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Abstract

It is proved that 1) the indicator function of some onefold or mul-
tifold independent set in a regular graph is a perfect coloring if and
only if the set attain the Delsarte–Hoffman bound; 2) each transversal
in a uniform regular hypergraph is an independent set attaining the
Delsarte–Hoffman bound in the vertex adjacency multigraph of this
hypergraph; 3) combinatorial designs with parameters t-(v, k, λ) and
similar q-designs, difference sets, Hadamard matrices, and bent func-
tions are equivalent to perfect colorings of special graphs and multi-
graphs, in particular, it is true in the cases of the Johnson graphs
J(n, k) for (k− 1)-(v, k, λ) designs and the Grassmann graphs J2(n, 2)
for bent functions.
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Introduction

Let G = (V, E) be a graph. A function mapping from the vertex set V (G) to
a finite set I of colors is called a coloring of the graph. A coloring f is called
perfect if each collection of vertices adjacent to vertices of the same color have
identical color composition. It can be formulated as follows: for each color i ∈
I and each pair of vertices x, y ∈ V (G) we require that f(x) = f(y) follows
|f−1(i)∩ S(x)| = |f−1(i)∩ S(y)|, where S(x) = {z ∈ V (G) : {z, x} ∈ E(G)}
is the set of vertices adjacent to x. Also the terms ’equitable partition’ and
’partition design’ are used for the set {f−1(i) : i ∈ I}. This set is a partition
of vertices of G according to the colors of a perfect coloring. The matrix
P = (pij) of size |I| × |I| is called a quotient matrix if each its entry pij is
equal to the number of vertices of color j adjacent to each vertex of color i.

Perfect 2-colorings turn out to be solutions to extremal problems on
graphs. The definition of 1-perfect code in an r-regular graph imply directly
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that the indicator function of the code is a perfect coloring with quotient

matrix
(

0 r
1 r − 1

)
. It is proved in [1] that all unbalanced Boolean func-

tions reaching Fon-Der-Flaass’s bound of correlation immunity are perfect
2-colorings. All Boolean functions attaining the Bierbrauer–Friedman bound
for orthogonal arrays are also perfect 2-colorings (see [2]). We proved an-
other similar result. In Theorem 1 we establish that if an onefold or multifold
independent set in a regular graph attains the Delsarte–Hoffman bound then
the indicator function of this set is a perfect 2-coloring.

We suggest characterizations for various well-known combinatorial con-
figurations in terms of perfect colorings of simple graphs, hypergraphs and
multigraphs. In Proposition 6 we prove that each transversal of a uniform
regular hypergraph is an independent set in some multigraph attaining the
Delsarte–Hoffman bound. Consequently, it is equivalent to a perfect 2-
coloring of the multigraph. In Section 4 we show that combinatorial designs
and q-designs are equivalent to perfect 2-colorings with certain parameters of
the Johnson graphs and the Grassmann graphs respectively or multigraphs
obtained from these graphs. In particular, the Hadamard matrices turn
out to be equivalent to perfect colorings of some hypergraph. In Section 6
we prove that strongly regular graphs and partial difference sets in abelian
groups are equivalent to perfect 2-colorings of the line graph of the complete
graph Kn. At last, we prove that Boolean bent functions are equivalent to
perfect 4-colorings of J2(n, 2) with certain quotient matrix (see Theorem 2).

1 Perfect Colorings of Multigraphs and Hypergraphs

Multigraph is a generalization of the notion of graph by allowing multiple
edges and loops. Let us enumerate vertices of a multigraph on n vertices by
numbers from 1 to n. A square matrix A = (aij) of size n × n is called an
adjacency matrix of a multigraph if each entry aij is equal to the number of
edges joining ith and jth vertices. Each adjacency matrix of multigraph is
symmetric; in the case of a simple graph it consists only of the numbers 0 and
1, moreover, it has only zeros at the main diagonal. The adjacency matrix
of a bipartite graph has a block structure. Eigenvalues and eigenvectors of
adjacency matrices of a multigraph are called eigenvalues and eigenvectors
of the multigraphs.

Let G be a bipartite graph with parts V and U . Consider the multigraph
M12(G) having V as the set of vertices and vertices vi, vj ∈ V are joined
by mij edges if there exist mij distinct vertices of U such that each of them
is adjacent to vi and vj . For convenience we assume that every vertex of
M12(G) is incident to d loops where d is the degree of the vertex in G. If all
edges and loops inM12(G) have the same multiplicity then in all statements
of this section instead ofM12(G) we may consider the simple graph obtained
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from M12(G) by removing loops and multiple edges.
The adjacency matrix of the bipartite graph G can be represented as

M =
(

0 Y
Y ∗ 0

)
, where Y is a matrix of size k1×k2 and ki is the cardinality

of the ith part of G. Then the adjacency matrix of M12(G) is Y Y ∗.
Some part of the following proposition for bipartite graphs is proved in

[3].

Proposition 1 1. The eigenvalues of M12(G) are nonnegative.
2. The restriction of every eigenfunction of G with eigenvalue θ to the

first part of the graph is an eigenfunction of M12(G) with the eigenvalue θ2.
3. Every eigenfunction of M12(G) with a positive eigenvalue θ can be

extent to an eigenfunction of G with the eigenvalue
√

θ.
4. Every eigenfunction of M12(G) with eigenvalue 0 can be extended to

an eigenfunction of G with the same eigenvalue.

