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Abstract

A coloring of the vertices of a graph is called perfect if, for every vertex, the collection
of colors of its neighbors depends only on its own color. The corresponding partition of
the vertex set is called equitable. We note that a collection of bounds (Hoffman bound,
Haemers bound, Cheeger bound, Bierbrauer–Friedman bound, etc) is only reached on perfect
2-colorings. We show that the Expander Mixing Lemma is another example of an inequality
that is related to a perfect 2-coloring. For an amply regular graph G = (V, G), we prove a
new upper bound for the size of a subset S ⊂ V with the fixed average internal degree. This
bound is reached on a set S if and only if {S, V \ S} is an equitable partition. We improve
the Hoffman bound in a special case.
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mixing lemma, sensitivity of Boolean function
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1 Introduction

The concept of a perfect coloring of a graph arises independently in graph theory, algebraic
combinatorics, cryptography, and coding theory. A coloring of vertices of a graph is called
perfect if, for every vertex, the collection of colors of its neighbors depends only on its own
color. Other terms used for this notion in the literature are “equitable partition”, “partition
design”, “distributive coloring”, “intriguing set”, “extremal graphical designs”, and “regular boolean
function”. The last three terms are used only for perfect 2-colorings. Moreover, perfect 2-
colorings of a regular graph are the same as the completely regular codes with covering radius 1.
A comprehensive survey of the theory of perfect colorings and related topics is available in [14].

It is very useful to formulate the definition of a perfect coloring in terms of linear algebra (see
[15]). A surjective function f : V → {0, . . . , k − 1} is a perfect k-coloring of a graph Γ = (V, E)
with quotient matrix Q of size k × k if and only if

M · F = F ·Q, (1)

where M is the |V | × |V | adjacency matrix of Γ and F is the incidence {0, 1}-matrix of size
|V | × k for f . If we admit rational matrices F , then each F satisfying equation (1) is called a
perfect structure (see [19]).

Some years ago, Avgustinovich [2] postulated the following principle. Each perfect coloring
is a solution of some optimization problem and on the other hand, a tight (reached a theoretical
bound) solution of any optimization problem in combinatorics is equivalent to a perfect coloring
with some parameters that depend on the problem. The first part of this principle is not difficult.
Such a problem can be formulated as Proposition 3 or as [12, Lemma 3]. Previously, we collected
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many examples illustrating the second part of this principle in [18]. In this paper, we consider a
number of other examples.

Indeed, perfect 2-colorings turn out to be the tight solutions of some extremal problems. If
we consider the following bounds for the number of vertices, then the set of vertices attaining one
of these bounds must be a perfect 2-coloring. This property holds in the cases of the Hamming
and Singleton bounds in coding theory, the Hoffman bound on independent sets [11], Cheeger’s
bound on cut sizes [1], [9], Haemers’ bounds on the subgraph degree [10], the Fon-der-Flaass [7]
and Bierbrauer–Friedman bounds on orthogonal arrays (see a proof of the Bierbrauer–Friedman
bound in [3], [8] and a proof of the property to be a perfect 2-coloring in [16], [17]). Binary
orthogonal arrays attaining the other bound are related to perfect 3-colorings [13, Theorem 1].
In this paper we prove that the Expander Mixing Lemma is another example of an inequality
whose attainment implies a perfect 2-coloring (Lemma 1).

It is possible to consider q-ary Boolean-valued function in k variables as a 2-coloring of the
Hamming graph H(k, q). Then the sensitivity of the function is equal to the number of mixed-
colored edges in the graph. We prove that some known bounds on the sensitivity follow from the
Expander Mixing Lemma. Moreover, they are only reached on perfect 2-colorings (Corollaries 4,
5). A bound for a partition into several subsets of vertices with the fixed average internal degree
was proved by Krotov [12, Sect. 3]. This bound is tight and it is only reached on perfect colorings.
We note that the tight solutions of extremal problems are a rich source of combinatorial designs.
The above connection can be useful for optimization theory and theory combinatorial structures.

