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Abstract—By a (Latin) unitrade of order k, we call a subset of vertices of the Hamming graph
H(n, k) that intersects any maximal clique at either 0 or 2 vertices. A bitrade is a bipartite
unitrade, i.e., a unitrade that can be split into two independent subsets. We study the cardi-
nality spectrum of bitrades in the Hamming graph H(n, k) with k = 3 (ternary hypercube) and
the growth of the number of such bitrades as n grows. In particular, we determine all possible
small (up to 2.5 ·2n) and large (from 14 ·3n−3) cardinalities of bitrades of dimension n and prove
that the cardinality of a bitrade takes only values equivalent to 0 or 2n modulo 3 (this result
can be treated in terms of a ternary Reed–Muller type code). A part of the results are valid
for an arbitrary k. For k = 3 and n → ∞ we prove that the number of nonequivalent bitrades
is not less than 2(2/3−o(1))n and not greater than 2α

n

, α < 2 (the growth order of the double
logarithm of this number remains unknown). Alternatively, the studied set Bn of bitrades of
order 3 can be defined as follows: B0 consists of three rationals −1, 0, 1; Bn consists of ordered
triples (a, b, c) of elements from Bn−1 such that a+ b+ c = 0.

Key words : Latin bitrades, unitrades, Reed–Muller codes, combinatorial configurations, Boolean
functions.
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1. INTRODUCTION

For combinatorial objects (configurations) of various types it is useful to define the notion of
a bitrade in such a way that the definition of a bitrade is not directly based on definitions of
original objects but rather involves various differences (say symmetric) of objects of this kind
(see [1]). Bitrades reflect possible distinction between two combinatorial configurations of one and
the same type, which is important in enumeration, description, and analysis of properties of the
combinatorial configurations. There are known studies of bitrades (or trades) of combinatorial block
designs [2–6], Latin squares [7], generalized designs in partially ordered sets [8], perfect codes [9,10],
correlation immune Boolean functions and bent functions [11]. In the present paper we consider
Latin bitrades corresponding to MDS codes with distance 2, or (equivalently) Latin hypercubes,
or polyadic quasigroups. We study the spectrum of possible cardinalities of bitrades and obtain
bounds on their number.

Let us pass to formal definitions. Let Qk = {0, . . . , k− 1}. Define the Hamming distance d(u, v)
to be the number of noncoinciding components in the tuples u, v ∈ Qn

k . The metric space (Qn
k , d),

as well as the distance-1 graph ΓQn
k on the vertex set Qn

k , is said to be a k-ary n-hypercube or
a Hamming graph. The weight of a vertex u ∈ Qn

k is defined as wt(u) = d(u, 0̄), where 0̄ is the
all-zero n-tuple (below we also use the analogous notation 1̄ and −1). A face in Qn

k is a set of
vertices of a hypercube obtained by fixing values of one or several coordinate(s). A set U ⊂ Qn

k is
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said to be a unitrade (of dimension n) if the cardinalities of its intersections with one-dimensional
faces (maximal cliques in ΓQn

k) take only two values: 0 and 2. Usually, a bitrade is defined as a pair
{U0, U1} consisting of two independent parts of a bipartite unitrade U = U0 ∪U1. However, it will
be convenient for us to define a bitrade as a unitrade U ⊂ Qn

k such that the subgraph ΓU generated
by the set of vertices U is bipartite. In the two-dimensional case (n = 2), any unitrade is a bitrade.
Indeed, Kőnig’s theorem implies that any square (0, 1)-matrix containing the same number of ones
in each column and each row contains a diagonal. Hence, the table of the characteristic function
of a two-dimensional unitrade, which can be considered as a (0, 1)-matrix, after deleting zero rows
and columns contains two disjoint diagonals of ones. For n ≥ 3 and k ≥ 3 there are unitrades
that are not bitrades. A minimal example is given below; the three two-dimensional arrays in it
correspond to three parallel hyperfaces of a three-dimensional unitrade:

1 1 0

1 0 1

0 1 1

,

0 1 1

1 0 1

1 1 0

,

1 0 1

0 0 0

1 0 1

. (1)

Consider the correspondence between the above definition and the general notion of a bitrade.
An MDS code is a subset of the hypercube Qn

k intersecting every face of a fixed dimension r at
exactly one element. One can easily see that MDS codes are codes with minimum distance r + 1
between vertices and with the maximum cardinality kn−r for this distance, i.e., codes meeting the
Singleton bound. In our context, we are only interested in MDS codes with code distance 2, i.e.,
in the case of r = 1. (A function expressing the value of one coordinate of vertices of such a code
through the other n− 1 coordinates is said to be a Latin (n− 1)-cube, a Latin square in the case of
n = 3, and an algebraic system with this function as an operation is said to be an (n−1)-ary quasi-
group). It is seen from the definitions that the symmetric difference of two MDS codes is a bitrade.

The isometry group of the hypercubeQn
k is generated by the group of permutations of coordinates

and the isotopy group, i.e., group of permutations of elements of Qk in each coordinate. In the case
of k = 3, the isometry group of Qn

3 consists only of affine transformations of Qn
3 as an n-dimensional

vector space over GF(3). Subsets of the hypercube that can be interchanged by isometries of the
space are said to be equivalent. A retract of a set U ⊂ Qn

k is a subset of the hypercubeQn−1
k obtained

as the intersection of U with some face of dimension n−1. The direction of a retract or of a hyperface
is the index of the fixed coordinate in this face. The definitions immediately imply the following.

Proposition 1. Any retract of a unitrade (bitrade, MDS code) is a unitrade (bitrade, MDS
code) in a hypercube of a smaller dimension.

Proposition 2. The image of a unitrade (bitrade, MDS code) under an isometry of the hyper-
cube is a unitrade (bitrade, MDS code).

In this paper we almost completely confine ourselves with considering bitrades in Qn
3 . This case

seems to be a keystone, since any ternary bitrade can be isometrically embedded in a hypercube Qn
k

of a larger order k ≥ 4; thus, answering many questions in the general case seems to be no simpler
than for the case of k = 3. On of such questions is the problem of asymptotics for the double
logarithm of the number of objects when k is fixed and n grows, and for the case of k = 3 this
problem is the most prominent: the known lower bound on the number of bitrades does not prove
that this quantity is doubly exponential, whereas the upper bound is close to the trivial one 22

n

(from which we slightly move away in this paper; see Theorem 8 below). For other orders, k > 3,
a doubly exponential lower bound is obtained by a switching construction based on the possibility
to arrange disjoint bitrades in the space in question (see lower bounds for the number of Latin
hypercubes [12, 13]). On one hand, a limited number of “degrees of freedom” of Latin bitrades of
order 3 allows for hope for constructing a consistent combinatorial-algebraic theory of such objects
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(an attempt is made in the present paper); on the other hand, hardness of certain questions is
completely revealed even for this small order.

For the analysis of unitrades in this paper, we use methods of linear algebra (Sections 2 and 4.2),
theory of Boolean functions (Section 3), and coding theory (Sections 3 and 4.1). In particular, we
show a relation between the problem of description of ternary bitrades and the problem of finding
the polynomial complexity of a Boolean function [14, 15]. Also, an interrelation between ternary
bitrades and almost balanced Boolean functions is known (Proposition 7).

In Section 4 we study the cardinality spectrum of ternary bitrades and of unitrades and bitrades
of higher orders. We show that the cardinality of any ternary bitrade of dimension n is equivalent
to either 0 or 2n modulo 3. The minimum cardinality of a nonempty bitrade (not only ternary)
of dimension n is 2n. All possible cardinalities of bitrades no greater than 2·2n have been previously
known (see [16]). In the present paper we show a relation between the cardinality spectrum of
bitrades and the weight spectrum of a binary Reed–Muller code (Proposition 9). Furthermore,
we find all possible cardinalities of unitrades and bitrades of dimension n from the minimum 2n

to 2.5 · 2n (Theorems 1 and 5 and Corollary 7). A ternary bitrade of the maximum cardinality
2 ·3n−1 is a pair of disjoint MDS codes. It is known (see, e.g., [17]) that there exists a unique (up to
equivalence) ternary bitrade of this cardinality. Note that even for order 4 there are exponentially
many nonequivalent bitrades of the maximum cardinality 2 · 4n−1 (see [13,17]).

One of the main problems in the analysis of bitrades is finding their number as a function of
the dimension n and order k. Since bitrades correspond to differences of combinatorial objects,
studying the variety of bitrades opens perspectives for studying the variety of original objects and
bounding their number. For Latin hypercubes (of order greater than 4) of dimension n, with which
the bitrades in question are related, even the order of the growth rate of the logarithm of their
number as n → ∞ is still unknown (see [13]). In [16] there was obtained an almost exponential
(eΩ(

√
n)) asymptotic lower bound on the number of nonequivalent bitrades in Qn

3 . In Section 5.1
we prove the lower bound 2(2/3−o(1))n on the number of nonequivalent bitrades in Qn

3 as n → ∞
(Theorem 7) and show that a higher-than-exponential lower bound cannot be obtained by a method
similar to ours (Theorem 6). In Section 5.2 we derive an upper bound of the form 2α

n
, α < 2, for

the number of bitrade in Qn
3 (Theorem 8), which considerably improves the trivial upper bound 22

n
.

However, the question of the growth rate for ternary bitrades of dimension n remains open: we
do not even know whether this function is exponential or doubly exponential in n. Results of
numerical experiments for small n, presented in a table in Section 4.5, show that the growth rate
is faster than exponential; however, it would be hasty to conclude about the linear growth of the
double logarithm.

The method of proving the upper bound uses the fact that in the hypercube Qn
3 with n ≥ 7 we

can find a set of cardinality strictly greater than 3n − 2n which contains no bitrade and even no
symmetric difference of two bitrades. For a more well-known problem on the maximal subset of a
hypercube containing no arithmetic progression (which in the ternary hypercube coincides with a
subset containing no one-dimensional affine subspace), there was recently obtained an asymptotic
upper bound of the form o(αn), α < 3 (see [18]). Finding in a ternary hypercube a subset of the
maximal cardinality that contains no bitrades remains an open problem.

