrary.

The following upper bound was found in [8]:

Q.n; k/ � 3.k�2/n

2n.k�2/n�1

:

In this paper we improve the upper bound (Section 2) for the number of n-ary

quasigroups of finite order and the lower bound (Section 3) for the number of n-ary

quasigroups of odd order:

�

k � 3

2

�n=2 �

k � 1

2

�n=2

< log2Q.n; k/ � ck.k � 2/n;

where ck does not depend on n, and give an explicit expression for it:

ck D
log2 kŠ

k � 2
C

k

k � 4
:

2. AN UPPER BOUND

We will say that a set M � †n satisfies Property (A) if and only if for every element

Nx 2 M and every position i D 1; : : : ; n there is another element Ny 2 M differing

from Nx only in the i th position. By induction, it is easy to get the following assertion.

Proposition 1. Any nonempty subset C � †n that satisfies Property (A) has the

cardinality at least 2n.

A function gW� ! †, where � � †n, is called a partial n-ary quasigroup of

order j†j if g. Nx/ ¤ g. Ny/ for any two tuples Nx; Ny 2 � differing in exactly one position.

We will say that an n-ary quasigroup f W†n ! † is an extension of a partial n-ary

quasigroup gW� ! † where � � †n if f j� � g.

Lemma 1. Let j†j D k, B D † n fa; bg, k � 3, a; b 2 †. Then a partial n-ary

quasigroup gW†n�1 � B ! † has at most 2.k=2/n�1
different extensions.
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Proof. Denote by P the set of unordered pairs of elements of †. Consider a

partial n-ary quasigroup gW†n�1 � B ! †. Define the function GW†n�1 ! P by

the equality

G. Nx/ D † n fg. Nxc/W c 2 † n fa; bgg:

Define the graph � D h†n�1; Ei, where two vertices Nx and Ny are adjacent if and only

if the tuples Nx and Ny differ in exactly one position and G. Nx/ \ G. Ny/ ¤ ¿. It is easy

to see that the connected components of � satisfy Property (A).

Let n-ary quasigroups f1 and f2 be extensions of g. It is not difficult to see that

ff1. Nxa/; f1. Nxb/g D G. Nx/ for every Nx 2 †n�1; moreover, if f1. Nxa/ D f2. Nxa/, then

f1 and f2 coincide on the whole connected component of � containing Nx 2 †n�1.

So, to define an extension of g uniquely, it is sufficient to choose one of the two

possible values for every connected component of � . It follows from Proposition 1

that every connected component has cardinality at least 2n�1. Then the number of

connected components of � does not exceed .k=2/n�1. Hence g has at most 2.k=2/n�1

extensions.

Theorem 1. If k � 5 and n � 2, then

Q.n; k/ � 2ck.k�2/n

;

where

ck D
log2 kŠ

k � 2
C

k

k � 4
:

Proof. The number of partial n-ary quasigroups gW†n�1 � B ! †, where

j†j D k, B D † n fa; bg, does not exceedQ.n; k/k�2. From Lemma 1 we obtain

Q.nC 1; k/ � Q.n; k/k�22.k=2/n

: (1)

Denote

˛n D
log2Q.n; k/

.k � 2/n
:

Then (1) implies

˛nC1 � ˛n C

�

k

2.k � 2/

�n

:

Since

˛1 D
log2 kŠ

k � 2
;

1
X

nD1

�

k

2.k � 2/

�n

D
k

k � 4
;

we obtain

˛n �
log2 kŠ

k � 2
C

k

k � 4
:
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578 V. N. Potapov and D. S. Krotov

3. A LOWER BOUND

Let a and b be two different elements of †. By the fa; bg-component of an n-ary

quasigroup f we will mean the set S � †n such that

(1) f .S/ D fa; bg and

(2) the function

g. Nx/ D

�
f . Nx/ whenever Nx … S;

b whenever Nx 2 S and f . Nx/ D a;

a whenever Nx 2 S and f . Nx/ D b

is also an n-ary quasigroup.

In this case we will say that g is obtained from f by switching the component S .

We note that in the definition of the fa; bg-component condition 2 can be replaced by

Property (A) from the previous section. It is obvious that switching disjoint compon-

ents can be performed independently.

Proposition 2. Let S and S 0 be disjoint fa; bg- and fc; d g- (respectively) com-

ponents of an n-ary quasigroup f . Let an n-ary quasigroup g be obtained from f by

switching S . Then S 0 is a fc; d g-component of g, too.

The following proposition can be easily derived from the definition of an fa; bg-

component; a similar assertion can be found in [5].

Proposition 3. Let C D fc1; d1g � fc2; d2g be an fa; bg-component of a 2-ary

quasigroup g. Let Ci be a fci ; dig-component of an ni -ary quasigroup qi , i D 1; 2.