Distance-regular graphs are one of the main topic of algebraic graph theory. There are many
theorems for distance-regular graphs that are impossible for arbitrary regular graphs (see, e.g.,
[4]). Amply regular graphs (regular up to distance 2) occupy an intermediate position between
regular and distance-regular graphs. Thus, some stronger results can be obtained for them. We
prove a new upper bound for the cardinality of a subset of vertices of an amply regular graph with
the fixed average internal degree (Theorem 3). The bound is tight and attained only on perfect
2-colorings. Moreover, any perfect 2-coloring of an amply regular graph attains this bound. This
bound is the better than the Hoffman bound in some cases (Corollary 8).

2 Preliminaries

Next we formulate a combinatorial definition of a perfect coloring. Let G = (V, E) be a regular
graph, where V is the set of vertices and E the set of edges. Throughout the article we denote
by n = |V | the number of vertices of G and denote by M the adjacency matrix of G. A function
f : V → I is called a perfect coloring if there are integers qij , i, j ∈ I, such that every vertex of
Ci = f−1(i) is adjacent to qij vertices of Cj = f−1(j). In this case the partition {Ci : i ∈ I}
is called equitable. We will use the both equivalent terms “perfect coloring” and “equitable
partition”.

It is well known that every eigenvalue of a perfect coloring (i. e., an eigenvalue of the quotient
matrix Q = (qij)) is an eigenvalue of the adjacency matrix M . For an r-regular graph, the largest
(both as a signed value and in absolute value) eigenvalue is equal to r and it coincides with the
largest eigenvalue of the quotient matrix of any perfect coloring.

The following connection between perfect 2-colorings and eigenfunctions of a graph is known.

Proposition 1 ([7]) A two valued function f : V → R is a perfect 2-coloring of a regular con-
nected graph G(V, E) if and only if there exists a constant γ such that f−γ1V is an eigenfunction
of G with eigenvalue λ, where λ is an eigenvalue of the corresponding quotient matrix.
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Here 1V is the indicator function of V . The following two propositions is well known. We
prove it for the completeness.

Proposition 2 Let G = (V, E) be an r-regular connected graph with n vertices. Suppose a
partition {A,B}, B = V \ A, is equitable, i. e., for some γ > 0 the function f = 1A − γ1V is
an eigenfunction with an eigenvalue λ 6= r. Then the quotient matrix of the equitable partition

is equal to

(
r|A|+λ|B|

n
(r−λ)|B|

n
(r−λ)|A|

n
r|B|+λ|A|

n

)
.

Proof.Without loss of generality, the quotient matrix of an equitable partition is Q =
(

r − b b
c r − c

)

for some b and c. By double counting the number of edges that connect elements of A with el-
ements of B, we obtain b|A| = c|B|. By Proposition 1 the second eigenvalue of Q equals λ =
r − b − c. Therefore, b = (r − λ)/(1 + |A|

|B|) and c = (r − λ)/(1 + |B|
|A| ). Since n = |A| + |B|, the

proposition is proven. ¤
The simplest extremal property of perfect 2-colorings is the following.

Proposition 3 Let G = (V,E) be an r-regular graph and let S ⊂ V . For a vertex x from S,
let a(x) denote the number of neighbors of x in S. We suppose a(x) ≤ a for some constant a.
For a vertex y from V \ S, let d(y) denote the number of neighbors of y in V \ S. We suppose
d(y) ≥ d for some constant d. Then it holds

|S|
n
≤ r − d

2r − a− d
.

Moreover, in the case of equality, 1S is a perfect 2-coloring with the quotient matrix
(

a r − a
r − d d

)
.

Proof. Let M be the adjacency matrix of G. It is easy to see that

(M1S ,1S) ≤ a|S|, (M1S ,1V − 1S) = (1S ,M(1V − 1S)) ≤ (r − d)(n− |S|) (2)

and (M1S ,1V ) = r|S|. Suppose that there exists x ∈ S such that a(x) < a or there exists
y ∈ V \ S such that d(y) > d. Then one of inequalities (2) should be strict.