Proof. 1. It follows from Y Y ∗ is a nonnegative semidefinite matrix for
every Y .

2. Let (h, g) be an eigenvector of M with eigenvalue θ, where h is a vector
of length k1 and g is a vector of length k2. Then Y g = θh and Y ∗h = θg.
Therefore, Y Y ∗h = θY g = θ2h.

3. Suppose Y ∗h = θh. Consider a vector f = (
√

θh, Y ∗h). Then the
equation Mf =

√
θf is equivalent to the pair of equations Y Y ∗h = θh and√

θY ∗h =
√

θY ∗h.
4. Suppose that Y Y ∗h = 0̄. Then (Y ∗h, Y ∗h) = (Y Y ∗h, h) = 0, which

implies that Y ∗h = 0̄. Then Mf = 0̄, where f = (h, 0̄). ¤
The definition of a perfect coloring is naturally generalized to multigraphs

and directed multigraphs. We mean that a vertex in a directed multigraph is
adjacent to another vertex if there exists an arc (directed edge) from the first
vertex to the second one. The definition of a quotient matrix for a perfect
coloring of a directed multigraph is similar to the definition of a quotient
matrix for graphs. Notice that we can consider each quotient matrix of a
perfect coloring as an adjacency matrix of some directed multigraph. The
number of vertices in this directed multigraph is equal to the number of
colors in the perfect coloring.

Given a coloring f : V (G) → {1, . . . , k} of G. Define the matrix F of size
n× k as follows: every column Fi is the indicator function of color i. More
formally we have equation:

χf−1(i)(x) =
{

1 if f(x) = i,
0 if f(x) 6= i.

Notice that each row of F contains only one 1. Henceforth, we represent
a function mapping from the set of vertices by a column vector.
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In the case of simple graphs it is well known the linear algebraic criterion
for perfect colorings. Below we prove this criterion for directed multigraphs
in a similar way.

Proposition 2 Let M be the adjacency matrix of a directed multigraph G.
The function f is a perfect k-coloring of G with the quotient matrix S if and
only if MF = FS.

Proof. Let j = 1, . . . , k and v ∈ V (G). Consider entries labeled by
(vj) on the both sides of the equality MF = FS. (MF )vj is the number
of vertices of the color j adjacent to v. In the right-hand side the row Fv

contains 1 in the position corresponding to the color of v. This implies that
(FS)vj is the number of vertices of the color j adjacent to v. ¤

The corollaries of Proposition 2 listed below can be found in [4] in the
case of simple graphs. Their proofs in the case of directed multigraphs are
similar.

Corollary 1 Let u be an eigenvector of S. Then Fu is an eigenvector of M
with the same eigenvalue.

Corollary 2 A function f : V (G) → {0, 1} is a perfect coloring of an r-

regular multigraph G with quotient matrix
(

r − b b
c r − c

)
if and only if

h(x) =
{ b

b+c f(x) = 0;
− c

b+c f(x) = 1.
is an eigenfunction of G with the eigenvalue

r − b− c.

Proposition 3 If f : V ∪U → {1, . . . , k} is a perfect coloring of a bipartite
graph G with parts V and U , then f |V is a perfect coloring of M12(G).

Proof. The adjacency matrix of G can be represented as M =
(

0 Y
Y ∗ 0

)
.

Let S =
(

0 S1

S2 0

)
be a quotient matrix of the perfect coloring. Proposition

2 implies equality MF = FS that is equivalent to the pair of equalities

Y F2 = F1S1 and Y ∗F1 = F2S2, where F =
(

F1 0
0 F2

)
, and matrices F1 and

F2 correspond to colorings of two parts of G. We obtain Y Y ∗F1 = Y F2S2 =
F1S1S2. Observe that Y Y ∗ is the adjacent matrix of M12(G) and S1S2 is
the quotient matrix of the perfect coloring f |V by Proposition 2. ¤

The converse is false in general. A perfect coloring of M12(G) do not
need to be a restriction of any perfect coloring of G. In particular, we can
find some examples in the case that M12(G) is the complete graph.

A hypergraph is another generalization of a graph. Here we consider
unordered collections of various numbers of vertices as hyperedges of the
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hypergraph. A hypergraph is called k-uniform whenever each hyperedge
consists of k vertices. A (0, 1)-matrix Y = (yij) of size n×m, where n is the
number of vertices and m is the number of hyperedges, is called an incidence
matrix of the hypergraph if

yij =
{

1, if vi ∈ ej ∈ E(G);
0, otherwise.

For any hypergraph G we define the bipartite graph D(G). The first
part of D(G) consists of all vertices of G and the second one consists of all
hyperedges of G. A vertex v ∈ V (G) from the first part is adjacent to a
vertex e ∈ E(G) from the second part whenever v ∈ e. It is easy to see that

the adjacency matrix of D(G) can be represented as
(

0 Y
Y ∗ 0

)
, where Y is

the incidence matrix of G.
A coloring of G is called perfect if it induces a perfect coloring of D(G).