Concluding Section 1, let us recursively describe a class Bn of objects which is defined quite
naturally and is equivalent to the class of Latin bitrades of order 3 (this formulation is merely
illustrative and is never used in what follows):

B0 = {−1, 0, 1}, Bn = {(a, b, c) ∈ B3
n−1 | a+ b+ c = 0}.

If elements Bn are represented as n-dimensional arrays with entries −1, 0, 1, then the set of cells
with nonzero values in such an array precisely forms a bitrade.
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2. LINEAR SPACES

Let F be a field. Consider the set of functions {g : Qn
k → F} as a vector space over F. Denote

by Vn,k(F) the subspace of functions for which the sum of values over every one-dimensional face
(maximal clique in the graph ΓQn

k) is 0. Consider a bitrade B ⊂ Qn
k . It corresponds to a function

b[B] : Qn
k → {0,±1} which takes value 1 on one part of the bitrade, value −1 on the other, and is

zero at all other vertices. Consider {0,±1} as a subset of F (for a field of characteristic 2 we have
−1 = 1). Clearly, b[B] ∈ Vn,k(F). The characteristic function of a unitrade in contained in Vn,k(F)
in the case where F has characteristic 2.

Introduce the following partial order � on Qk: k − 1 is the maximal element, and all other
elements of Qk are incomparable. Let us extend this partial order onto Qn

k . Let (x1, . . . , xn),
(y1, . . . , yn) ∈ Qn

k . We denote (x1, . . . , xn) � (y1, . . . , yn) if for any i ∈ {1, . . . , n} we have xi � yi.
Note that the set Gy = {x ∈ Qn

k | x � y} is a face of the hypercube Qn
k of dimension equal to the

number of symbols k − 1 in y.

Let us show that dimVn,k(F) = (k − 1)n. Let f ∈ Vn,k(F). The sum of values of f over every
face of any nonzero dimension is zero, and therefore

f(y) = −
∑

x∈Qn
k−1

, x�y

f(x) for y ∈ Qn
k \Qn

k−1. (2)

Hence, to define a function f ∈ Vn,k(F), it is necessary and sufficient to define it on all minimal
elements, i.e., on Qn

k−1. Let us construct a family of linearly independent functions of the same
cardinality. Let x ∈ Qn

k−1. Consider the set Bx = {y ∈ Qn
k | x � y}. It is easily seen that the graph

ΓBx is isomorphic to the Boolean hypercube ΓQn
2 ; in particular, Bx is a bitrade. Here, to a tuple

z ∈ Qn
2 there corresponds a vertex y ∈ Bx whose coordinates corresponding to ones in z equal k−1

and coordinates corresponding to zeros in z are the same as in x. Define w̃t(y) to be the number
of coordinates in y equal to k − 1; i.e., w̃t(y) = wt(z). A function corresponding to this bitrade

can be specified by the explicit formula bx(y) = (−1)w̃t(y)χBx
(y). Since supp(bx)∩Qn

k−1 = {x}, the
collection of functions {bx | x ∈ Qn

k−1} is a basis in Vn,k(F); hence, dimVn,k(F) = (k − 1)n.

The following statement is easily proved by induction (see [16]).

Proposition 3. Let f ∈ Vn,k(F) and supp(f) 
= ∅. Then we have (a) |supp(f)| ≥ 2n; (b) if
|supp(f)| = 2n, then the graph Γ(supp(f)) is isomorphic to the Boolean hypercube ΓQn

2 .

It is easily seen that in total there are

(
k

2

)n
variants to choose a unitrade (bitrade) with sup-

port of cardinality 2n. As is shown above, a basis of the space Vn,k(GF(2)) can be composed
of characteristic functions of the Boolean hypercube (more precisely, of sets inducing a subgraph
isomorphic to the Boolean hypercube of dimension n). Since the number of such sets is greater
than the dimension of the space for k > 2, a unitrade has more than one representation as a linear
combination of Boolean hypercubes over GF(2). The minimum number of Boolean hypercubes in
such a representation for a unitrade U will be referred to as the rank of the unitrade and denoted
by rank(U).

Let us consider the ternary hypercube in more detail. Every element of the space Vn,3(GF(2))
is unitrade, since an even number of ones out of three possible in a one-dimensional face is either 0
or 2. The dimension of the space Vn,3(GF(2)) is 2n, so in the hypercube Qn

3 there are exactly 22
n

different unitrades. By induction on the dimension n, one can easily prove the following.
Proposition 4. (a) Any pair of nonempty unitrades in Qn

3 has a nonempty intersection;

(b) If a nonempty unitrade in Qn
3 is a subset of another unitrade, then these unitrades coincide;

(c) The graph ΓU of a unitrade U is connected in Qn
3 .

Claim (c) implies that if a unitrade U ⊂ Qn
3 is a bitrade, then it is uniquely split in two parts.
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3. BOOLEAN FUNCTIONS

Let f : Qn
2 → Q2 be a Boolean function. Define the function U [f ] : Qn

3 → Q2 by U [f ](y) =⊕
x∈Qn

2 , x�y
f(x) (here and in what follows, the operation ⊕ denotes addition in the binary field GF(2)).

It is seen from the definition that U [f ]|Qn
2
= f . Since the definition of U [f ] and equation (2) coincide

over the field GF(2), U [f ] is the characteristic function of a unitrade in Qn
3 . Moreover, the above

arguments imply that there is a one-to-one correspondence between Boolean functions and ternary
unitrades.

Let x ∈ Qn
2 . Introduce the following notation: x1i = xi, x

−1
i = xi ⊕ 1, x0i = 1, and if x =

(x1, . . . , xn), then xv = xv11 . . . xvnn , where v ∈ Qn
3 = {0,±1}n.

A polynomial representation of a Boolean function f is a representation of the form f(x) =
fA(x1, . . . , xn) =

⊕
v∈A⊂Qn

3

xv. The minimum number of terms in this representation (min |A|) is

called the polynomial complexity of f (see [15]).

Denote {0,±1}0 = {0, 1}, {0,±1}1 = {1,−1}, {0,±1}−1 = {0,−1}, and {0,±1}v = {0,±1}v1 ×
. . . × {0,±1}vn . All Boolean hypercubes embedded in Qn

3 are cubes of the form {0,±1}v . It is
easily seen that a restriction of the characteristic function of a hypercube {0,±1}v onto the Boolean
subcube {0, 1}n coincides with the monomial xv; i.e., χ{0,±1}v (x) = xv for x ∈ Qn

2 . Therefore,

U [fA] =
⊕

v∈A⊂Qn
3

χ{0,±1}v , and rank(U [f ]) is equal to the polynomial complexity of f . The problem

of finding a minimum polynomial complexity representation for a Boolean function (minimization of
exclusive-OR-sum-of-products) is considered, e.g., in [14]. It is known (see [15]) that the maximum
complexity of a Boolean function in dimension 5 is 9, for dimension 6 it equals 15, and there exist
Boolean functions of seven arguments with polynomial complexity 24.

The definition of the polynomial complexity implies that the polynomial complexity of a Boolean
function is not greater than the sum of complexities of its two subfunctions obtained by fixing the
values 0 and 1 for some variable. This implies the following.

Corollary 1. The rank of a unitrade is not greater than the sum of ranks of its two different
retracts over an arbitrary coordinate.

A polynomial representation of a Boolean function is not unique. However, if one of the operators
x0, x1, or x−1 is not used, the representation becomes unique. In Section 2 we considered a basis in
the space f ∈ Vn,3(GF(2)) corresponding to the operators x1 and x−1. If we exclude the operator
x−1 (“negation”), we come to a basis of addition and multiplication over GF(2). Namely, any
Boolean function f : Qn

2 → Q2 can uniquely be represented in the form of a Zhegalkin polynomial
(in algebraic normal form)

f(x1, . . . , xn) =
⊕
y∈Qn

2

G[f ](y)xy11 . . . xynn ,

where G[f ] : Qn
2 → Q2 is a Boolean function.

The algebraic degree of a Boolean function f is the maximum degree of a term in its Zhegalkin
polynomial; i.e., deg f = max

G[f ](y)=1
wt(y).

The following fact holds true.

Proposition 5. For any Boolean function f we have G[f ](y) =
⊕

x∈Qn
2 , x�y

f(x).

Thus, G[f ] is the Möbius transform of f over GF(2). Since f(x) =
⊕

y∈Qn
2 , x�y

G[f ](y), we have the

equality G[G[f ]] = f for any Boolean function f . From the definitions of the Möbius transform and
of the operator U [ · ], it is seen that U [f ]|{0,2}n is the Möbius transform of the Boolean function f .
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Proposition 5 immediately implies the following known fact.

Proposition 6. A Boolean function f : Qn
2 → Q2 has an even number of ones in all faces of

dimensions not less than m if and only if deg f ≤ m− 1.

Vectors of values of Boolean functions f : Qn
2 → Q2 can be considered as elements of a Boolean

cube of dimension 2n. The set of vectors of values of Boolean functions of algebraic degree at
most m is called the Reed–Muller code R(m,n) in Q2n

2 . It is known that the minimum weight
of a nonzero code vector in R(m,n), which coincides with the cardinality of the support of the
corresponding Boolean function, is 2n−m.

Remark 1. Note the set of elements of the space Vn,k(GF(q)) can similarly be considered as
a linear code of length kn and cardinality q(k−1)n with code distance 2n. In particular, unitrades
in Qn

3 form a binary code of length 3n and cardinality 22
n
with code distance 2n.

In the case of k = q, the space Vn,k(GF(q)) has a quite natural representation in terms of
polynomials: it consists of all functions orthogonal to any monomial that does not essentially
depend of at least one of the n variables. One can easily see that for a prime q, a basis of
Vn,q(GF(q)) is the set of all monomials in which the degree of each variable is at most q − 2.
Thus, Vn,q(GF(q)) can be viewed a variants of a nonbinary generalization of Reed–Muller codes.
In particular, one of the results of Section 4.2 (Corollary 2) can be treated in terms of the weight
distribution of this code for q = 3: every third component of this distribution is zero.