It holds (M1S ,1V ) = (M1S ,1V −1S)+(M1S ,1S). Therefore, r|S| ≤ (r−d)(n−|S|)+a|S|,
i. e., |S|n ≤ r−d

2r−d−a . If one of inequalities (2) is strict, then r|S| < (r − d)(n − |S|) + a|S|, i. e.,
|S|
n < r−d

2r−d−a . Thus, in the case of the equality we obtain a(x) = a for each x ∈ S and d(y) = d
for every y ∈ V \ S. ¤

A vertex subset S in an r-regular graph is called a 1-perfect code if the partition {S, V \ S}
is an equitable with quotient matrix

(
0 r
1 r − 1

)
. In the case a = 0 and d = r− 1, Proposition 3

corresponds to the Hamming bound and it is a routine criterion for 1-perfect codes.
Denote by λmin the minimum eigenvalue of M . The Hoffman (or Delsarte–Hoffman) upper

bound [11] on the cardinality of an independent set in an r-regular graph G is equal to −λminn|
r−λmin

.
It is well known (see, e.g., [9]) that if an independent set S attains the Hoffman bound, then
partition {S, V \S} is equitable. There exists a generalization of this fact to non independent
sets. Denote by σ(S) the average internal degree for a set S ⊂ V , i.e., σ(S) = (M1S ,1S)/|S|.
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Theorem 1 ([18]) Let G = (V, E) be an r-regular graph and let S ⊂ V . If σ(S) ≤ a, then
|S| ≤ (a−λmin)n

r−λmin
. Moreover, |S| = (a−λmin)n

r−λmin
if and only if 1S is a perfect 2-coloring with quotient

matrix(
a r − a

a− λmin r + λmin − a

)
.

Denote by χ(G) the chromatic number of a graph G. For an r-regular graph G, the inequality
χ(G) ≥ λmin−r

λmin
is a corollary of the Hoffman bound.

Corollary 1 Let G = (V, E) be an r-regular graph. If k = λmin−r
λmin

, then every proper k-coloring
of G is a perfect k-coloring.

Proof. By Theorem 1, the partition {Ci, V \ Ci} is equitable, where Ci is the set of i-colored
vertices for i = 1, . . . , k. Therefore, every vertex from V \ Ci has the same number of adjacent
i-colored vertices. In particular, every vertex from Cj has the same number of adjacent i-colored
vertices for each i 6= j. It remains to note that a vertex from Ci has no i-colored neighbors,
because the coloring is proper. ¤

3 Expander Mixing Lemma and its corollaries

Let A and B be arbitrary (not necessarily disjoint) nonempty subsets of V . Consider the set
{(a, b) : a ∈ A, b ∈ B, {a, b} ∈ E(G)} of all arcs that connect vertices from A to vertices
from B. The cardinality of this set is denoted by e(A,B). In particular, if a, b ∈ A ∩ B, then
the edge {a, b} is counted twice, as the arcs (a, b) and (b, a). It is easy to see that

e(A,B) = (1A,M1B), (3)

where M is the adjacency matrix of G.
The Expander Mixing Lemma is proven in [1] and it appears in a form appropriate for us,

for example, in [6] (Lemma 3). Moreover, a proof of an improvement of the lemma can be found
in [6]. Below, we establish that subsets attaining bound (4) correspond to a perfect 2-coloring.
To prove this, we need to repeat the proof of the Expander Mixing Lemma.

Lemma 1 (Expander Mixing Lemma) Let G be an r-regular connected graph and let λ be
the second largest, in absolute value, eigenvalue of G (if G is bipartite, then λ = −r). Then

∣∣∣∣e(A,B)− r|A||B|
n

∣∣∣∣ ≤ |λ|
√
|A| |B|

(
1− |A|

n

)(
1− |B|

n

)
. (4)

Moreover, this bound is reached if and only if B = V \A or B = A and the partition {A, V \A}
is equitable with the eigenvalue λ.