Then the set C1 �C2 is an fa; bg-component of the .n1 Cn2/-ary quasigroup f , where

f . Nx1; Nx2/ � g.q1. Nx1/; q2. Nx2//.

A 2-ary quasigroup 'W† ! † is called idempotent if '.x; x/ D x for every

x 2 †. The following assertion is known (see, e.g., [1]).

Proposition 4. For every m � 3 there exists an idempotent 2-ary quasigroup of

order m.

The following assertion presents a construction of 2-ary quasigroups which will

be used to find a lower bound for the number of n-ary quasigroups of odd order.

Proposition 5. For anym � 3 there exists a 2-ary quasigroup of order 2mC 1

that hasm f2i; 2iC1g-components for every i 2 f0; : : : ; m�1g; moreover, all except

one f2i; 2i C 1g-components are of the form f2j; 2j C 1g � f2l; 2l C 1g.
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On the number of quasigroups 579

Proof. By Proposition 4, there exists an idempotent 2-ary quasigroup 'm of order

m. For each a; b 2 f0; : : : ; m � 1g, a ¤ b, and ı; � 2 f0; 1g we define

 .2a C ı; 2b C �/ D 2'm.a; b/C .ı C � mod 2/I

 .2a C ı; 2a C ı/ D 2aC 1 � ıI

 .2a C ı; 2aC 1 � ı/ D k � 1I

 .k � 1; 2aC ı/ D  .2a C ı; k � 1/ D 2aC ıI

 .k � 1; k � 1/ D k � 1:

It is obvious that  is a 2-ary quasigroup which satisfies the desired properties.

The following is an example of the value tables of a 2-ary quasigroup '4 and the

corresponding :

'4W

0 2 3 1

3 1 0 2

1 3 2 0

2 0 1 3

 W

1 8 4 5 6 7 2 3 0

8 0 5 4 7 6 3 2 1

6 7 3 8 0 1 4 5 2

7 6 8 2 1 0 5 4 3

2 3 6 7 5 8 0 1 4

3 2 7 6 8 4 1 0 5

4 5 0 1 2 3 7 8 6

5 4 1 0 3 2 8 6 7

0 1 2 3 4 5 6 7 8

From Proposition 1 it is easy to conclude that the odd-order 2-ary quasigroup con-

structed in Proposition 5 has the maximum number of mutually disjoint components

among all 2-ary quasigroups of the same order.

Theorem 2. If k is an odd integer, k � 5, and n � 2, then

Q.n; k/ � 2..k�3/=2/b.n�1/=2c..k�1/=2/d.nC1/=2e

> 2..k�3/=2/n=2..k�1/=2/n=2

:

Proof. Let  be the 2-ary quasigroup of order k constructed in Proposition 5.

Define the n-ary quasigroup‰n by the following recurrent equalities:

‰2 �  I

‰2mC1. Nx; y/ D  .‰2m. Nx/; y/I

‰2mC2. Nx; y; ´/ D  .‰2m. Nx/;  .y; ´//:

We denote by ˛n the number of f2i; 2i C 1g-components of ‰n, where

i 2 f0; : : : ; .k � 3/=2g. From Propositions 3 and 5 we obtain the relations

˛2 D
k � 1

2
;

˛2mC1 � ˛2m

k � 3

2
;

˛2mC2 � ˛2m

k � 3

2

k � 1

2
:
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Then

˛2m �

�

k � 3

2

�m�1 �

k � 1

2

�m

and

˛2mC1 �

�

k � 3

2

�m �

k � 1

2

�m

:

Since f2i; 2iC 1g-components with different i are disjoint, the number of disjoint

components is at least ˛n.k � 1/=2. From Proposition 2 we deduce that we can get

the desired number of different n-ary quasigroups of order k by switching disjoint

components in ‰n.

4. THE NUMBER OF DIFFERENT n-ARY QUASIGROUPS OF ORDER 4

Let Œn� D f1; : : : ; ng. An n-ary quasigroup f is called an n-ary loop if there exists an

element e 2 †, which is called an identity, such that for all i 2 Œn� and a 2 † it is true

that f .e � � � ea
i
e � � � e/ D a. In what follows we always assume that 0 is an identity of

an n-ary loop (in general, an n-ary loop can have more than one identities provided

n � 3). We emphasise that this agreement is essential in the treatment of the concept

of the number of n-ary loops. In particular, the following simple and well-known fact

is true.