In other words, a coloring of a hypergraph is perfect whenever two vertices
of the same color are incident to the equal numbers of hyperedges with any
fixed color composition of vertices.

Consider the adjacency matrix M of the multigraph M12(D(G)). It is
clear that the entry mij of M is equal to the number of hyperedges of G
containing ith and jth vertices at the same time. Then M = Y Y ∗, where Y
is the incidence matrix of G.

By Proposition 3 we obtain

Corollary 3 Each perfect coloring of the hypergraph G is a perfect coloring
of M12(D(G)).

Let G be a k-uniform hypergraph. The multigraph E(G) is called a line
graph of G if vertices of E(G) are edges of G and two vertices v, u ∈ E(G)
are joined by l edges whenever u ∩ v consists of l vertices of G.

By the definition, the adjacency matrix of E(G) is Y ∗Y − kI, where Y is
the incidence matrix of G. If G is a simple graph then E(G) is also a simple
graph.

A coloring f ′ of E(G) is induced by a coloring f of G whenever we use
a multiset of colors of vertices from e ∈ E(G) as a color of e ∈ E(G), i. e.,
f ′(e) = {f(v1), f(v2), . . . , f(vk)}, where e = {v1, v2, . . . , vk}.

Proposition 4 Each coloring induced by a perfect coloring of a hypergraph
G is perfect.

Proof. Let f be a perfect t-coloring of G. Consider some hyperedge e of
the color {i1, . . . , it}, i. e., e contains ij vertices of color j. By the definition
of the perfect coloring of hypergraphs, each vertex of the color j belongs to a
known number of hyperedges of each fixed color composition. The multiset
of such color compositions of all vertices in e is the same for hyperedges with
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the same color. Then the collection of vertices adjacent to vertices of E(G)
with the same color have identical color composition. It is possible that some
hyperedge e′ intersects e by s > 1 vertices, then the color composition of e′

will be counted s times. It corresponds to the fact that the vertices e and e′

are joined by s edges in E(G). ¤

2 Transversals of Hypergraphs

A transversal of a hypergraph is a set of vertices that covers each hyperedge
one time, i. e., the intersection between the transversal and each hyperedge
consists of one vertex. An `-fold transversal of a hypergraph is a set of
vertices which cover each edge ` times.

In particular, in a bipartite graph each part is a transversal of the graph.
It is easy to see that the indicator function of each multifold transversal
is a perfect 2-coloring of a k-uniform r-regular hypergraph. Moreover, the
following holds:

Proposition 5 A function f : V → {0, 1} is an indicator function of an
`-fold transversal in a k-uniform r-regular hypergraph G if and only if f
is a perfect coloring of the multigraph M12(D(G)) with the quotient matrix

S =
(

`r (k − `)r
`r (k − `)r

)
.

Proof. It is clear, that each `-fold transversal generates some perfect 3-
coloring of D(G): the first two colors are the transversal and its complement
in the first part of D(G), all vertices of the second part of D(G) are colored
by the third color. By Proposition 3, the restriction of this coloring to the
first part of D(G) is a perfect 2-coloring ofM12(D(G)). The quotient matrix
of this coloring is obtained from the following argument. Each vertex of the
`-fold transversal is adjacent to itself r times and also ` − 1 times to other
vertices of the `-fold transversal in every of r incident hyperedges. Each
vertex from the complement of the `-fold transversal is adjacent to ` vertices
in every of r incident hyperedges.

Suppose that f : V (M12(D(G))) → {0, 1} is a perfect 2-coloring with
quotient matrix S. Define h(x) = f(x) − |f−1(1)|/|V (G)|. By Corollary 2
it follows that h is an eigenvector with eigenvalue 0 of the adjacency matrix
of M12(D(G)). Then Y Y ∗h = 0̄. Consequently, it holds (Y ∗h, Y ∗h) =
(Y Y ∗h, h) = 0 and Y ∗h = 0̄. The last equality implies that the sum of
values of h in each hyperedge equals 0. Since f takes only two distinct
values, −|f−1(1)|/|V (G)| and 1 − |f−1(1)|/|V (G)|, h takes every of these
the same numbers of times in each hyperedge. Then f satisfies the same
property. ¤
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3 Independent Sets

A subset of vertices in a graph is called an independent whenever it does
not contain adjacent vertices. The definition of an independent set is the
same for multigraphs without loops. It is well known the Delsarte–Hoffman
upper bound for the cardinality of an independent set in an r-regular graph
(see, for instance, [5] Theorem 2.4.1). This bound is equal to −θv

r−θ , where v
is the number of vertices in the graph and θ is the minimal eigenvalue of the
graph.

Theorem 1 Let θ be the minimal eigenvalue of an r-regular multigraph G.
If each vertices of A ⊂ V (G) is adjacent to at most t < r vertices of A,
then |A| ≤ (t−θ)|V (G)|

r−θ . If in addition the cardinality of A equals (t−θ)|V (G)|
r−θ ,

then the indicator function f of A is a perfect 2-coloring of G with quotient

matrix S =
(

t r − t
t− θ r − t + θ

)
.