Proof. Let λk < λk−1 < · · · < λ1 < λ0 = r be the eigenvalues of G. By definition λ = λk or
λ = λ1. Since M is a symmetric matrix, the direct sum of the eigenspaces of all of M ’s eigenvalues
is the entire vector space. Consider the indicator functions 1A and 1B as linear combinations
of eigenfunctions of G, i. e., 1A =

∑
i αiφi and 1B =

∑
i βiφ

′
i, where φi and φ′i correspond to

the eigenvalue λi. Note that φi and φ′i may be different. Without loss of generality, we require
that ‖φi‖2 = 1 for all i. We assume λ0 = r, so the corresponding eigenfunction is φ0 = 1/

√
n.

Therefore α0 = (1A, φ0) = |A|/√n and β0 = (1B, φ0) = |B|/√n. Then

(1A − α0φ0,M(1B − β0φ0)) =
∑

i6=0

λiαiβi(φi, φ
′
i). (5)
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By the Cauchy-Schwarz inequality, we obtain

∣∣∣
∑

i 6=0

λiαiβi(φi, φ
′
i)

∣∣∣ ≤ |λ|
∑

i 6=0

|αiβi| ≤ |λ|
(∑

i6=0

α2
i

)1/2(∑

i6=0

β2
i

)1/2

. (6)

By (3), it holds

(1A − α0φ0,M(1B − β0φ0)) =
= (1A,M1B)− β0(1A − α0φ0,Mφ0)− α0(Mφ0,1B − β0φ0)− (α0φ0,M(β0φ0))

= e(A,B)− r|A||B|
n

. (7)

From (1A,1A) =
∑

i α
2
i , we derive

∑

i6=0

α2
i = (1A,1A)− α2

0 = |A| − |A|2/n. (8)

A similar equation takes place for B. Summarizing (5)–(7), we get
∣∣∣∣e(A,B)− r|A||B|

n

∣∣∣∣ = |(1A − α0φ0, M(1B − β0φ0))| ≤ |λ|
√

(|A| − |A|2/n)(|B| − |B|2/n).

In order to obtain the equality in the Cauchy-Schwarz inequality, it is necessary vector 1A−
α0φ0 to be collinear to the vector 1B−β0φ0. So, we obtain that φi = φ′i and αi = βi or αi = −βi

for all i 6= 0. Moreover, in order to obtain equality in the first inequality of (6), it is necessary
the function 1B − β0φ0 to be be an eigenfunction with the eigenvalue ±λ. By Proposition 1, we
see that 1B is a perfect 2-coloring. If the vector 1A−α0φ0 has the same direction as 1B − β0φ0,
then B = A. If 1A − α0φ0 has the direction opposite to 1B − β0φ0, then A = V \B.

Let {A, V \A} be an equitable partition with the eigenvalue λ. Consider the case B = V \A.
We have 1 − |A|

n = |B|
n and |A| − |A|2

n = |A||B|
n = |B| − |B|2

n . From the quotient matrix of the
equitable partition (see Proposition 2), we derive e(A,B) = (r−λ)|A||B|

n . The equality in (4) is
now straightforward. The second case A = B is similar. ¤

As stated in [6] inequality (4) is one of the form of Cheeger’s bound. Let A ⊂ V and
B = V \A. The set of all edges that connect A and B is called a cut-set. The cardinality e(A,B)
of the cut-set is called the cut size.

Corollary 2 ([9]) Let G be an r-regular connected graph and let λk < λk−1 < · · · < λ1 < λ0 = r
be the eigenvalues of G. Then for any nonempty A ⊂ V and B = V \A, it holds

(r − λ1)|A||B|
n

≤ e(A,B) ≤ (r − λk)|A||B|
n

.

