О бесконечномерных квазигруппах конечных порядков

В. Н. Потапов

Институт математики им. С.Л.Соболева, Новосибирский государственный университет, Новосибирск

Международная конференция "Современные проблемы математики, информатики и биоинформатики", посвященная 100-летию со дня рождения члена-корреспондента АН СССР Алексея Андреевича Ляпунова

11 - 14 октября 2011 г., Академгородок, Новосибирск, Россия

Пусть $\Sigma = \{0,\dots,k-1\}$, \mathbb{A} — некоторое конечное или бесконечное множество, элементами которого нумеруются переменные.

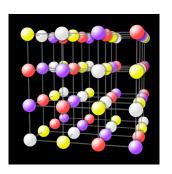
Определение

Определим функцию $d: \Sigma^{\mathbb{A}} \times \Sigma^{\mathbb{A}} \to [0, \infty]$ так, что $d(\overline{y}, \overline{z})$ — число различающихся компонент в $\overline{y}, \overline{z} \in \Sigma^{\mathbb{A}}$.

Определение

Функция $f:\Sigma^{\mathbb{A}}\to\Sigma$ называется квазигруппой порядка k, если $f(\overline{y})\neq f(\overline{z})$ при $d(\overline{y},\overline{z})=1.$

Таблица значений n-арной квазигруппы называется латинским гиперкубом (n-мерное обобщение латинского квадрата).



0	1	2	3
1	0	3	2
2	3	1	0
3	2	0	1

Пусть множество \mathbb{A} бесконечно. Определим $\operatorname{supp} \overline{y} = \{i \in \mathbb{A} \mid y_i \neq 0\}$. Обозначим через \mathcal{I} совокупность конечных подмножеств множества \mathbb{A} .

Рассмотрим $\mathcal{F}=\{\overline{y}\in\Sigma^{\mathbb{A}}\mid \mathrm{supp}\,\overline{y}\in\mathcal{I}\}$. Ясно, что множество $\Sigma^{\mathbb{A}}$ представимо в виде дизъюнктного объединения подмножеств вида $\mathcal{F}_{\overline{a}}=\overline{a}+\mathcal{F}$. Причём если $\mathcal{F}_{\overline{a}}\neq\mathcal{F}_{\overline{b}}$, то $d(\overline{y},\overline{z})=\infty$ для любых $\overline{y}\in\mathcal{F}_{\overline{a}}$ и $\overline{z}\in\mathcal{F}_{\overline{b}}$.

Поэтому квазигруппа f может быть независимо определена на каждом $\mathcal{F}_{\overline{a}}$. Ниже будем подразумевать, что $f:\mathcal{F}\to\Sigma$.

Квазигруппы на $\mathcal F$ допускают конструктивное определение, в то время как для определения квазигрупп на $\Sigma^{\mathbb A}$ необходимо выбирать по представителю из каждого класса $\mathcal F_{\overline a}$.

Пример

Определим $g:\mathcal{F} o \{0,\dots,k-1\}$ равенством

$$g(x) = \sum_{\alpha \in \mathbb{A}} x_{\alpha} \mod k.$$

Утверждение

Пусть $p:\mathcal{F} o \{0,1\}$ — квазигруппа порядка 2. Тогда $p(x)=\sigma+\sum\limits_{lpha\in\mathbb{A}}x_lpha\mod 2$, где $\sigma\in\{0,1\}.$

Символом x всюду будем обозначать переменную в квазигруппе, через x_J будем обозначать выборку переменных с индексами из множества $J, J \subset \mathbb{A}$.

Определение

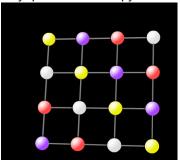
Ретрактом квазигруппы f называется подфункция, полученная из f подстановкой констант в некоторые переменные, причём только конечное число констант может быть отлично от нуля.

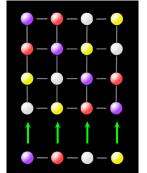
Через $f_J(x_J)$ будем обозначать ретракт квазигруппы $f: \mathcal{F} \to \Sigma$, в котором фиксированы нулём все переменные, кроме имеющих индексы из множества J. Если множество J конечно, то ретракт f_J можно рассматривать как |J|-арную квазигруппу.

Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

$$f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$$
, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Внутренняя квазигруппа:

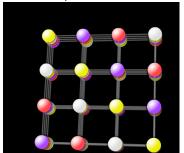


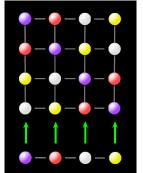


Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

$$f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$$
, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Внутренняя квазигруппа o Композиция:

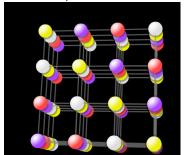


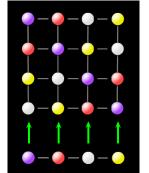


Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

$$f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$$
, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Внутренняя квазигруппа o Композиция:

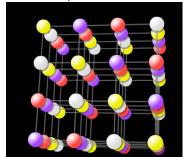


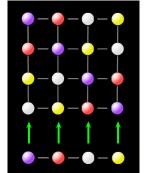


Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

$$f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$$
, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Внутренняя квазигруппа o Композиция:

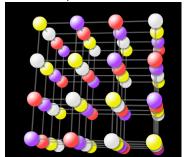


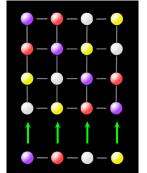


Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

 $f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Внутренняя квазигруппа o Композиция:

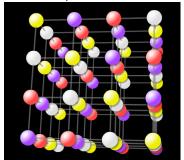


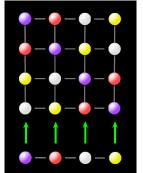


Квазигруппа f называется разделимой, если она может быть представлена в виде суперпозиции, т. е.

$$f(x_{J_1},x_{J_2})=g(h(x_{J_1})_{\{j\}},x_{J_2})$$
, где g и h — квазигруппы, $J_1\cap J_2=\varnothing$, $|J_1|\geq 2$, $|J_2|\geq 1$, $j\in J_1$. В противном случае квазигруппа называется неразделимой.

Композиция:





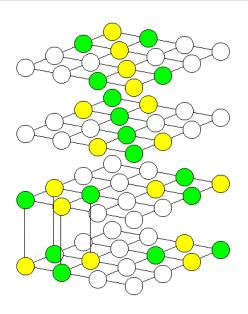
Квазигруппа $f:\mathcal{F}\to \Sigma$ порядка 4 называется полулинейной, если она удовлетворяет равенству $f(\{0,1\}^\mathbb{A}\cap\mathcal{F})=\{0,1\}$ или f изотопна квазигруппе, удовлетворяющей этому равенству.

В частности, квазигруппа $f(x_{\mathbb{A}}) = \sum_{\alpha \in \mathbb{A}} x_{\alpha}$ является полулинейной. Здесь подразумевается сложение изоморфное групповой операции в $Z_2 \times Z_2$.

Определение

Обозначим через S_0 группу перестановок на Σ , сохраняющих нуль. Изотопией (сохраняющей нуль) называется элемент множества $S_0 \times S_0^{\mathbb{A}}$. Две квазигруппы f и g называются изотопными, если

$$g(x_{\mathbb{A}}) = \theta_0(f(\theta_{\mathbb{A}}x_{\mathbb{A}})), \qquad \qquad \theta_0 \in S_0, \,\, \theta_{\mathbb{A}} \in S_0^{\mathbb{A}}.$$



Теорема 1

Пусть $f: \mathcal{F} \to \Sigma$ — квазигруппа порядка 4. Квазигруппа f является разделимой или полулинейной.

Krotov D. S., Potapov V. N. n-Ary quasigroups of order 4. SIAM J. Discrete Math., 2009.

Пусть \mathbb{N} — множество натуральных чисел, $|\Sigma|=k$. Элементы множества $\Sigma^{\mathbb{N}}$ можно рассматривать как k-ичные представления вещественных чисел $\delta \in [0,1]$.

Теорема 2

Для любой квазигруппы $f: \Sigma^{\mathbb{N}} \to \Sigma$ конечного порядка и $a \in \Sigma$ множество $\{\delta \in [0,1] \mid f(\delta) = a\}$ неизмеримо по Лебегу.

Доказательство теоремы опирается на инвариантность меры Лебега относительно сдвигов и

Утвержление

Для произвольного измеримого множества B

$$\lim_{\varepsilon \to 0} \frac{\mu((v - \varepsilon, v + \varepsilon) \cap B)}{\mu((v - \varepsilon, v + \varepsilon))} = 1$$

почти всех точек $v \in B$.