Proof. Assume that G is connected, in opposite case we can consider
each connected component separately. Put n = |V (G)|. Since the adjacency
matrix M of G is symmetric, there exists an orthonormal basis consisting
of eigenvectors φi of M . The regularity and connectedness of G implies
that the maximal eigenvalue r = θ0 corresponds to the unique basis vector
φ0 = 1/

√
n. Consider the expansion of f with respect to this basis as

f =
∑

i αiφi. Then

t(f, f) ≥ (Mf, f) =
∑

i

α2
i θi, (1)

where θi is the eigenvalue corresponding to φi. By the equality |A| = (f, f) =∑
i α

2
i we obtain that

∑
i6=0

α2
i = (f, f)−α2

0 = |A|− |A|2/n. Therefore, (1) and

the minimality of θ imply that t|A| ≥ (|A| − |A|2/n)θ + r|A|2/n.

Since r − θ > 0 we obtain the inequality |A|
n ≤ t−θ

r−θ .
The equality |A|

n = t−θ
r−θ holds only in the case as f = φ + α0ϕ0, where φ

is the eigenvector corresponding eigenvalue θ. By Corollary 2 we obtain that
f is a perfect coloring of G. We can find the entry s21 of S by the equation
|A|(r − t) = s21(n− |A|), where the left and right parts of the equation are
the numbers of edges incident to vertices of different colors. ¤

If we put t = 0 in Theorem 1, then we obtain the well known Delsarte–
Hoffman bound on the cardinality of independent sets. Moreover, Theorem
1 implies that the indicator function of each independent set attaining the
Delsarte–Hoffman bound is a perfect coloring. Conversely, it is easy to see

that the first color of a coloring with quotient matrix
(

0 r
−θ r + θ

)
is an

independent set attaining the Delsarte–Hoffman bound.
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Proposition 6 If T is a transversal of a k-uniform r-regular hypergraph G,
then T is an independent set of the multigraph obtained from M12(D(G)) by
removing all loops, and it attains the Delsarte–Hoffman bound.

Proof. Proposition 5 implies that each transversal of G generates a per-

fect coloring of M12(D(G)) with quotient matrix S =
(

r (k − 1)r
r (k − 1)r

)
.

By Proposition 1, all eigenvalues of M12(D(G)) are nonnegative. Every
eigenvalue of a quotient matrix of a perfect coloring of the graph belongs to
the spectrum of the graph (see Corollary 1). Thus the eigenvalue 0 of S is the
minimal eigenvalue of M12(D(G)). Each vertex of M12(D(G)) is incident
to r loops. Removing all loops, we obtain a (k − 1)r-regular multigraph Γ
with the minimal eigenvalue −r. By the definition of transversal, we have
that T is an independent set and |T | = |V (Γ)|/k = r|V (Γ)|

(k−1)r+r . Then it attains
the Delsart–Hoffman bound. ¤

A complete subgraph of a graph is called a clique. It is easy to see that
each clique corresponds to an independent set in the complement of the
graph and vice versa. It is known (see [5]) that the cardinality of each clique
in an arc-transitive graph r-regular graph is at most 1 − r

λ , where λ is the
minimal eigenvalue of the graph. A clique with cardinality 1 − r

λmin
in an

r-regular graph is called the Delsarte clique.
Consider a (k − 1)r-regular multigraph Γ with the minimal eigenvalue

−r obtained from M12(D(G)) by removing all loops. It is clear that each
hyperedge of G corresponds to a clique of size k in Γ. If Γ is a simple graph
then this clique turns out to be a Delsarte clique because of k = 1− (k−1)r

−r .
It is proved in [6], Theorem 2(ii), that the indicator function of a subset
of vertices of a distance-regular graph is a perfect 2-coloring if the subset
intersects each Delsarte clique in the same number of vertices. If Γ is a
distance-regular graph then this theorem coincides with Proposition 5.

4 Combinatorial Designs

The Johnson graph J(n, k) is a graph whose vertices are binary n-tuples of
weight k and two vertices are joined by an edge if the Hamming distance
between the corresponding n-tuples equals 2.

A combinatorial design with parameters t-(n, k, λ) is a collection of k-
elements subsets (blocks) of the n-element set such that each t-element subset
is included into exactly λ blocks from the collection.

The blocks of a t-(n, k, λ)-design can be represented as the vertices of
J(n, k). In the case of λ = 1, t-(n, k, λ)-designs are usually denoted by
S(t, k, n), if in addition t = k − 1, then they are called by Steiner systems
of order n, for instance, the Steiner triple system as k = 3, the Steiner
quadruple system as k = 4 and so on.
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A combinatorial design with parameters t-(n, k, λ) can be regarded as a
λ-fold transversal in the hypergraph Gn,k,t whose vertices are all possible k-
element blocks and hyperedges consist of blocks including a fixed t-element
set.

In the case t = k − 1, the multigraph M12(D(Gn,k,t)) without loops
coincides with J(n, k). Proposition 6 implies a well-known statement:

Corollary 4 The Steiner systems S(k − 1, k, n) are maximal independent
sets in J(n, k).

Denote M12(D(Gn,k,t)) without loops by (J(n, k))k−t. In the case 0 <
t < k − 1, we obtain (J(n, k))k−t from J(n, k) by joining vertices of J(n, k)
corresponding to blocks including a joint t-element subset by the suitable
number of edges.