Moreover, one of this two bounds is reached if and only if {A,B} is an equitable partition with
the eigenvalue λ1 or λk respectively.

Proof. We will use the notation from the proof of Lemma 1. Since 1B = 1V −1A = 1V −
∑

i αiφi,
(5) is equivalent to the equation

(1A − α0φ0,M(1B − β0φ0)) = −
∑

i6=0

λiα
2
i .
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By the hypothesis of the corollary, it holds

−λ1

∑

i6=0

α2
i ≤ −

∑

i6=0

λiα
2
i ≤ −λk

∑

i6=0

α2
i .

Utilizing (7) and (8), we obtain the required inequality. The left (or right) side of the inequality
holds with equality if and only if 1A − α0φ0 is an eigenfunction of G with eigenvalue λ1 (or λk

respectively). In these cases, the partition {A,B} is equitable by Proposition 1. ¤
By Corollary 2, we obtain that the maximum cut size (r−λk)n/4 corresponds to an equitable

partition with the minimum eigenvalue.
As mentioned above an indicator functions of each subset C ⊂ V is the linear combination

1C =
∑

i φi, where φi is an eigenfunction of G with eigenvalue λi and λk < λk−1 < · · · < λ1 <
λ0 = r. In an arbitrary regular graph G = (V, E), a nonempty set C of vertices is called an
algebraic T-design if φi = 0 as i ∈ T in the this decomposition (see [5]).

Corollary 3 Let G be an r-regular connected graph and let λk < λk−1 < · · · < λ1 < λ0 = r be
the eigenvalues of G.

(a) Let T = {j + 1, . . . , k}. Then for any nonempty T-design C ⊂ V , it holds

e(C, V \ C) ≤ (r − λj)|C|(n− |C|)
n

.

(b) Let T = {1, . . . , j − 1}. Then for any nonempty T-design C ⊂ V , it holds

e(C, V \ C) ≥ (r − λj)|C|(n− |C|)
n

.

Moreover, any of this two bounds is reached if and only if {C, V \C} is an equitable partition
with the eigenvalue λj.

A proof of Corollary 3 is similar to the proof of Corollary 2.
Let G be the Hamming graph H(k, q). It is well known that in this case λi = k(q − 1)− iq.

We can consider f = 1C as a q-ary Boolean-valued function in k variables. If C is an algebraic
T-design and T = {1, . . . , j}, then f is a correlation-immune function of order j (see, e.g., [17],
Proposition 2). If C is an algebraic T-design and T = {j + 1, . . . , k}, then f has degree j (see,
e.g., [20]). In the theory of Boolean functions the value e(C, V \ C)/n is called the average
sensitivity of f and is denoted by I(f). The value |C|/n is denoted by ρ(f).

By Corollary 3 we immediately obtain the following statements.

Corollary 4 ([17], Theorem 1) Let f be a q-ary Boolean-valued function in k variables, and
let cor(f) be the maximal order of its correlation immunity. Then it holds

I(f) ≥ q(cor(f) + 1)ρ(f)(1− ρ(f)). (9)

Moreover, this bound is reached if and only if f is a perfect 2-coloring.

Note that (9) coincides with the Bierbrauer bound [3] if C is an independent set. Indeed, in
this case I(f) = ρ(f)k(q − 1), so 1− ρ(f) ≤ k(q−1)

q(cor(f)+1) .

Corollary 5 Let f be a q-ary Boolean-valued function in k variables with degree d. Then it
holds

I(f) ≤ qdρ(f)(1− ρ(f)).

Moreover, this bound is reached if and only if f is a perfect 2-coloring.
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Corollary 5 is similar to the result by Valyuzhenich ([20], Corollary 1) in the case ρ(f) = 1
2 .

By the definition, e(C, C) is the doubled number of pairs of adjacent vertices in C ⊂ V . The
following inequalities are well known. We establish only the connection with equitable partitions.