In [19] a relation is shown between ternary bitrades and uniformity of the distribution of ones
of a Boolean function over faces. A Boolean function is said to be almost balanced in faces if the
numbers of zeros and ones of the function differ by at most 2 in any face of any size.

Proposition 7. Let a Boolean function f be balanced in faces, and let p(x) = x1 ⊕ . . . ⊕ xn be
the evenness indicator. Then the unitrade U [f ⊕ p] is a bitrade.

Proposition 1 implies that if a Boolean function f corresponds to a bitrade U [f ], then its
subfunctions obtained by fixing some variables also correspond to bitrades in hypercubes of smaller
dimensions.

4. CARDINALITY SPECTRUM OF THE SET OF BITRADES

In this section we prove properties of the cardinality spectrum of ternary bitrades, as well as
bitrades and unitrades of small cardinality in arbitrary hypercubes.

4.1. Cardinalities of Unitrades and the Weight Spectra of Reed–Muller Codes

Proposition 3 implies that the minimum cardinality of a nonempty unitrade of dimension n is 2n.
In [16] the following fact was proved.

Proposition 8. Any unitrade U ⊂ Qn
k with cardinality satisfying 2n+1 > |U | ≥ 2n is a bitrade

and has rank(U) = 2 and cardinality |U | = 2n+1 − 2s+1, where s ∈ {0, . . . , n− 1}.
Using the results of studying the weight spectra of Reed–Muller codes, we can substantially

restrict the spectrum of hypothetically small (from 2n to 5 · 2n−1) cardinalities of unitrades of
dimension n.

Proposition 9. Let U be a unitrade in Qn
k , k = 2τ. Then there exists a vector u ∈ R((τ−1)n, τn)

such that |U | = wt(u).

Proof. Let f = χU : Qn
k → {0, 1}. Consider an arbitrary one-to-one map ψ : Qτ

2 → Qk. Let a
Boolean function F be given by

F = f(ψ(x1, . . . , xτ ), ψ(xτ+1, . . . , x2τ ), . . . , ψ(xτ(n−1)+1, . . . , xτn)).

PROBLEMS OF INFORMATION TRANSMISSION Vol. 55 No. 4 2019
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Let us check that degF ≤ (τ − 1)n. Consider any face Δ of the Boolean hypercube of dimension
(τ − 1)n + 1. Since Δ is obtained by fixing values of n − 1 variables, there exists an i from 0 to
n − 1 such that the values of the variables xτi+1, . . . , xτi+τ are not fixed in Δ. By the definition
of a unitrade, under fixed values of all variables other than xτi+1, . . . , xτi+τ , the function F takes
the value 1 evenly many times. Hence, it takes the value 1 evenly many times in Δ. Proposition 6
implies that degF ≤ (τ − 1)n. Therefore, the vector of values of F is contained in the code
R((τ − 1)n, τn). Hence, to the unitrade U there corresponds some vector u ∈ R((τ − 1)n, τn).
Now, since the functions F and f take the value 1 the same number of times, we have |U | = wt(u).


Remark 2. A [t]-trade in QN
k is defined as a pair of disjoint sets of vertices in QN

k such that the
difference of their characteristic functions has zero sum over any (N − t)-dimensional face. By defi-
nition, a bitrade in QN

k is an [N −1]-trade. Similarly to Proposition 9, one can prove the following:
to a bitrade in Qn

k , k = 2τ , there corresponds a [t]-trade in Qτn
2 , t = n − 1. [t]-trades naturally

correspond to differences of orthogonal arrays and algebraic t-designs in Hamming graphs. A study
of cardinalities of small binary [t]-trades analogous to ours was conducted in [6]. In particular,
there were constructed trades of cardinalities from the series considered by us in Section 4.6.

In [20, 21] it was shown that nonzero vertices of R(m,n) can only be of weights αm2n−m with

αm = 2 − 2−k, k = 0, . . . , n − m − 1, or αm = 2 + 2−k, k = 2, . . . ,
⌊n−m

2

⌋
, or αm = 2

1

2
− 2−k,

k = 1, . . . , n−m− 1, or αm = 2
1

2
− 2−k − 2−(k+1), k = 3, . . . , n−m− 2, or αm ≥ 2

1

2
.

Theorem 1. The cardinality of a unitrade in Qn
k can only have values of the form αn2

n, where

αn = 2− 2−k, k = 0, . . . , n− 1, or

αn = 2 + 2−k, k = 2, . . . , �n/2�, or

αn = 2
1

2
− 2−k, k = 1, . . . , n− 1, or

αn = 2
1

2
− 2−k − 2−(k+1), k = 3, . . . , n− 2, or

αn ≥ 2
1

2
.

Proof. Any unitrade in Qn
k has cardinality at least 2n (Proposition 3). The restriction of a

unitrade onto a face (retract) is a unitrade by Proposition 1. Therefore, a unitrade intersecting
with five parallel hyperfaces of some direction has cardinality at least 5 · 2n−1 (the last case in
the assertion of the theorem). If a unitrade intersects with at most four parallel hyperfaces of
some direction and is a subset of vertices of a subgraph isomorphic to Qn

4 , then the desired follows
Proposition 9 (τ = 2) and the above-mentioned results of [20,21]. 


4.2. Ternary Bitrades as Linear Functions over GF(3)

First let us choose an appropriate basis in the space Vn,3(GF(3)). Here it will be convenient
to assume that Q3 = {0,±1} = GF(3) (−1 ≡ 2 mod 3). Let s0(a) = 1 and s1(a) = a. Define the
functions sα : Q

n
3 → Q3, α ∈ Qn

2 , by sα(x) = sα1(x1) . . . sαn(xn).

Proposition 10. (a) sα ∈ Vn,3(GF(3));
(b) {sα | α ∈ Qn

2} is a basis Vn,3(GF(3));
(c) 〈sα, sβ〉3 =

∑
x∈Qn

3

sα(x)sβ(x) = 0 except for the case of α = β = 1̄.

Proof. Claim (a) follows from the fact that
∑

a∈Q3

s0(a) =
∑

a∈Q3

s1(a) = 0.

(b) Note that α ∈ supp(sα) and that α ∈ supp(sβ) only if β � α, α, β ∈ Qn
2 . Let us arrange the

functions sα in descending (partial) order from 1̄ to 0̄. The support of each successive function con-
tains a point that is not contained in the support of the preceding functions. Therefore, at each step
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we obtain a linearly independent family of functions. As is shown above, dim(Vn,3(GF(3))) = 2n;
therefore, a family of linearly independent functions of cardinality 2n is a basis.

(c) Let the tuple α have a zero coordinate. Without loss of generality, assume that αn = 0.
Then we have∑

x∈Qn
3

sα(x)sβ(x) =
∑

sα1(x1)sβ1(x1) . . . sαn−1(xn−1)sβn−1(xn−1)
∑

xn∈Q3

s0(xn)sβn(xn)

=
∑

sα1(x1)sβ1(x1) . . . sαn−1(xn−1)sβn−1(xn−1)
∑

xn∈Q3

sβn(xn) = 0. 


Corollary 2. For any f ∈ Vn,3(GF(3)) we have 〈f, f〉3 ∈ {0, 2n mod 3}.
Proof. It follows from Proposition 10 that f =

∑
α∈Qn

2

aαsα and

〈f, f〉3 =
∑

α,β∈Qn
2

aαaβ
∑
x∈Qn

3

sα(x)sβ(x) = a21̄
∑
x∈Qn

3

s21̄ = a21̄|supp(s1̄)| = a21̄2
n,

where all operations are performed in the field GF(3). 

As is noted in Remark 1, the space Vn,3(GF(3)) is a ternary Reed–Muller type code, and

Corollary 2 means that the weight spectrum of this code has zeros in every third component.

Theorem 2. For any bitrade B ⊂ Qn
3 we have |B| ≡ 0, 2n mod 3.

Proof. Consider the function b : Qn
3 → Q3 taking values 1 and −1 on two parts of the bitrade B

and value 0 at other points. Then b ∈ Vn,3(GF(3)) and |B| mod 3 = 〈b, b〉3 ∈ {0, 2n mod 3}. 

Corollary 3. There is no bitrade U ⊂ Qn

3 of cardinality 2n+1.

4.3. Some Properties of the Cardinality Spectrum of Ternary Bitrades

Let us consider several simple properties of bitrades. Let f be a Boolean function of variables
x1, . . . , xn and g a Boolean function of variables y1, . . . , ym, the two sets of variables being disjoint.
Denote by f(x)g(y) the Boolean function of n+m variables. The following result is given in [16].

Proposition 11. If U [f ] ⊂ Qn
3 and U [g] ⊂ Qm

3 is a bitrade, then U [f(x)g(y)] ⊂ Qn+m
3 is a

bitrade and |U [f(x)g(y)]| = |U [f ]||U [g]|.
In particular, for g we can take a linear function g(y) =

⊕
yi and as a result obtain the following

property: if in Qn
3 there is a bitrade of cardinality a, then in Qn+m

3 there is a bitrade of cardinal-
ity a2m. This construction can be considered as a particular case of the Cartesian product of two
bitrades. The Cartesian product of two bitrades is a bitrade not only in a ternary hypercube but
also in hypercubes over an arbitrary alphabet. Unitrades that can be represented as a Cartesian
product will be referred to as decomposable.

Theorem 3 (on constricting decomposable bitrades). Let B ⊂ Qn
k and C ⊂ Qn

k be bitrades.
Then in Qn+m

k there exist bitrades of cardinalities |B| · |C|, 2m|B|, and km|B|.
Proof. Bitrades of cardinalities |B|·|C| and 2m|B| can be constructed using Cartesian products.