Proposition 5 implies the following statement:

Corollary 5 A set D is a t-(n, k, λ)-design if and only if the indicator func-
tion of D is a perfect 2-coloring of (J(n, k))k−t with quotient matrix( (

k
t

)
(λ− 1)

(
k
t

)
(
(
n−k
k−t

)− λ + 1)(
k
t

)
λ

(
k
t

)
(
(
n−k
k−t

)− λ)

)
.

For the Steiner systems S(k− 1, k, n) Corollary 5 was known before. By
Proposition 6 we have

Corollary 6 Each t-(n, k, 1)-design is a maximal independent set in (J(n, k))k−t.

It is shown in [7, 8], that t-(n, k, λ)-designs exist for sufficiently large n if
their parameters meet the well-known arithmetic conditions. This guarantees
the existence of perfect 2-colorings with corresponding parameters.

A matrix H of size n× n is called the Hadamard matrix if it consists of
±1 and satisfies the equation HH∗ = nIn. By multiplying rows and columns
of H by −1 we can reduce H to the Hadamard matrix whose first row and
first column consist only of 1’s. Each other row or column of such Hadamard
matrix contains exactly equal numbers of 1 and −1. It is well known that
the Hadamard matrices exist only if n = 4m. Consider a matrix Am of size
(4m+3)× (4m+3) obtained by removing the first row and the first column
of the reduced Hadamard matrix and by changing entries −1 by 0. We can
regard all rows of Am as binary (4m + 3)-tuples of weight 2m + 1. It is well
known that

Proposition 7 The collection of rows of Am is a design with parameters
2-(4m + 3, 2m + 1,m).

Corollary 7 The Hadamard matrices are equivalent to perfect 2-colorings
of the corresponding multigraph with certain quotient matrix.
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Let q be a prime power. Consider an n-dimensional vector space Xn
q

over the Galois field Xq = GF (q). The Grassmann graph is a graph whose
vertices are k-dimensional subspaces of Xn

q and two vertices are joined by
an edge whenever the corresponding subspaces are intersected by a (k − 1)-
dimensional subspace.

A q-design or subspace design with parameters t-(n, k, λ)q is a such col-
lection of k-dimensional vector subspaces in Xn

q that each t-dimensional sub-
space is included into exactly λ k-dimensional subspaces from this collection.
The subspace designs are q-analogs of combinatorial designs. By a similar
way a subspace design with parameters t-(n, k, λ)q can be regarded as a
λ-fold transversal in the hypergraph Gq

n,k,t. Vertices of Gq
n,k,t are all possi-

ble k-dimensional subspaces in Xn
q and hyperedges of Gq

n,k,t are collections of
subspaces which include a fixed t-dimensional subspace. In the case t = k−1,
the multigraph M12(D(Gq

n,k,t)) without loops coincides with Jq(n, k).
Similar to the case of combinatorial designs above, we obtain the next

corollary of Proposition 5.

Corollary 8 A set D is a subspace design with parameters t-(n, k, λ)q if and
only if the indicator function of D is a perfect 2-coloring of M12(D(Gq

n,k,t))

with quotient matrix

( [
k
t

]
q
(λ− 1)

[
k
t

]
q
(
[
n−k
k−t

]
q
− λ + 1)[

k
t

]
q
λ

[
k
t

]
q
(
[
n−k
k−t

]
q
− λ)

)
, where

[
k
t

]
q

=

(qk−1)···(qk−t+1−1)
(qt−1)···(q−1) are the Gaussian binomial coefficients.

Spreads are subspace designs with parameters 1-(n, k, 1)q. Constructions
of spreads and subspace designs with λ > 1 are studied for a long time.
The first subspace design with t > 1 and λ = 1 was found recently. This is
the subspace design with parameters 2-(13, 3, 1)2, in other words, this is a
2-analog of the Steiner triple system [9].

5 Difference Sets and Bent Functions

Let K be a finite abelian group. A partial difference set with parameters
(v, k, λ, µ) is the set D ⊆ K, |K| = v, |D| = k, where for each nonzero
a ∈ D there exist exactly λ pairs d1, d2 ∈ D such that d1 − d2 = a, and
for each nonzero a ∈ K \D there exist exactly µ pairs d1, d2 ∈ D such that
d1 − d2 = a. In the case µ = λ, every partial difference set D ⊆ K is called
simply a difference set with parameters (v, k, λ).

A convolution of functions f, g : K → R is defined by the equation
f ∗ g(y) =

∑
x∈K

f(x)g(y − x). Denote by δ : K → R the function taking

the value |K| in the identity element of K and 0 in the other elements. Let
1 be the function that takes value 1 identically. It is known the following
characterization of partial difference sets, see [10] for instance.
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Proposition 8 A set D ⊆ K is a partial difference set with parameters
(v, k, λ, µ) if and only if χD ∗ χ−D = λ · χD + µ · (1− χD) + (k − µ)δ.

Let D be a difference set. Consider the matrix QD(x, y) = χD(x−y). By
the definition, every pair of columns and every pair of rows of QD contains
the same number of pairs (1, 1) as well as the other pairs (0, 1), (1, 0), (0, 0).
If we regard the rows of QD as an indicator function of blocks, then the
collection of the rows is a 2-(v, k, λ)-design. If, as in this case, the cardinality
of 2-design is equal to its length, then the design is called symmetric.