Corollary 6 ([10]) Let G be an r-regular connected graph, let C ⊂ V , and let λk < λk−1 <
· · · < λ1 < λ0 = r be the eigenvalues of G. Then it holds

λk|C|+ (r − λk)|C|2
n

≤ e(C, C) ≤ λ1|C|+ (r − λ1)|C|2
n

.

Moreover, one of this two bounds is reached if and only if {C, V \ C} is an equitable partition
with the eigenvalue λ1 or λk respectively.

Proof. We will use the notation from the proof of Lemma 1. Put B = A = C. In this case, (5)
is equivalent to the equation

(1C − α0φ0,M(1C − α0φ0)) =
∑

i 6=0

λiα
2
i .

By the hypothesis of the corollary, it holds

λk

∑

i 6=0

α2
i ≤

∑

i 6=0

λiα
2
i ≤ λ1

∑

i6=0

α2
i .

Utilizing (7) and (8), we obtain the required inequality. The left (or right) side of the inequality
holds with equality if and only if 1C − cφ0 is an eigenfunction of G with eigenvalue λk (or λ1

respectively). In these cases, the partition {C, V \ C} is equitable by Proposition 1. ¤

4 Perfect 2-colorings of amply regular graphs

A graph G is called amply regular if the distance-2 adjacency matrix M2(G) is a polynomial

M2(G) = p(M) = p2M
2 + p1M + p0I (10)

on the adjacency matrix M . It is easy to see that any amply regular graph is an rp-regular,
where rp = −p0/p2. Denote by σ2(S) the average number of vertices at distance 2 in the set
S ⊂ V , i.e., σ2(S) = (M2(G)1S ,1S)/|S|. Recall that σ(S) = (M1S ,1S)/|S|.

The following theorem is true for any number of elements in an equitable partition. We
formulate the case of two elements in the partition, which is sufficient for our objectives.

Theorem 2 ([12]) Let G be an amply regular graph with polynomial p and let S ⊂ V . If
σ(S) = a and σ(V \S) = d, then σ2(S) ≤ (p(Q))11 and σ2(V \S) ≤ (p(Q))22, where Q =(

a rp − a
rp − d d

)
. Moreover, the inequalities both hold with equality if and only if 1S is a perfect

2-coloring with quotient matrix Q.

By Theorem 2, we can easy obtain the following criterium for perfect 2-colorings with the
minimum eigenvalue in amply graphs.

Corollary 7 Let G be an amply r-regular graph with polynomial p and let S ⊂ V be an indepen-
dent set. Then σ2(S) ≤ −p2r(λmin + 1), where λmin is the minimum eigenvalue of G. Moreover,
σ2(S) = −p2r(λmin + 1) if and only if 1S is a perfect 2-coloring with the eigenvalue λmin.
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Proof. It is clear that σ(S) = 0 and σ(V \S) = r(1− |S|
n−|S|) for each independent set S. It is easy

to find that (p(Q))11 = p2(r(r − d)− r). By Theorem 2, it holds σ2(S) ≤ p2(
r2|S|
n−|S| − r). By the

Hoffman bound, we get r2|S|
n−|S| ≤ −λminr. Thus σ2(S) ≤ −p2r(λmin+1). If σ2(S) = −p2r(λmin+1)

then 1S is a perfect 2-coloring by Theorem 1. For any perfect 2-coloring with the eigenvalue λmin,
the equality σ2(S) = −p2r(λmin + 1) is straightforward. ¤

Suppose that the adjacency matrix M satisfies (10). Then by the definition of a perfect
2-coloring, it is possible to count the number of vertices from Cj at distance 2 from any vertex

from Ci. If the quotient matrix of the perfect 2-coloring is equal to
(

a b
c d

)
, then there hold

(M1C1 ,1C1) = a|C1|, (M21C1 ,1C1) = (p2(a2 + bc) + p1a + p0)|C1|, and |C1| = cn
b+c . Let β =

σ2(C1) = p2(a2 + bc) + p1a + p0. It is clear that c
b+c = bc

b2+bc
= β−p(a)

p2b2+β−p(a)
. Thus we obtain that

|C| = (β−p(a))n
p2(rp−a)2+β−p(a)

for any perfect 2-coloring 1C of G.
Next we prove that a fixed σ(C) and a bounded σ2(C) provide an upper bound for the

cardinality of C. Moreover, if this upper bound is reached on C then the partition {C, V \C} is
equitable.