Proposition 6. Let Q0.n; k/ be the number of n-ary loops of order k. Then

Q.n; k/ D k..k � 1/Š/nQ0.n; k/:

An n-ary quasigroup f is called permutably reducible (we will omit the word

‘permutably’) if there exist an integer m, 2 � m < n, an .n �mC 1/-ary quasigroup

h, an m-ary quasigroup g, and a permutation � W Œn� ! Œn� such that

f .x1; : : : ; xn/ � h.g.x�.1/; : : : ; x�.m//; x�.mC1/; : : : ; x�.n//:

In this section, we will assume that † D f0; 1; 2; 3g, i.e., we will consider only

the n-ary quasigroups of order 4. It is known (see, e.g., [1]) that there are exactly four

binary loops of order 4 (one is isomorphic to the group Z2 � Z2 and three, to the

group Z4).

The assertion below immediately follows from the theorem in [3].

Lemma 2. Every reducible n-ary loop f of order 4 admits exactly one of the

following two representations:

f . Nx/ D q0.q1. Qx1/; : : : ; qm. Qxm//; (2)
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On the number of quasigroups 581

where qj are nj -ary loops, Qxj are tuples of variables xi , i 2 Ij , where fIj g is a

partition of Œn�, j D 1; : : : ; m, q0 is an irreducible m-ary loop, m � 3; moreover, the

partition fIj g in this representation is unique for every f ; and

f . Nx/ D q1. Qx1/ � � � � � qk. Qxk/; (3)

where � is a binary operation in one of the 4 loops, qj , j D 1; : : : ; k, are nj -ary loops

which are not representable in the form qj . Qxj / D q0. Qx0
j / � q00. Qx00

j /, Qxj are tuples of

variables xi , i 2 Ij , where fIj g is a partition of Œn�; Moreover, the partition fIj g in

this representation is unique for every f .

By the root operation of an n-ary quasigroupf we will mean them-ary quasigroup

q0 if (2) holds, and the binary operation � if (3) holds.

Simple combinatorial calculation yields the following formula for the numberF
N|; Nk

of different partitions of Œn� into k subsets from which exactly ki subsets have cardin-

ality ji , 1 � i � t , 0 < j1 < � � � < jt :

F
N|; Nk

D
nŠ

.j1Š/k1 � � � .jt Š/kt

1

k1Š � � �kt Š
; (4)

where k1 C k2 C � � � C kt D k, k1j1 C k2j2 C � � � C ktjt D n.

Let f W†n ! † be an n-ary quasigroup; define the set

Sa;b.f / , [f Nx 2 †nWf . Nx/ 2 fa; bgg:

An n-ary loop f will be called a-semilinear, where a 2 f1; 2; 3g, if the characteristic

function �S0;a.f / of the set S D S0;a.f / is of the form

�S0;a.f /.x1; : : : ; xn/ �

n
X

iD1

�f0;ag.xi / mod 2: (5)

An n-ary loop f is called linear if it is a-semilinear and b-semilinear for some differ-

ent a and b from f1; 2; 3g. It is not difficult to see that the assertion below is true.

Proposition 7. One of the four binary loops of order 4 is linear (the one that is

isomorphic to Z2 �Z2); the other three are 1-, 2-, and 3- semilinear respectively.

The assertion below is well known (see [9]).

Proposition 8. A linear n-ary loop is unique and is 1-, 2-, and 3-semilinear.

It is not difficult to see (see also [9]) that the following assertion is true.

Proposition 9. Let f be a reducible a-semilinear n-ary loop; then f can be rep-

resented either as composition (2) or (3) of a-semilinear loops.
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Let us denote by lan the number of the a-semilinear n-ary loops and by ln the

number of the semilinear n-ary loops.

As proved in [9], the number of the n-ary loops asymptotically coincides with ln,

which can be easily calculated.

Lemma 3 ([9]). The relations ln D 3 � 22n�n�1 � 2, lan D 22n�n�1, a 2 f1; 2; 3g,

are true.

In [4], the set of n-ary quasigroups of order 4 was characterised in the terms

defined above; namely, the following was proved.

Theorem 3. Every n-ary loop of order 4 is reducible or semilinear.

This fact gives a base for deriving a recurrent formula for the number of n-ary

loops (and quasigroups) of order 4.

We will use the following notation:

vn is the number of n-ary loops (of order 4);

r�
n is the number of reducible n-ary loops with the binary root operation �;

r0
n is the number of reducible n-ary loops with the root operation of arity at least 3;

ra�
n is the number of reducible a-semilinear n-ary loops with the a-semilinear binary

root operation �;

ra0
n is the number of reducible a-semilinear n-ary loops with the root operation of

arity at least 3;

pa
n is the number of irreducible a-semilinear n-ary loops;

pn is the number of irreducible n-ary loops.