The possibility of constructing a bitrade of cardinality km|B| can be proved by induction starting
from the case m = 1, which we treat separately. Let a function b : Qn

k → {−1, 0, 1} take values 1
and −1 on two parts of some bitrade and value 0 at other points. Then the function b′ : Qn+1

k →
{−1, 0, 1} given by b′(x1, . . . , xn, xn+1) = b(x1, . . . , xn−1, (xn + xn+1) mod k) defines a bitrade of
dimension n+ 1 and cardinality k|B|. 


Proposition 12. If a unitrade U ⊂ Qn
3 has an empty retract along some direction, then it

is equivalent to a unitrade U [f ] where f is Boolean function independent of one of the variables.
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In this case U is a bitrade if and only if any of its nonempty retracts along the same direction is
a bitrade.

Proof. We may assume without loss of generality that U ∩ {xn = −1} = ∅. Then from the
definition of a unitrade we have U ∩ {xn = 0} = U ∩ {xn = 1} = U ′ and U = U ′ × {0, 1}. Let
U ′ = U [f ] g(x1, . . . , xn) = f(x1, . . . , xn−1). Then U = U [g]. Propositions 1 and 11 imply that the
unitrades U and U ′ are bitrades. 


Since every one-dimensional face of a hypercube intersect a unitrade in at most two vertices,
a ternary unitrade U of dimension n contains at most 2 · 3n−1 vertices. Furthermore, in the case of
the equality |U | = 2·3n−1 the complement Qn

3 \U is an MDS code. As is known (see, e.g., [17]), inQn
3

there is unique up to equivalence MDS code which is linear (i.e., an affine subspace over GF(3)).
The complement of an affine subspace over GF(3) consists of two its cosets. Therefore, a unitrade
of the maximum cardinality is unique and is a bitrade, which is reflected in the first part of the
following theorem.

Theorem 4 (on bitrades of large cardinality). We have the following :

(a) In Qn
3 there is only one up to equivalence unitrade B of the maximum cardinality 2 · 3n−1,

which is a bitrade and can be given by B = {x ∈ Qn
3 | x1+ . . .+xn 
≡ 0 mod 3} = U [�], where �

is some symmetric Boolean function;
(b) In Qn

3 there are bitrades of cardinality 14 · 3n−3;
(c) In Qn

3 there are no bitrades of intermediate cardinalities between 14 · 3n−3 and 2 · 3n−1.

Proof. It remains to prove parts (b) and (c). In Q3
3 there exists the bitrade U [x1x2x3 ⊕

(x1 ⊕ 1)(x2 ⊕ 1)(x3 ⊕ 1)] of cardinality 14. From Theorem 3 we obtain (b).

Let us prove (c) by induction. The induction base is the case n = 3, which can easily be checked
directly. Now let Un+1 ⊂ Qn+1

3 be a bitrade. If three different retracts of the same direction have
cardinalities less than 2 · 3n−1, then |Un+1| ≤ 14 · 3n−2 by the induction hypothesis. Assume that
in Un+1, for each direction, there is one retract of cardinality 2 · 3n−1. Without loss of generality
we may assume that each of these retracts corresponds to the zero value of some variable (xi = 0).
By part (a), they are up to equivalence given by functions linear over GF(3). Then Un+1 = U [f ],
where f = � or f = � ⊕ x1 . . . xn+1. However, the second function has a non-bipartite three-
dimensional retract for n ≥ 4. Indeed, consider the three-dimensional retract obtained from U [f ]
with f = � ⊕ x1 . . . xn+1 by fixing the coordinates x4 = . . . = xn+1 = 1. If n − 2 = 0, 1 mod 3,
this retract is equivalent to the non-bipartite unitrade (1); if n − 2 = 2 mod 3, then the retract
obtained by fixing the coordinates x4 = 2 and x5 = . . . = xn+1 = 1 is equivalent to the non-
bipartite unitrade (1). Therefore, in the case where U [f ] ⊂ Qn+1

3 is a bitrade, we have f = � and
|Un+1| = |U [f ]| = 2 · 3n. 


4.4. Bitrades and Distances between Monomials

Let B ⊂ Qn
k be a bitrade. In Section 2 we defined a function b[B] : Qn

k → {0,±1} that takes
value 1 on one part of the bitrade B, values −1 on the other part, and value 0 at other vertices.
In this subsection we will consider b[B] as a function acting in R, i.e., b[B] ∈ Vn,3(R). In the case
of k = 3 such a function can be defined in exactly two ways: b[B] and −b[B], since the graph ΓB
is connected. In what follows, we consider only this case and usually do not specify which of the
two ways was used to choose the sign of b[B]. For brevity, we introduce the notation bv = b[U [xv ]]
and bV = b[U [fV ]], where v ∈ Qn

3 and V ⊂ Qn
3 .

Proposition 13. Let B,B′ ⊂ Qn
3 be bitrades and b[B](x)b[B′](x) 
= 1 for any x ∈ Qn

3 . Then
S = supp(b[B] + b[B′]) is a bitrade and b[S] = b[B] + b[B′].

Proof. If b[B], b[B′] ∈ Vn,3(R), then b[B] + b[B′] ∈ Vn,3(R). By the condition, b[B]b[B′] 
= 1;
hence, (b[B] + b[B′])(Qn

3 ) ⊆ {0,±1}. Then S = supp(b[B] + b[B′]) is a bitrade by the definition. 
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We will say that functions bv and bu are matched if bu(x)bv(x) 
= 1 for any x ∈ Qn
3 .

Proposition 14. Let v, u ∈ Qn
3 . If there exists a vertex x ∈ Qn

3 such that bv(x)bu(x) = −1,
then the pair of functions bu and bv is matched.

Proof. The intersection of the bitrade U [xu] and U [xv] is a Boolean subcube in the face corre-
sponding to coinciding coordinates of u and v. Since the intersection U [xu]∩U [xv] is connected, it
follows that the unitrade U [xu ⊕ xv] is a bitrade. As was noted above, any bitrade is divided into
two parts uniquely. 


Corollary 4. Any unitrade of rank 2 is a bitrade.

Proposition 15. A unitrade U [fV ] is a bitrade if for each v ∈ V it is possible to choose
functions (signs of functions) bv in such a way that the function g =

∑
v∈V

bv takes only values in
the set {0,±1}.

Proof. Since bv ∈ Vn,3(R) for any v ∈ V , we have g ∈ Vn,3(R) too. Then the condition
implies that supp(g) is a unitrade. Clearly, U [fV ] ⊂ supp(g). Then from Proposition 4(b) we have
supp(g) = U [fV ]; i.e., g = ±bV . 


Proposition 16. Let V ⊂ Qn
3 and |V | = 3 (i.e., rank(U [fV ]) ≤ 3). If all vertices of V differ

in two coordinates only or if two vertices of V differ in one coordinate only, then U [fV ] is a bitrade.

Proof. Let V = {u, v, w} and vertices of V differ in two coordinates only. Then with use of
Proposition 12 we can pass to a two-dimensional case, where all unitrades are bitrades.

If d(v, u) = 1, then xv⊕xu = xo; i.e., rank(U [fV ]) = 2, and the claim follows from Corollary 4. 

We say that three vertices {u, v, w} ⊂ Qn

3 are in general position if there exists a coordinate
where they are pairwise distinct. In this case there exist points a, a′, a′′ ∈ Qn

3 in which the supports
of the bitrades bu, bv, and bw intersect only in pairs, i.e., a ∈ (supp(bv) ∩ supp(bu)) \ supp(bw),
a′ ∈ (supp(bv) ∩ supp(bw)) \ supp(bu), and a′′ ∈ (supp(bw) ∩ supp(bu)) \ supp(bv).

Let us first consider unitrades U [fV ] of rank 3 where three vertices V = {u, v, w} are not in
general position.

Proposition 17. Let V = {u, v, w} ⊂ Qn
3 .

(a) If any coordinate of w coincides with the corresponding coordinate of either u or v, then U [fV ]
is a bitrade.

(b) If every coordinate takes at most two values on u, v, and w and condition (a) is not satisfied,
then U [fV ] is not a bitrade.

Proof. (a) Consider the case of no coordinate in which all the three vertices u, v, and w coincide.
Without loss of generality we may assume that u = 0̄, v = 1̄, and w ∈ {0, 1}n. By Proposition 14
the functions bv and bu can be chosen in such a way that the real sums bv + bw and bu + bw take
values in the set {0,±1} only. From the condition it is seen that U [x0̄] ∩ U [x1̄] = {1̄} ⊂ U [xw].
Therefore, (bv + bw)(1̄) = 0. Hence, the function bv + bu + bw takes only values in the set {0,±1}.
Now the desired follows from Proposition 15.

The case where all the three vertices u, v, and w coincide in some coordinate can be reduced to
the case considered above by Proposition 12.

(b) If every triple of coordinates in u, v, and w satisfies condition (a), then u, v, and w also satisfy
this condition. Without loss of generality we may assume that condition (a) is not satisfied by the
first triples of coordinates of u, v, and w, and they are, respectively, e1 = (1, 0, 0), e2 = (0, 1, 0),
and e3 = (0, 0, 1). Since in each coordinate the vectors u, v, and w take only two values, there
exists a three-dimensional face in which xv ⊕ xu ⊕ xw = x1 ⊕ x2 ⊕ x3 = f ′. Direct checking shows
that U [f ′] is equivalent to a unitrade (1) and is not a bitrade. Now from Proposition 1 it follows
that U [fV ] is not a bitrade either. 
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Now consider unitrades U [fV ] of rank 3 where three vertices V = {u, v, w} are in general
position.

Proposition 18. Let V = {u, v, w} ⊂ Qn
3 .

(a) If the sum of pairwise distances between the vertices of V is odd, they are in general position;
(b) If the vertices of V are in general position, then matchedness of the pairs bv, bu and bv, bw

implies matchedness of the pair bu, bw if and only if the sum of pairwise distances between the
vertices of V is odd.

Proof. If the vertices u, v, and w are not in general position, then each coordinate contributes
either 0 or 2 to the sum d(u, v) + d(v,w) + d(u, v). Therefore, in this case the sum of distances is
even. Part (a) is proved.