Theorem 3 Let G be an amply r-regular graph with polynomial p and let C ⊂ V . If σ(C) = a

and β = σ2(C) then |C| ≤ (β−p(a))n
p2(r−a)2+β−p(a)

. Moreover, if |C| = (β−p(a))n
p2(r−a)2+β−p(a)

then 1C is a
perfect 2-coloring of G.

Proof. Without loss of generality, we suppose that G is connected. In the other case, we
can prove the theorem separately for each component of connectivity. Consider 1C as a linear
combination of eigenfunctions of G. It holds 1C =

∑
i αiφi, where φi is an eigenfunction of M

with eigenvalue λi. Without loss of generality, we assume ‖φi‖2 = 1 for all i. The eigenfunction
with eigenvalue r is equal to φ0 = 1V /

√
n. From (1C ,1C) =

∑
i α

2
i we derive

(I)
∑

i6=0

α2
i = (1C ,1C)− α2

0 = |C| − %|C|,

where % = |C|/n. From (M1C ,1C) = a|C| and (M1C ,1C) =
∑

i α
2
i λi, it follows

(II) r%|C|+
∑

i6=0

α2
i λi = a|C|.

From (10) and the hypothesis of the theorem we obtain

(M21C ,1C) =
1
p2

((M2 − p1M − p0I)1C ,1C) =
|C|
p2

(β − p1a− p0).

Hence,

(III) r2%|C|+
∑

i6=0

α2
i λ

2
i =

|C|
p2

(β − p1a− p0).

Let us combine the left and right parts of equations (I)–(III) according to the following
formula (III)− 2θ(II) + θ2(I). Then for any θ ∈ R we obtain the inequalities

r2%|C| − 2r%θ|C|+
∑

i6=0

α2
i (λi − θ)2 =

|C|
p2

(β − p1a− p0)− 2aθ|C|+ |C|(1− %)θ2,
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r2%− 2r%θ ≤ 1
p2

(β − p1a− p0)− 2aθ + (1− %)θ2, (11)

% ≤
1
p2

(β − p(a)) + (a− θ)2

(r − θ)2
.

Let θ = a− β−p(a)
p2(r−a) . Then we conclude that

% ≤ (a− θ)(r − a) + (a− θ)2

(r − a + a− θ)2
=

a− θ

r − θ
=

β − p(a)
p2(r − a)2 + β − p(a)

.

It is clear that (11) holds with equality if and only if f = φ+α0ϕ0, where φ is an eigenfunction
with eigenvalue θ. By Proposition 1 we obtain that 1C is a perfect 2-coloring in this case. ¤

For a = 0 and β = 0, the new bound coincides with the Hamming bound |C| ≤ n
r+1 . If C is

an independent set, then a = 0, p(0) = p0 = −rp2 and % ≤ 1/(1 + p2r2

β+p2r ). This bound and the
Hoffman bound are reached simultaneously on perfect 2-colorings with the minimum eigenvalue.
In this case, it holds σ2(C) = −p2r(λmin+1). By Corollary 7, we have σ2(C) ≤ −p2r(λmin+1) for
any independent set C. Consequently, meaningfully consider only the case of β < −p2r(λmin+1).

Corollary 8 Let C be an independent set in an amply regular graph G with polynomial p. If
β = σ2(C) < −p2r(λmin + 1), then the bound |C|

n ≤ 1/(1 + p2r2

β+p2r ) is the better than the Hoffman
bound.