As a definition of Boolean bent function b : {0, 1}n → {0, 1} we can take
the following property: the convolution (−1)b ∗ (−1)b takes the value 2n

in the zero vector and zeros in the remaining arguments. It is clear that
(−1)b = 1− 2b. By Proposition 8 we obtain that bent functions correspond
to difference sets in Zn

2 . It is known (see [11] for instance) that bent functions
exist if and only if n is even and the number of values 1 of a bent function
is equal to either 2n−1 + 2n/2−1 or 2n−1 − 2n/2−1. Moreover, the following
statement holds.

Proposition 9 Let b be a Boolean bent function and let B = {x ∈ {0, 1}n |
b(x) = 1}, i. e., b = χB . Then B is a difference set with parameters either
(2n, 2n−1− 2n/2−1, 2n−2− 2n/2−1) or (2n, 2n−1 +2n/2−1, 2n−2 +2n/2−1). The
converse statement is also true.

The parameters of the difference set in Proposition 9 is called the Mc-
Farland parameters [12]. It is easy to prove that each difference set with the
McFarland parameters is possible to transform into some Hadamard matrix.

A connected graph G is strongly regular with parameters (v, k, λ, µ),
whatever |V (G)| = v, the degree of each vertex equals k, each two adja-
cent vertices have λ common neighbors, and each two non-adjacent vertices
have µ common neighbors. For a group K we consider a set A ⊂ K of gen-
erator such that A−1 = A and ε /∈ A, where ε is the identity element of K.
The Cayley graph Cay(K, A) is the graph whose vertices are the elements of
K and two vertices x, y ∈ K are joined by an edge if y = xa for some a ∈ A.
The conditions A−1 = A and ε /∈ A imply that Cay(K,A) is a simple graph.

Consider the Cayley graph of an abelian group K with a set D of gen-
erators such that D = −D and 0 6∈ D. The definition of a partial difference
set with parameters (v, k, λ, µ) implies that the graph Cay(K, D) is strongly
regular with parameters (v, k, λ, µ). Indeed, vertices x, y ∈ K are adjacent
in Cay(K, D) if and only if x + a = y for some a ∈ D. Thus, by the defini-
tion of partial difference set, there exist exactly λ pairs d1, d2 ∈ D such that
a = d1−d2. Consequently, there exist exactly λ vertices b, b = x+d1 = y+d2

adjacent to both vertices x and y in Cay(K, D). By a similar way we can
consider the case of non-adjacent vertices x, y ∈ K. It is easy to see that
the converse statement is true, i. e., if Cay(K, D) is a strongly regular graph
then D is a partial difference set in K.
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As we showed above, each difference set D with parameters (v, k, λ) cor-
responds to a symmetric 2-(v, k, λ)-design. If D = −D and 0 6∈ D then
QD(x, y) = χD(x− y) is the adjacency matrix of Cay(K, D). The converse
statement is also true: if a matrix A is symmetric and has only zeros on the
main diagonal, and rows of A are blocks of a 2-(v, k, λ)-design, then A is the
adjacency matrix of some strongly regular graph with parameters (v, k, λ, λ).

6 Difference Sets, Strongly Regular Graphs and Bent
Functions as Perfect Colorings

Further we will show that each strongly regular graph and, in particular, each
partial difference set corresponds to a perfect 2-coloring of some hypergraph.

Consider the complete graph Kn on n vertices. Define a hypergraph Γn

whose vertices are edges of Kn and a triple of vertices constitutes a hyperedge
wherever these vertices generate a triangle in Kn. Let G be a graph on the
same set of vertices. Define a coloring of Γn as follows: f(e) = 1 if e ∈ E(G)
and f(e) = 0 if e 6∈ E(G). The coloring f is perfect if and only if G is
strongly regular. In order to see this we need to verify the property: for
each two vertices u and v the numbers of vertices adjacent to either u or v,
adjacent to both u and v, and adjacent to neither u no v in G depend only on
the adjacency of u and v in G. This condition coincides with the definition
of a strongly regular graph. In particular, for the strongly regular graph G
with parameters (n, k, λ, µ) we obtain that if u and v are adjacent in G, then
the number of vertices which are adjacent to both vertices u and v equals λ;
the number of vertices which are adjacent to either u or v equals k − λ; the
number of vertices which are not adjacent to u or v equals v − 2− 2k + λ.

Next we will consider the abelian group Zn
2 . Denote by ∆n a 3-uniform

hypergraph whose vertices are elements of Zn
2 without 0 and triples {a1, a2, a3}

are hyperedges wherever a1 + a2 + a3 = 0. Notice that the equality a1 +
a2 + a3 = 0 implies that all three elements ai 6= 0, i = 1, 2, 3 are different.
If D is a partial difference set D ⊂ Zn

2 with parameters (v, k, λ, µ), then
χD is a perfect 2-coloring of ∆n. Indeed, the equation a1 + a2 + a3 = 0 is
equivalent to the equation a1 = a2 − a3 in Zn

2 . Then each vertex a1 ∈ D
is incident to λ hyperedges containing three elements of D and each vertex
a1 6∈ D is incident to µ hyperedges containing two elements of D. Since
every pair a, b ∈ Zn

2 \{0} belongs to exactly one hyperedge, we can calculate
the numbers of hyperedges containing a vertex a ∈ D or a 6∈ D for all color
compositions of hyperedges. These numbers depend only on the color of the
vertex. Thus, χD is a perfect 2-coloring by the definition. The converse
statement is also true. Let D be the set of 1 colored vertices. It is sufficient
to observe that the parameter λ of the partial difference set D is equal to the
number of hyperedges of the color composition (1, 1, 1) which contain a fixed
vertex of color 1, and the parameter µ is equal to the number of hyperedges
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of the color composition (0, 1, 1) which contain a fixed vertex of color 0.
Therefore, the next statement follows from Proposition 9.