Consider the case of V = {0̄, 1̄,−1}. It is easily seen that the unitrades U [x0̄] and U [x1̄] intersect
at a single point 1̄ only. Divide the bitrade U [x0̄ ⊕ x1̄] into two parts. Vertices of the same parity
as 1̄ in the hypercubes U [x0̄] and U [x1̄] must belong to different parts. Hence, the vertices 0̄ and −1

are in different parts. Consider the hypercube U [x−1]. It is clear that the vertices 0̄ and −1 are
in different parts if and only if n is odd. Then matchedness of the pairs b0̄, b1̄ and b0̄, b−1 implies
matchedness of b1̄, b−1 for n odd and unmatchednees of b1̄, b−1 for n even.

The remaining part of the proof is conducted by induction. Assume that the claim is proved for
n− 1.

Let the vertices u, v, and w be pairwise distinct in each coordinate. Then the claim follows from
the case considered above. Otherwise, there exists a coordinate in which not all the vertices u, v,
and w are pairwise distinct. After deleting this coordinate, the shortened vectors v′, u′, and w′ are
also in general position. Without loss of generality we may assume the deleted coordinate to be
the last. Obviously, d(u′, v′)+ d(v′, w′)+ d(u′, v′) = d(u, v)+ d(v,w)+ d(u, v) if un = vn = wn, and
d(u′, v′)+ d(v′, w′)+ d(u′, v′) = d(u, v)+ d(v,w)+ d(u, v)− 2 otherwise. Then the claim is valid for
the functions bv′ , bu′ , and bw′ by the induction hypothesis. Since the last coordinate does not take
one of the values {0,±1} on the vectors u, v, and w, there exists a hyperface xn = δ along the last
direction such that bv(xδ) = bv′(x), bu(xδ) = bu′(x), and bw(xδ) = bw′(x) for all x ∈ Qn−1

3 . Then
for the functions bv, bu, and bw the desired follows from Proposition 14. 


Corollary 5. If the sum of pairwise distances between vertices of a set V = {u, v, w} ⊂ Qn
3 is

odd, then U [fV ] is a bitrade.

Corollary 6. If vertices of a set V = {u, v, w} ⊂ Qn
3 are in general position, differ in at least

three coordinates, and the sum of pairwise distances between the vertices of V is even, then U [fV ]
is not a bitrade.

Proof. Proposition 18 implies that the set of functions bu, bv, and bw cannot be pairwise
matched. If two of the three vertices are at distance 1 from each other and the three vertices are
in general position, then in some coordinate all the three vertices differ, and the sum of pairwise
distance between them is odd. The condition that no two of the vertices u, v, and w are at distance 1
implies that the intersections supp(bv) ∩ supp(bu), supp(bv) ∩ supp(bw), and supp(bu) ∩ supp(bw)
are equivalent to faces of a Boolean hypercube of dimension less by at least 2 than the dimension
of the hypercube, and the condition that the vertices u, v, and w differ in at least three coordinates
implies that in the case of precisely less by 2 the faces corresponding to different intersections are
not parallel. Therefore, the sets supp(bw) \ (supp(bv)∪ supp(bu)), supp(bu) \ (supp(bv)∪ supp(bw)),
and supp(bv) \ (supp(bw) ∪ supp(bu)) are connected. Then the unmatchedness implies that the
unitrade is not bipartite. 


If the vertices of V = {u, v, w} ⊂ Qn
3 are in general position and the sum of pairwise distances

between the vertices of V even, they cannot differ in exactly one coordinate, and if they differ in
exactly two coordinates, then the rank of the unitrade U [fV ] is 2.
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Table

n N ′(n) N(n) lnN(n) ln lnN(n)

0 2 3 1.098 0.094
1 2 7 1.945 0.665 (+0.571) 1
2 3 31 3.433 1.233 (+0.567) 2.4 (±0.490)
3 5 403 5.998 1.791 (+0.557) 6.448 = 2.5392 (±1.188)
4 13 29 875 10.304 2.332 (+0.541) 17.960 = 2.6193 (±2.342)
5 92 32 184 151 17.286 2.849 (+0.517) 50.527 = 2.6664 (±4.776)
6 25 493 1 488 159 817 231 28.028 3.333 (+0.483) 142.25 = 2.6955 (±10.07)
7 > 2 187 260 868 6 171 914 027 409 468 739 43.266 3.767 (+0.434) 398.17 = 2.7126 (±22.59)

Proposition 19. If all pairwise distances between distinct points of a set V ⊂ Qn
3 are odd, then

U [fV ] is a bitrade.

Proof. Let us show by induction that it is possible to choose the functions bv, v ∈ V , in such
a way that all functions bv are pairwise matched. For |V | = 3 this follows from Proposition 18.
Assume that for sets V ⊂ Qn

3 , |V | = k, the claim is true. Consider a point u /∈ V lying at odd
distance from every point of V . Choose a function bu matched with bv for some v ∈ V . Then it
follows from Proposition 18 that bu is matched with bw for any w ∈ V . Thus, the functions bv,
v ∈ V , are pairwise matched for |V | = k + 1. If all the functions bv, v ∈ V , are matched, then∑
v∈V

bv takes only values in the set {0,±1}. Then U [fV ] is a bitrade by Proposition 15. 


4.5. Computational Results

In this subsection we present result of computer-aided calculation of the number N(n) of ternary
bitrades. We could find the number of distinct bitrades up to dimension n = 7, and the number
of nonequivalent bitrades, up to dimension n = 6. The computation method is not too far from
direct exhaustive search, so we do not describe our algorithm in detail. To enumerate all bitrades
in Qn

3 , we substituted as one of retracts one representative from each of N ′(n − 1) equivalence
classes of functions found in the preceding step. After that, for a parallel retract we performed
pointwise exhaustive search for function values with an obvious check of the condition on the sum
over a one-dimensional face. The obtained number of solutions was multiplied by the number of
representatives in the equivalence class of the first retract. The computation of N(7) took two years
of CPU time (per one processor core); computations were conducted on the Computing Center of
the Novosibirsk State University cluster. The computation results up to n = 6 were verified
using the following double counting technique (see [22]): the cardinality of each equivalence class
computed through the cardinality of the automorphism group of its representative coincides with
the number of representatives found during the exhaustive search. The table presents the following
quantities: N(n) is the number of distinct (including the identical zero) {−1, 0, 1}-functions on Qn

3

whose sum over every one-dimensional face is 0 (i.e., all the three values in a face are either zero or
pairwise distinct), and N ′(n) is the number of nonequivalent such functions. The last column shows
the mean half-cardinality (the number of elements −1) of a bitrade (the mean-square deviation is
given in the parentheses); the empty bitrade is excluded from this statistics.

Below we list the distribution of bitrades with respect to their cardinality. For each n we give
the number of bitrades (more precisely, bipartite unitrades; i.e., the number of functions is twice
as large) of cardinalities 2n, 2n + 2, 2n + 4, . . . , 2 · 3n−1.

n = 1: 3.

n = 2: 9, 6.

n = 3: 27, 0, 54, 108, 0, 12.
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n = 4: 81, 0, 0, 0, 324, 0, 1296, 648, 0, 3888, 2844, 0, 4536, 1296, 0, 0, 0, 0, 0, 24.

n = 5: 243, 0, 0, 0, 0, 0, 0, 0, 1620, 0, 0, 0, 9720, 0, 9720, 3888, 0, 0, 58320, 0, 41580, 77760, 0, 116640,

301320, 0, 259200, 660960, 0, 480816, 1368576, 0, 1156680, 2468880, 0, 1415232, 2721600, 0, 1148040,

2185056, 0, 583200, 816480, 0, 90720, 104976, 0, 10800, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 48.

n = 6: 729, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7290, 0, 0, 0, 0, 0, 0, 0, 58320, 0, 0, 0, 87480, 0, 69984,
23328, 0, 0, 0, 0, 524880, 0, 0, 0, 370980, 0, 1399680, 0, 0, 699840, 2099520, 0, 4811400, 466560, 0, 2799360,
7290000, 0, 16562880, 2099520, 0, 6998400, 15244848, 0, 49968576, 19012320, 0, 46889280, 48114000, 0,
149999040, 48988800, 0, 173560320, 158793696, 0, 431451360, 203303520, 0, 593464320, 402077520, 0,
1226726208, 655983360, 0, 1759957632, 1275108480, 0, 3455693280, 1610681760, 0, 4922674560, 3332579760,
0, 8667868320, 4840793280, 0, 12263996160, 7124630400, 0, 19261521360, 10458292320, 0, 25982259840,
15546805632, 0, 37437240960, 17859890880, 0, 44159904000, 26492909760, 0, 56014493760, 28054486080,
0, 58200653952, 29447634240, 0, 63563901120, 30536701920, 0, 53914973760, 27520508160, 0, 44905723488,
18151205760, 0, 28971976320, 13573863360, 0, 17778852000, 6267067200, 0, 7903992960, 2932269264, 0,
2917632960, 1190894400, 0, 772623360, 243544320, 0, 299531520, 100077120, 0, 33592320, 41290560, 0,
5598720, 6298560, 0, 0, 1179360, 0, 3079296, 3429216, 0, 0, 0, 0, 0, 77760, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 96.