Proof. 1/(1 + p2r2

β+p2r ) < 1/(1 + p2r2

−p2rλmin
) = −λmin

r−λmin
. ¤

Funding. The work was funded by the Russian Science Foundation (grant No 22-11-00266).

References

[1] Alon, N., Chung, F.R.K.: Explicit construction of linear sized tolerant networks. In: Pro-
ceedings of the First Japan Conference on Graph Theory and Applications, Hakone, 1986,
15–19 (1988)

[2] Avgustinovich, S.V.: private communication.

[3] Bierbrauer, J.: Bounds on orthogonal arrays and resilient functions. Journal of Combinato-
rial Designs, 3 179–183 (1995)

[4] Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-regular graphs. Ergebnisse der Math-
ematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 18.
Springer-Verlag, Berlin (1989)

[5] Delsarte, P.: An algebraic approach to association schemes of coding theory, volume 10 of
Philips Res. Rep., Supplement. N.V. Philips’ Gloeilampenfabrieken, Eindhoven, (1973)

[6] Devriendt, K., Van Mieghem, P.: Tighter spectral bounds for the cut size, based on Lapla-
cian eigenvectors. Linear Algebra Appl. 572 68–91 (2019)

[7] Fon-Der-Flaass, D.G.: A bound on correlation immunity. Siberian Electronic Mathematical
Reports, 4 133–135 (2007)

9



[8] Friedman, J.: On the bit extraction problem. In: Proceedings of 33rd IEEE Symposium on
Foundations of Computer Science, 314–319 (1992)

[9] Golubev, K.: Graphical designs and extremal combinatorics. Linear Algebra Appl., 604
490–506 (2020)

[10] Haemers, W.H.: Eigenvalue techniques in design and graph theory. Dissertation, Technische
Hogeschool Eindhoven, Eindhoven, 1979. Mathematical Centre Tracts, 121. Mathematisch
Centrum, Amsterdam, (1980)

[11] Hoffman, A.J.: On eigenvalues and colorings of graphs, Graph Theory and its Applications.
In: Proceedings of Advanced Sem., Math. Research Center, Univ. of Wisconsin, Madison,
Wis., 79–91 (1970)

[12] Krotov, D.S.: On the binary codes with parameters of triply-shortened 1-perfect codes.
Designs, Codes and Cryptography, 64(3) 275–283 (2012)

[13] Krotov, D.S.: On the OA(1536,13,2,7) and related orthogonal arrays. Discrete Math.,
343(2):111659 1–11 (2020)

[14] Krotov, D.S, Potapov, V.N.: Completely regular codes and equitable partitions. In: Shi, M.,
Sole, P. (eds.) Completely regular codes in distance regular graphs. Chapman & Hall/CRC
Monographs and Research Notes in Mathematics, (2025)

[15] Martin, W.J.: Completely regular subsets. Thesis (Ph.D.)-University of Waterloo (Canada)
ISBN: 978-0315-72488-4, ProQuest LLC (1992)

[16] Ostergard, P.R.J., Pottonen, O., Phelps, K.T.: The perfect binary one-error-correcting codes
of length 15: Part II-properties. IEEE Trans. Inform. Theory, 56(6) 2571–2582 (2010)

[17] Potapov, V.N.: On perfect 2-colorings of the q-ary n-cube. Discrete Math., 312(6) 1269–1272
(2012)

[18] Potapov, V.N., Avgustinovich, S.V.: Combinatorial designs, difference sets, and bent func-
tions as perfect colorings of graphs and multigraphs. Siberian Mathematical Journal, 61(5)
867–877 (2020)

[19] Taranenko, A.A.: Algebraic properties of perfect structures. Linear Algebra Appl. 607 286–
306 (2020)

[20] Valyuzhenich, A.: An upper bound on the number of relevant variables for Boolean functions
on the Hamming graph. https://doi.org/10.48550/arXiv.2404.10418 Accessed 16 April 2024

10