From Lemma 2 and Proposition 9, the relations follow:

ra�
n D

n
X

iD2

X

N|; Nk

F
N|; Nk
.laj1

� ra�
j1
/k1 � � � .lajt

� ra�
jt
/kt ;

r�
n D

n
X

iD2

X

N|; Nk

F
N|; Nk
.vj1

� r�
j1
/k1 � � � .vjt

� r�
jt
/kt ;

ra0
n D

n�1
X

iD3

pa
i

X

N|; Nk

F
N|; Nk
.laj1

/k1 � � � .lajt
/kt ;

r0
n D

n�1
X

iD3

pi

X

N|; Nk

F
N|; Nk
.vj1

/k1 � � � .vjt
/kt ;
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where the second sum is over the tuples Nk D .k1; : : : ; kt / and N| D .j1; : : : ; jt / of

positive integers such that k1 C � � � C kt D i , k1j1 C k2j2 C � � � C ktjt D n and

j1 < � � � < jt . From Theorem 3 and Proposition 8 we obtain

vn D pn C r0
n C 4r�

n ; pa
n D lan � ra0

n � 2ra�
n ; pn D 3pa

n :

From Lemma 3, we see that

lan D 22n�n�1; a 2 f1; 2; 3g:

Proposition 7 yields the initial values

ra�
2 D 2; r�

2 D 4; ra0
2 D r0

2 D 0:

We see that the equalities above and Proposition 6 provide us with a recurrent way of

calculation of the number of the n-ary quasigroups of order 4.

Finally, we present the first eight values of Q0.n; 4/:

1,

4,

64,

7132,

201538000,

432345572694417712,

3987683987354747642922773353963277968,

678469272874899582559986240285280710364867063489779510427038722229750276832,

and of Q.n; 4/:

24,

576,

55296,

36972288,

6268637952000,

80686060158523011084288,

4465185218736554544676917926460256725000192,

4558271384916189349044295395852008182480786230841798008741684281906576963885826048.

5. CONCLUSION

We will briefly discuss a connection of our topic with the known concept of latin trade.

A partial n-ary quasigroup t W� ! †, � � †n is called a multidimensional latin

trade, here for brevity simply trade, if there exists another partial n-ary quasigroup

t 0W� ! † such that

(1) t. Nx/ ¤ t 0. Nx/ for all Nx 2 �;
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584 V. N. Potapov and D. S. Krotov

(2) for any i from 1 to n, the sets ft.x1; : : : ; xi�1; y; xi�1; : : : ; xn/ j y 2 †g and

ft 0.x1; : : : ; xi�1; y; xi�1; : : : ; xn/ j y 2 †g coincide for any admissible values

x1, : : : , xi�1, xi�1, : : : , xn.

In this case, the pair .t; t 0/ is called a bitrade (depending on the context, bitrades

are considered either as ordered or as unordered pairs); the trade t 0 is called a mate of

t . In the case n D 2, bitrades (latin bitrades) are widely studied, see the survey [2].

We will say that an n-ary quasigroup f has a trade t if t D f j� for some �.

As follows from the definitions, replacing the values of f in � by the values of a

mate t 0 of t results in another n-ary quasigroup. We will say that trades t D f j�
and s D f j‚ are independent if their supports � and ‚ are disjoint. The maximum

number of mutually independent trades of an n-ary quasigroup f will be called its

trade number Trd.f /. Denote by Trd.n; k/ the maximum of Trd.f / over all n-ary

quasigroups f of order k. Since independent trades of an n-ary quasigroup can be

independently replaced by mates, the number Q.n; k/ of different n-ary quasigroups

of order k satisfies the inequality

Q.n; k/ � 2Trd.n;k/: (6)

It is easy to understand that the lower bound in Section 3 (as well as all bounds in

[5]) is derived in this way: an fa; bg-component is the support of some trade by the

definition. Since the support of a trade satisfies Property (A), Proposition 1 implies

that

Trd.n; k/ � kn=2n D 2.log2 k�1/nI

moreover, for even k the equality is easily proved. For odd k, as follows from the

results of Section 3, we have

Trd.n; k/ � 2c.k/n;

where c.k/ ! log2 k � 1 as k ! 1. But for fixed k, in particular, for the small

values 5; 7; : : : ; the question about the asymptotics of Trd.n; k/ remains open.

Problem 1. Find the asymptotics of the logarithm and the asymptotics of

Trd.n; k/ as n ! 1 for odd k � 5.

Another question concerning the closeness of bound (6) to the real value. For the

order 4, it is asymptotically sharp in logarithms. For any larger fixed order, the asymp-

totics of log logQ.n; k/ is unknown. It is natural to hypothesise that the asymptotics

of log logQ.n; k/ and log Trd.n; k/ coincide.

Problem 2. Is it true that

lim
n!1

�

log2 log2 Q.n; k/

n

�

D lim
n!1

�

log2 Trd.n; k/

n

�

‹
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On the number of quasigroups 585

In particular, is it true that

lim
n!1

�

log2 log2Q.n; k/

n

�

� log2 k � 1‹

Even the existence of these limits is not proved yet.
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