n = 7: 2187, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 30618, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 306180, 0, 0, 0, 0, 0, 0, 0, 612360, 0,
0, 0, 734832, 0, 489888, 139968, 0, 0, 0, 0, 0, 0, 0, 0, 3674160, 0, 0, 0, 0, 0, 0, 0, 2585520, 0,
0, 0, 14696640, 0, 0, 0, 0, 0, 14696640, 0, 22044960, 5878656, 0, 0, 48376440, 0, 9797760, 0, 0, 0,
58786560, 0, 105325920, 9797760, 0, 29393280, 252292320, 0, 48988800, 19595520, 0, 0, 264539520, 0,
258660864, 39191040, 0, 58786560, 849465792, 0, 417384576, 64665216, 0, 118599552, 1102248000, 0,
1026927720, 440899200, 0, 117573120, 3241833840, 0, 1646023680, 881798400, 0, 411505920, 5472048960,
0, 4595639328, 1293304320, 0, 1175731200, 13190234400, 0, 6642881280, 4967464320, 0, 2792361600,
23992754688, 0, 14767655616, 8897345856, 0, 5232003840, 48779617824, 0, 29422673280, 19428958080, 0,
13418032320, 86712135552, 0, 56942131680, 43070952960, 0, 29628426240, 174586285440, 0, 108140326560,
100338860160, 0, 60767667072, 333349188480, 0, 211194390960, 197052549120, 0, 133406300160,
633974103504, 0, 394756649280, 437915782080, 0, 284879669760, 1184769633600, 0, 732195313920,
918265662720, 0, 553710608640, 2237431905072, 0, 1396486980000, 1839642114240, 0, 1166266563840,
4133841505920, 0, 2463586985664, 3699825232320, 0, 2436508916352, 7740828063360, 0, 4633391621376,
7373480647680, 0, 4422630481920, 14095095607296, 0, 9008038009152, 14256009258624, 0, 8787284896320,
25936010563680, 0, 15056472533760, 27127920314880, 0, 17656455116160, 46489296385728, 0,
28595219380560, 51865158776256, 0, 30807273127680, 84076043325120, 0, 53419783072320, 96717020198400,
0, 59173324616448, 151123241747520, 0, 87927292938240, 177969306401280, 0, 112318130615040,
267008385528864, 0, 160800706809792, 321325302945024, 0, 188053645282560, 466481709832320,
0, 291050421480000, 570238841894400, 0, 343218104712000, 806560729743456, 0, 464604287555520,
996450456984192, 0, 620225396784000, 1373638417522560, 0, 816009087669552, 1708948701149760, 0,
982341376894080, 2305937678879520, 0, 1414154728014336, 2868447898270080, 0, 1691741075976000,
3783164938709184, 0, 2145564791750016, 4708186964144640, 0, 2866434717250944, 6089563693805760, 0,
3543718526510400, 7547844801104640, 0, 4235506218558720, 9574787807964288, 0, 5748041164944960,
11803431065489280, 0, 6789801853310400, 14687203311950400, 0, 8100416661309504, 17888868241614720, 0,
10588066580077056, 21840361606638720, 0, 12363491876450400, 26269417255213440, 0, 14285288100787200,
31462082237108160, 0, 18299032850230272, 37233543050766720, 0, 20709927455180544, 43720111582963200,
0, 23313370728464640, 50763763455713280, 0, 28924064989464960, 58412989843236000, 0,
31813638206316480, 66303578484210816, 0, 34565462372004480, 74583100623265920, 0, 41520901293714528,
82545422286942720, 0, 43826073580183104, 90590698165121280, 0, 45970461276122880, 97356175759100160,
0, 52673395505996160, 103853217900781440, 0, 53561231066238336, 108100043912367360,
0, 53128915099827840, 111570541229580480, 0, 58350442395913920, 112097875912081920,
0, 55765902028032000, 111406452367500864, 0, 52657506351233280, 107575556428968768,
0, 53994455165468160, 102377410528901760, 0, 48778189150406400, 94582347577421760, 0,
42669649619928576, 85745409629443200, 0, 40987358888555520, 75337864538158080, 0, 34117558361470080,
64695169565885376, 0, 27623026142341056, 53722349499008448, 0, 24230050550665344, 43420216983171840,
0, 18493690067425440, 33854862632935680, 0, 13546143606925440, 25584444523483776, 0,
10783563464378880, 18568192776336000, 0, 7350295708661760, 13016846960075520, 0, 4835426179046400,
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8727631849641600, 0, 3393591789458304, 5646375105114240, 0, 2053100209063680, 3458776067268480,
0, 1173620938855680, 2041794442509696, 0, 728670130929216, 1138311067888512, 0, 375048142382592,
609672959421120, 0, 191348768439360, 307095833018880, 0, 99253170374400, 152237238241536, 0,
46874958318720, 69750838786176, 0, 19948807630080, 31988971163520, 0, 10729375110720, 13802819748480,
0, 3921475057920, 6002269439040, 0, 1657927958400, 2388145213440, 0, 1007425278720, 1073677731840,
0, 520179426144, 484107321600, 0, 144614937600, 245492674560, 0, 205312060800, 136090886400, 0,
89050752000, 73071694080, 0, 20222576640, 49468890240, 0, 45500797440, 28217548800, 0, 15872371200,
12433357440, 0, 3174474240, 2821754880, 0, 12580323840, 4938071040, 0, 3853785600, 1058158080, 0, 0,
529079040, 0, 1410877440, 0, 0, 1162667520, 0, 0, 0, 0, 0, 235146240, 0, 0, 264539520, 0, 0, 0, 0, 0, 0, 0,
0, 12700800, 0, 0, 0, 0, 0, 129330432, 120932352, 0, 71197056, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
520128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 192.

4.6. Refining the Cardinality Spectrum of Bitrades

Proposition 20. Let rank(U) ≥ 4, and let U ⊂ Qn
3 be an indecomposable unitrade of dimen-

sion n. Then |U | > 2.5 · 2n.
Proof. Consider the ranks of retracts of a unitrade U along some coordinate. By Corollary 1,

the sum of two retract is at least 4.

1. If U has an empty retract, then by Proposition 12 the unitrade U is decomposable.

2. If U has two retracts of rank at least 3 and one more retract of rank at least 1, then
|U | > 2 · 2n + 2n−1 (see Proposition 8 and Corollary 3).

3. Now let all retracts of U along any coordinate have rank 2 and rank(U) = 4. Then U = U [f ]
with f = xa ⊕ xb ⊕ xc ⊕ xe where all pairwise distances between the tuples a, b, c, e are at least 2.
Furthermore, in any retract the distances between two disjoint pairs of tuples equal 1; therefore, in
each coordinate two tuples among a, b, c, e take one value, and two others, another value. Without
loss of generality we may assume that ai = 1 and (bi, ci, ei) ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)} for all
i = 1, . . . , n.

If some element of E = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} does not occur among the vectors (bi, ci, ei),
then the unitrade U [f ] is decomposable. Namely, f = (xu ⊕ 1)(xv ⊕ 1) for some tuples u and v.

If all elements of E occur only once, then the U is equivalent to a unitrade (1) and has rank 3.
If all elements of E occur among the vectors (bi, ci, ei) and some of them occurs in coordinates i
and i′, i 
= i′, then the retract along coordinate i has rank at least 3. 


For a set of vectors W ⊂ Qn
3 , define r(W ) to be the number of positions in which all vectors

of W coincide if the vectors of W have at most two different values in every position. If there exists
a position which contains all the three different symbols, we put r(W ) = −∞, i.e., 2r(W ) = 0.

Proposition 21. Let f(x) =
⊕
v∈V

xv, where V ⊂ Qn
3 . Then

|U [f ]| =
|V |∑
t=1

(−2)t−1
∑

W⊂V, |W |=t

2r(W ).

Proof. A formula similar to the inclusion-exclusion formula is known:

|supp(χA1 ⊕ . . .⊕ χAs)|
=

∑
i

|Ai| − 2
∑
i �=j

|Ai ∩Aj |+ 22
∑

i �=j �=k

|Ai ∩Aj ∩Ak| − . . .+ (−2)s−1|A1 ∩ . . . ∩As|.

As was noted in Section 3, we have the equalities U [xv
1 ⊕ xv

2 ⊕ . . . ⊕ xv
s
] = U [xv

1
]⊕ . . . ⊕ U [xv

s
]

and U [xv] = χ{0,±1}v .
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It is easily seen that |{0,±1}v1 ∩ . . . ∩ {0,±1}vs | = 2r({v
1,...,vs}). Then the desired expression

follows by substituting this equality into the first formula. 

Let vi ∈ {0,±1}n. Consider a 3 × n matrix {vij} whose rows are vectors vi ∈ V , |V | = 3. Let

the matrix contain k1(V ) columns of the form acc, k2(V ) columns of the form cac, k3(V ) columns
of the form cca, and k4(V ) columns with all symbols different. Then Proposition 21 implies the
following.

Proposition 22. Let V ⊂ Qn
3 , rank(U [fV ]) = 3, and assume that all the three monomials do

not coincide in any coordinate. Then |U [xv
1 ⊕ xv

2 ⊕ xv
3
]| = 3 · 2n − 2(2k1(V ) + 2k2(V ) + 2k3(V )) +

4δ(k4(V )), where δ(k) = 0 if k > 0 and δ(k) = 1 if k = 0.

Consider all possible bitrades of rank 3 an cardinality up to 2.5 · 2n inclusive.

Note that if d(u, v) = 1, then xu ⊕ xv = xw for some w. Therefore, it suffices to consider the
case where ki ≤ n− 2, where i = 1, 2, 3 and n = k1 + k2 + k3 + k4.

1. Let k1 = max
i=1,2,3

ki = n− 2. Then the following tuples are possible.

1.1. (k1, k2, k3, k4) = (n − 2, 2, 0, 0). A bitrade by Proposition 17(a). The cardinality of the
bitrade is 3 · 2n − 2(2n−2 + 4 + 1) + 4 = 2.5 · 2n − 6. For n = 3, the rank of the bitrade is 2.

1.2. (k1, k2, k3, k4) = (n− 2, 1, 1, 0). Not a bitrade by Proposition 17(b).

1.3. (k1, k2, k3, k4) = (n− 2, 0, 0, 2). Not a bitrade by Corollary 6.

1.4. (k1, k2, k3, k4) = (n− 2, 1, 0, 1). A bitrade by Corollary 5. The cardinality of the bitrade is
3 · 2n − 2(2n−2 + 2 + 1) = 2.5 · 2n − 6. For n = 3, the rank of the bitrade is 2.

2. Let k1 = max
i=1,2,3

ki = n− 3. Then the following tuples are possible.