Proposition 10 Boolean bent functions one-to-one correspond to perfect 2-
colorings of ∆n with certain quotient matrix.

By Proposition 4, a perfect 2-coloring of ∆n induces a perfect coloring
of the line graph E(∆n). Since an intersection of every two hyperedges of
∆n consists of at most one vertex, E(∆n) is a simple graph. Notice that a
2-coloring χD of ∆n induces a 4-coloring of E(∆n) because each hyperedge
consists of three vertices and, consequently, it can contain 0, 1, 2 or 3 vertices
of the first color. Consider elements of Zn

2 as elements of the vector space
Xn

2 . It is easy to see that hyperedges of ∆n one-to-one correspond to 2-
dimensional subspaces of Xn

2 . Furthermore, two hyperedges of ∆n have
common vertex if and only if the corresponding subspaces meet along a 1-
dimensional subspace. Thus the graph E(∆n) is equivalent to the Grassmann
graph J2(n, 2) by the definition.

By Proposition 9, we obtain that a Boolean bent function generates a
difference set in Zn

2 . As proved above, this set induces a perfect 4-coloring
of J2(n, 2). In the following theorem we prove that the converse holds: each
perfect coloring of J2(n, 2) with certain quotient matrix determines a Boolean
bent function. We consider only the case as bent functions with 2n−1+2n/2−1

values 1, the case as bent functions with 2n−2 − 2n/2−1 values 1 is similar.

Theorem 2 Bent functions b : {0, 1}n → {0, 1} with |supp(b)| = 2n−1 +
2n/2−1 and b(0̄) = 1 one-to-one correspond to perfect colorings of J2(n, 2)
with quotient matrix


3(2n−3 − 2
n
2
−2 − 1) 3 · 2n−2 − 3 3(2n−3 + 2

n
2
−2) 0

2n−2 − 2
n
2
−1 5 · 2n−3 − 2

n
2
−2 − 5 2n−1 + 2

n
2
−1 2n−3 + 2

n
2
−2 − 1

2n−3 − 2
n
2
−2 2n−1 − 2

n
2
−1 − 1 5 · 2n−3 + 2

n
2
−2 − 3 2n−2 + 2

n
2
−1 − 2

0 3(2n−3 − 2
n
2
−2) 3 · 2n−2 3(2n−3 + 2

n
2
−2 − 2)


.

Proof. At first we obtain a coloring of J2(n, 2) from a given bent function.
We determine a vertex color of J2(n, 2) as the number of values 1 of the bent
function on the corresponding 2-dimensional subspace. Since b(0̄) = 1, there
exit the 1st, 2nd, 3rd and 4th colors. We need to prove that this coloring is
perfect.

By the definition of bent function it follows that

|{x ∈ {0, 1}n : b(x)⊕b(x+y) = 0}| = |{x ∈ {0, 1}n : b(x)⊕b(x+y) = 1}| (2)

for each y 6= 0̄.
Consider two 2-dimensional subspaces meeting along {0̄, y}. Denote by

Aαβ the number of pairs of values (α, β) among all pairs (b(x), b(x + y)).
Then A01 +A10 = A00 +A11 by (2). Moreover, A01 +A10 +A00 +A11 = 2n,

13



A01 = A10 from the symmetry and A10 + A11 = |supp(b)| = 2n−1 + 2n/2−1.
Hence, it is easy to calculate that A01 = A10 = 2n−2, A11 = 2n−2 + 2

n
2 and

A00 = 2n−2 − 2
n
2
−1.

If a color of some subspace is known then we can calculate the number
of subspaces of each color adjacent to it in J2(n, 2). For instance, the 4th
color subspace is not adjacent to subspaces of the first color; it is adjacent
to 3A00/2 subspaces of 2nd color because each pair of vectors (x, x + y),
(b(x), b(x + y)) = (0, 0), is counted twice (x, x + y) and (x + y, x); it is
adjacent to (3A11 − 12)/2 subspaces of the 4th color because the initial
subspace contains four vectors of the value 1 and by fixing every of three
nonzero vectors we have (A11 − 4)/2 adjacent subspaces of the 4th color.
Then the coloring of J2(n, 2) is perfect by the definition. Furthermore, we
can calculate the quotient matrix of the coloring

1
2




3A00 − 6 6A01 − 6 3A11 0
2A00 4A01 + A00 − 10 2A01 + 2A11 A11 − 2
A00 2A01 + 2A00 − 2 4A10 + A11 − 6 2A11 − 4
0 3A00 6A01 3A11 − 12


.

Suppose that a perfect 4-coloring of J2(n, 2) with this quotient matrix is
given. Denote b as follows: let b(0̄) = 1 and b(x) = 1 at all points x ∈ Xn

2

belonging to subspaces of the 4th color. At the remaining points x ∈ Xn
2 we

put b(x) = 0. At the last part of the proof we verify that the resulting b is
a bent function.

Denote by M(x) the number of the 4th color subspaces containing a
vector x ∈ B = {x 6= 0̄ : b(x) = 1}. By the entry (1st row, 4th column)
of the quotient matrix we conclude that subspaces of the 1st color do not
contain x. Moreover, all vectors of a subspace belong to B if and only if
it is the 4th color subspace because subspaces of other colors are adjacent
to subspaces of the 1st color. By the entry (4th row, 4th column) of the
quotient matrix we conclude that the average of M(x) over an arbitrary
subspace of the 4th color equals A11

2 − 1, where A11 = 2n−2 + 2
n
2 . Suppose

that there is a such x ∈ B that M(x) 6= A11
2 − 1. Let us take x ∈ B such

that the difference |M(x)− (A11
2 − 1)| attains the maximum.

Suppose M(x) > A11
2 −1 and this difference is greater than the difference

|M(u)− (A11
2 − 1)| for each u ∈ B such that M(u) < A11

2 − 1. We will show
that there exist one more vector v ∈ B such that M(v) ≥ A11/2. Consider
some subspace containing x. For both vectors z 6= x and x + z we have that
M(z) < A11

2 − 1 and M(x + z) < A11
2 − 1 because the average value of M(y)

over every subspace of the 4th color is A11
2 − 1 but the difference between

M(x) and A11
2 − 1 is strongly maximal by the assumption. If M(z) > 1 or

M(x + z) > 1 than there exist at least two distinct subspaces, and each of
them contains a vector v ∈ B such that M(v) ≥ A11/2. If M(z) = 1 and
M(x + z) = 1 then M(x) = 3A11

2 − 6 and each subspace containing x is
adjacent to 3A11

2 − 6 subspaces of the 4th color. It contradicts the definition
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of the quotient matrix.
We have shown that there exist at least two vectors x, y ∈ B such that

M(x) ≥ M(y) ≥ A11/2. Consider the subspace {0̄, x, y, x + y}. We obtain
that x + y 6∈ B because x + y ∈ B contradicts the choice of x. But there
are no subspaces of colors 1, 2 or 3 adjacent to M(x) + M(y)− 1 ≥ A11 − 1
subspaces of the 4th color.

Next we suppose that the difference |M(x)− (A11
2 − 1)| is maximal (not

necessarily strictly maximal) for some x ∈ B such that M(x) < A11
2 − 1.

Consider some 4th color subspace containing x. In this subspace there exists
a vector z ∈ B such that M(z) > A11

2 − 1 because the average number of
M(v) over every subspace of the 4th color is the constant. By a similar
way we conclude that every subspaces (among M(z) 4th color subspaces)
containing z contains vectors y ∈ B such that M(y) < A11

2 − 1. We will use
three distinct x, y, y′ ∈ B satisfied the last inequality.

Consider the subspace Ω = {0̄, x, y, x + y}. This subspace is adjacent to
M(x)+M(y) subspaces of color 4 because the opposite assumption x+y ∈ B
contradicts maximality of the difference |M(x)− (A11

2 − 1)|. The color of Ω
does not equal 4 because of x + y 6∈ B and it does not equal 1 because the
1st color subspaces are not adjacent to subspaces of color 4. The color of Ω
does not equal 3 because M(x) + M(y) < A11 − 2, i. e., the 3rd color of Ω
contradicts the quotient matrix. It leaves the last possibility that the color of
Ω is equal to 2. By the quotient matrix, Ω is adjacent to A00 = 2n−2− 2

n
2
−1

subspaces of the 1st color. These subspaces do not contain x or y because
subspaces of colors 1 and 4 are not adjacent.

Consider subspace Ω′ = {0̄, x, y′, x + y′}. By the same way we obtain
that x + y′ belongs to A00 subspaces of color 1. Then the subspace {0̄, x +
y, x + y′, y + y′} is adjacent to 2A00 − 1 subspaces of color 1 at least. By
the quotient matrix such subspace does not exist. By this contradiction we
proved that M(x) = A11

2 − 1 for each x ∈ B.
By the 4th column of the quotient matrix we obtain that every subspace

of color i contains i− 1 vectors of B. Consequently, the coloring of J2(n, 2)
induces a perfect 2-coloring of ∆n. It is easy to see that parameters of
the coloring of ∆n correspond to parameters of a coloring induced by a
bent function. Therefore, the coloring of J2(n, 2) with the quotient matrix
determined above induces a bent function by Proposition 10. ¤

It is not difficult to verify that, combining pairwise even and odd colors
in the above 4-coloring of J2(n, 2), we obtain a perfect coloring with quotient
matrix(

3 · 2n−2 − 3 3 · 2n−2 − 3
3 · 2n−2 3 · 2n−2 − 6

)
.

But these perfect 2-colorings can not one-to-one correspond to bent func-
tions. When we add an affine function to a bent function, we will get a new
bent function but the 2-coloring will remain the same.
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