2.1. (k1, k2, k3, k4) = (n − 3, 3, 0, 0). A bitrade by Proposition 17(a). The cardinality of the
bitrade is 3 · 2n − 2(2n−3 + 8 + 1) + 4 = 2.5 · 2n + 2n−2 − 14. For n = 4, the rank of the bitrade is
2; for n = 5, it coincides with case 1.1; and for n > 5, the cardinality is greater than 2.5 · 2n.

2.2. (k1, k2, k3, k4) = (n− 3, 2, 1, 0). Not a bitrade by Proposition 17(b).

2.3. (k1, k2, k3, k4) = (n− 3, 2, 0, 1). A bitrade by Corollary 5. The cardinality of the bitrade is
3 · 2n − 2(2n−3 + 4 + 1) = 2.5 · 2n + 2n−2 − 10. For n = 4, it coincides with case 1.4; for n = 5, the
cardinality is 2.5 · 2n − 2; for n > 5, the cardinality is greater than 2.5 · 2n.

2.4. (k1, k2, k3, k4) = (n− 3, 1, 1, 1). A bitrade by Corollary 5. The cardinality of the bitrade is
3 · 2n − 2(2n−3 + 2 + 2) = 2.5 · 2n + 2n−2 − 8. For n = 4, the cardinality is 2.5 · 2n − 4; for n = 5,
the cardinality is 2.5 · 2n; for n > 5, the cardinality is greater than 2.5 · 2n.

2.5. (k1, k2, k3, k4) = (n− 3, 0, 1, 2). Not a bitrade by Corollary 6.

2.6. (k1, k2, k3, k4) = (n− 3, 0, 0, 3). A bitrade by Corollary 5. The cardinality of the bitrade is
3 · 2n − 2(2n−3 + 1 + 1) = 2.5 · 2n + 2n−2 − 4. For n = 3, the cardinality is 2.5 · 2n − 2; for n = 4,
the cardinality is 2.5 · 2n; for n > 4, the cardinality is greater than 2.5 · 2n.

If max
i=1,2,3

ki < n− 3, the cardinality of the unitrade is greater than 2.5 · 2n.

Now consider decomposable bitrades (see Proposition 11).

3. If both factors in the Cartesian product are not Boolean hypercubes, then by Proposition 8

their cardinalities can take the values
3

2
2n,

7

4
2n, etc. Since

3

2

7

4
>

5

2
, the cardinality 2.5 times

as large as the minimum, i.e., 2.25 · 2n, n ≥ 4, can be attained only by products of bitrades of

cardinality of the form
3

2
2n1 .

Summarizing the above cases and taking into account the possibility of Cartesian products with
a Boolean hypercube (see Proposition 8), we obtain the following conclusion.
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Theorem 5 (cardinalities of small ternary bitrades). In the hypercube Qn+m
3 for any m ≥ 0

there are only the following bitrades of cardinalities greater than 2n+m+1 but no greater than
5 · 2n+m−1:

(i) 2m(2.5 · 2n − 6) for any n ≥ 4 (1.1 and 1.4);
(ii) 2m(2.5 · 25 − 2) for n = 5 (2.3);
(iii) 2m(2.5 · 23 − 2) for n = 3 (2.4, 2.6, and 3);
(iv) 2m(2.5 · 24) for n = 4 (2.4 and 2.6).

Consider a unitrade U of cardinality at most 2.5 · 2n in Qn
k , k > 3. If in one of directions

it intersects with at least four hyperplanes, then the intersection with each of the hyperplanes
is of cardinality 2n−1 or 3 · 2n−2 (see Proposition 8). Then the cardinality of U can be 2 · 2n,
2.25 · 2n, or 2.5 · 2n. As is shown above, bitrades of the cardinalities 2.25 · 2n and 2.5 · 2n exist
in ternary hypercubes. Besides them, in the hypercubes Qn

k with k > 3 there exist bitrades of
the same cardinality consisting of two disjoint components and bitrades of the form U = U ′ ×
{0, 1}n−2, where U ′ ⊂ Q2

k is a cycle of length 8 or 10. In Q3
4 one can easily construct a bitrade of

cardinality 2.25 · 23 = 18. Similarly to the proof of Proposition 12, one can easily deduce that in
the hypercubes Qn

4 , n ≥ 3, there are bitrades of cardinality 9 · 2n−2.

From the above-said, we have the following.

Corollary 7 (cardinalities of small bitrades). Possible small cardinalities (at most 2.5 · 2n) of
bitrades in hypercubes Qn

k with k > 3 are covered by the same list as in Theorem 5 and the additional
cardinality 2n+1.

5. NUMBER OF BITRADES

5.1. Lower Bound on the Number of Bitrades

First let us find out what is the maximum cardinality of a subset of a hypercubeQn
k if all pairwise

distances between its elements are odd. We start with arguments concerning a set of vertices in a
Euclidean space.

Let {v1, . . . , vn} ⊂ R
m, and let squared pairwise Euclidean distances between vectors vi and vj

are dij = ‖vi − vj‖22. The Cayley–Menger determinant is

det

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 d11 d12 . . . d1n
1 d21 d22 . . . d2n
. . . . . . . . . . . . . . . . . . . . . .

1 dn1 dn2 . . . dnn

⎞
⎟⎟⎟⎟⎟⎠ = (−1)n+12n(n!)2(Voln−1)

2,

where Voln−1 is the (n − 1)-dimensional volume of the convex hull of {v1, . . . , vn}. A proof of this
volume formula through the determinant can be found, e.g., in the monographs [23, Section 40; 24,
Section 4.7]. For us it is important that if n − 1 > m, the determinant is zero, since Voln−1 = 0.
Properties of determinants imply the following known lemma.

Lemma. Let A ⊂ R
m, all pairwise squared Euclidean distance between points of A being odd

integers, and |A| = m+ 2. Then (m+ 2) ≡ 0 mod 4.

Proof. Let n = |A| = m+2. Let us make several additions of rows and columns, which do not
change the determinant. Subtract the first row of the matrix from the others. We obtain

det

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
1 −1 c12 . . . c1n
1 c21 −1 . . . c2n
. . . . . . . . . . . . . . . . . . . . .

1 cn1 cn2 . . . −1

⎞
⎟⎟⎟⎟⎟⎠ = 0,
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where the numbers cij = dij − 1 are even. Now we add the sum of columns from the second to the
(n+1)st to the first column, and then the sum of rows from the second to the (n+1)st to the first
row. We obtain

det

⎛
⎜⎜⎜⎜⎜⎝

b a1 a2 . . . an
a1 −1 c12 . . . c1n
a2 c21 −1 . . . c2n
. . . . . . . . . . . . . . . . . . . . . .

an cn1 cn2 . . . −1

⎞
⎟⎟⎟⎟⎟⎠ = 0,

where ai =
∑
j
cij =

∑
j
cji and b = n +

∑
i
ai = n + 2

∑
i<j

cij . Any diagonal of the matrix except

for the main one contains at least two even numbers, so the product of elements of a diagonal is a
multiple of 4. Hence, the product of elements of the main diagonal must also be a multiple of 4.
Then n ≡ b ≡ 0 mod 4. 


Corollary 8. Let A ⊂ R
m, and let all squared pairwise Euclidean distances between points of A

be odd integers. Then |A| ≤ m+ 2.

Proof. We prove this by contradiction. Let us have such a set of m+ 3 points in R
m. Then it

is also contained in R
m+1 and satisfies the conditions of the lemma, i.e., m+3 ≡ 0 mod 4. Besides,

its subset of m+2 points in R
m also satisfies the conditions of the lemma, and m+2 ≡ 0 mod 4. 


Corollary 9. (a) Let A ⊂ Qm
k , and let all pairwise Hamming distances between points of A be

odd. Then |A| ≤ (q − 1)m+ 2.

(b) Let A ⊂ Qm
k , and assume that for any three points of A the sum of their pairwise distances

is odd. Then |A| ≤ (q − 1)m+ 3.

Proof. (a) Let us encode elements of Qk by real vectors of length k−1 with pairwise Euclidean
distances 1 (vertices of a simplex). Then words of Qm

k correspond to vectors in a (q − 1)m-
dimensional Euclidean space, and the Hamming distance between words equals the squared Eu-
clidean distance between the corresponding vectors.

(b) Consider an arbitrary point a ∈ A. Denote by A′ the set of points of A lying at odd distances
from a, and by A′′, the set of points of A \ {a} lying at even distances from a. It is easily seen
that the distance between b and c is odd if either b, c ∈ A′ or b, c ∈ A′′, and is even if ether b ∈ A′

and c ∈ A′′ or c ∈ A′ and b ∈ A′′. We append 1 to all vectors in A′ ∪ {a} and append 0 to all
vectors in A′′. We obtain a set B ⊂ Qm

k × Q2 with pairwise odd distances. Now, by applying
the techniques analogous to (a), we obtain a set of points in a Euclidean space with odd squared
pairwise distances. Since encoding the values in the last coordinate requires only one Euclidean
coordinate, the bound is only greater by 1 than in case (a). 


For the case where q is a prime, the following fact is commonly known.

Proposition 23. In a hypercube Qm
q with m =

qt − 1

q − 1
there exists an equidistant code Ht of

cardinality (q − 1)m+ 1 = qt with code distance qt−1 dual to the Hamming code.

Theorem 6. (a) For n =
3t − 1

2
there exists a set V ⊂ Qn

3 such that for any W ⊆ V the

unitrade U [fW ] is a bitrade and |V | = 2n+ 1.

(b) Let V ⊂ Qn
3 , n ≥ 3, and let for any W ⊆ V the unitrade U [fW ] is a bitrade. Then

rank(U [fV ]) ≤ 3n.

Proof. Part (a) follows from Propositions 19 and 23. Let us prove part (b).

Without loss of generality we assume that |V | = rank(U [fV ]). Put π(1) = 3 and π(2) = 6.
Denote by π(n), n ≥ 3, the maximum cardinality of a set V ⊂ Qn

3 in which every triple of vertices
generates a bitrade. We prove the inequality π(n) ≤ 3n by induction. For n = 3 the inequality can
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be checked directly. If any triple of vertices in V is in general position, the desired claim follows
from Proposition 18(b) and Corollary 9(b). Now let us prove several auxiliary facts about the
structure of a set V in the case where not all triples in it are in general position.

By Proposition 17 any triple of vertices in V which is not in general position must satisfy the
condition of Proposition 17(a), i.e., one of the vertices must lie between two others. We will call
this property the orderliness of the triple.

Consider a maximal set v0, . . . , vm ∈ V such that every triple of vertices in it is ordered. Without
loss of generality (applying, if necessary, isometries of the hypercube) we may assume1 that v0 = 0̄,
vi = (2 . . . 20 . . . 0), and v0 ≺ v1 ≺ . . . ≺ vm, where m > 1. We denote the set of coordinates j with
vmj = 2 by M . The set of coordinates in which the vertex vi differs from vi+1 will be denoted by Mi.

In the set V \ V0, where V0 = {v0, . . . , vm}, there are no vertices having only 0 and 2 in the
positions from M , since this contradicts either the maximality of V0 or Proposition 17.

Let there exist a vertex u ∈ V such that all the three triples of vertices {vi1 , vi2 , u}, {vi1 , vi3 , u},
and {vi2 , vi3 , u} are in general position. Since d(vi1 , vi2) + d(vi2 , vi3) = d(vi1 , vi3), one can easily
check that the sum of side lengths in one of the three triangles is even. By Corollary 6, we have
a contradiction. We will refer to this observation as property (∗).

Let us show that a vertex u ∈ V \ V0 contains 1 in only one of the blocks Mi, i = 0, . . . ,m− 1.
If u contains 1 in two coordinates, from Mi and Mj , i < j, then u is in general position with any
two of the three vertices v0, vi, and vm. We have obtained a contradiction by property (∗). Denote
by Ui the set of vertices in V having at least one 1 in the block Mi.

Let us show that every vertex u in Uj has equal symbols, either zeros or twos, in coordinates of
each block Mi, i < j. Indeed, otherwise the triple of vertices v0, vj−1, u is not in general position
but is not ordered and therefore by Proposition 17(b) does not generate a bitrade. Similarly, any
vertex u in Uj has equal symbols in coordinates of each of the blocks Mi, i > j (it suffices to
consider the triple vm, vj , u).

Let a vertex u0 ∈ U0 contain 2 in a coordinate of some block Mi, i > 0. Then the triple of
vertices v1, vm, u0 is not in general position and is not ordered and therefore by Proposition 17(b)
does not generate a bitrade. Hence, u0 ∈ U0 contains only zeros in the coordinates of any blocks Mi,
i > 0. Let us show that no vertex uj ∈ Uj , j > 0, contains 0 in the block M0. Indeed, in this
case uj is in general position with any two of the three vertices u0, v1, and vm. We have arrived at
a contradiction by property (∗). Similarly, by considering the case where the vertex um−1 ∈ Um−1

contains 0 in a coordinate from some block Mi, i < m− 1, and the cases where the vertex uj ∈ Uj ,
m − 1 > j > 0, contains symbol 0 in the blocks Mi, i < j, or symbol 2 in the blocks Mi, i > j,
we conclude that the only consistent possibility is as follows: the vertex uj ∈ Uj , j = 0, . . . ,m− 1,
contains only twos in the blocks Mi with i < j and only zeros in the blocks Mi with i > j.

Let us show by contradiction that two vertices ui ∈ Ui and uj ∈ Uj, i < j, cannot have two
different nonzero kth coordinates for k > |M |. Let ui(k) = 1 and uj(k) = 2. Consider the triple
of vertices v0, vi, uj . It is ordered (the condition of Proposition 17(a) is fulfilled), but any pair of
vertices of this triple is in general position with ui. This is a contradiction by property (∗).

We have shown that ui(k) = uj(k), or ui(k) = 0, or uj(k) = 0 for k > |M |. Now let us show
that the case ui(k) = uj(k) 
= 0 for k > |M | is impossible. Indeed, in this case the triple of vertices
vi, ui, uj , i < j, is not in general position and is not ordered and therefore by Proposition 17(b)
does not generate a bitrade. Thus, the coordinates in the complement to M can be divided into
disjoint groups N0, . . . , Nm−1 in such a way that for any vertex ui ∈ Ui nonzero coordinates are
only those from the set Ni.

1 It is more convenient to use here the alphabet {0, 1, 2} with the partial order 0 ≺ 2 and 1 ≺ 2 defined at
the beginning of the paper.
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Consider the restriction of the set of vertices Wi = {v0, vm} ∪ Ui onto the coordinates Mi ∪Ni.
It is easily seen that a triple of vertices from Wi is in general position if and only if its restriction
onto the coordinates Mi ∪Ni is in general position. In this case the parity of the sum of distances
between the vertices of the triple over all coordinates and that of the sum over the set Mi∪Ni only
coincide. If the restriction of the triple of vertices onto Mi ∪ Ni is not in general position and is
not ordered, then the triple of vertices is not ordered on the set of all coordinates too. Hence, the
triple of vertices from Wi generates a bitrade if only if it generates a bitrade on the restriction.

Hence it follows that the cardinality of the setWi = {v0, vm}∪Ui is not greater than π(|Mi|+|Ni|)
if |Mi|+ |Ni| ≥ 3. For |Mi|+ |Ni| = 1, the inequality |Wi| ≤ 3 = π(1) is obvious. If |Mi|+ |Ni| = 2,
the inequality |Wi| ≤ 6 = π(2) can easily be proved by considering restrictions of vertices onto a
set of three coordinates containing the sets Ni and Mi. Then by the induction hypothesis we have

|V | = |V0|+
m−1∑
i=0

|Ui| ≤ m+ 1 +
m−1∑
i=0

(π(|Mi|+ |Ni|)− 2) ≤ 3n. 


Now we will need the codeHt with q = 3. We will bound from below the number of nonequivalent
bitrades by choosing sets of vertices of the code with pairwise odd distances to generate a bitrade.
Theorem 6 shows that our bound almost exhaust the possibilities of this way of constructing
bitrades of large cardinality.

Proposition 24. Let D be the code distance of a set Vi ⊂ Qn
3 and let |Vi| ≤ 2D−3 for i = 1, 2.

Then equivalence of unitrades U [fV1 ] and U [fV2 ] implies equivalence of the sets V1 and V2.

Proof. Let a unitrade U [fV ] be equivalent to a unitrade U ′. Then U ′ = U [fV ′
], where the set

V ′ is equivalent to V . However, this correspondence is not unique, i.e., in the general case there
are other sets W ⊂ Qn

3 for which U ′ = U [fW ].

It suffices to show that if 2n−2 > |V |2n−D+1, then the set V with code distance D is uniquely
recovered from the unitrade U [fV ]. Consider an arbitrary subcube U [xv]. We have v ∈ V if and
only if |U [fV ] ∩ U [xv]| ≥ 2n − 2n−2. Indeed, since |U [xw] ∩ U [xv]| = 2n−d(v,w) for any w ∈ Qn

3 , we
have the inequalities

(1) |U [fV ] ∩ U [xv]| ≥ 2n − |V |2n−D for v ∈ V ;

(2) |U [fV ] ∩ U [xw]| < 2n−1 + |V |2n−D+1 for w /∈ V .

We have 2n − |V |2n−D ≥ 2n−1 + |V |2n−D+1 for |V | ≤ 2D−3. 

Denote by sp(v) the composition of a vector v, for instance, sp(0, 1, 1, 0,−1) = (2, 2, 1). We say

that the composition of a vector is unique for some linear space if it has no vectors with the same
composition.

Proposition 25. Let W ⊂ Qn
k be a linear subspace over GF(k), and assume that in W

there is a basis B consisting of vectors with unique composition. Then in W there are at least
2|W |−dimW−1/|W | nonequivalent subsets of vectors.

Proof. Consider subsets C ⊂ W that contain the zero vector and the basis, i.e., B ⊂ C
and 0̄ ∈ C. Let ϕπ,a be an isometry taking one such set C to another set C ′, i.e., ϕπ,a(C) =
π(C) + a = C ′. Since π(0̄) = 0̄, we have a ∈ C ′ ⊂ W . Consider a basis vector v ∈ C ∩ C ′ with
a unique composition. From the equality sp(π(v)) = sp(v) and uniqueness of the composition, we
have π(v) = v. The linearity of the autotopy π, i.e., the equality π(αu + βw) = απ(u) + βπ(w),
implies that π acts identically on W . Then ϕπ,a(u) = u + a, where a ∈ W . Clearly, the number
of subspaces in W containing some basis and the zero vector is 2|W |−dimW−1, an every equivalence
class of subsets contains at most |W | elements. 


Consider a generator matrix A of the code Ht of dimension t > 1 (see Proposition 23). The
matrix A contains an identity submatrix. Let us make the following transformation of the generator
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matrix A: add to it columns of the identity matrix, namely 2k−1 copies of the kth column for
k = 2, . . . , t. Denote by H ′

t the linear code generated by the matrix thus transformed. All vectors
of Ht (except for the zero vector) are of the same odd weight. Therefore, the difference between
the number of coordinates equal to 1 and −1 is odd, and hence adding evenly many columns
to the generator matrix cannot result in equal composition of pairs of collinear vectors from H ′

t.
Noncollinear vectors from H ′

t have different weight by the construction. Therefore, H ′
t has a basis

(rows of the generator matrix A) of vectors with unique composition. The distance between any
pair of vectors from Ht is odd. Since we have added evenly many copies of unit columns to the
generator matrix A, the distance between any pair of vectors from H ′

t is also odd. The length of

the code H ′
t is 2

t − 2 +
3t − 1

2
.

Theorem 7 (lower bound). The number of nonequivalent bitrades of dimension n is at least
2(2/3−o(1))n as n → ∞.

Proof. For 2t − 2 +
3t − 1

2
≤ n < 2t+1 − 2 +

3t+1 − 1

2
, consider the set H ′

t. By Proposition 23

the code distance of H ′
t is D = 3t. For t large enough, we have |H ′

t|2n−D+1 = 3t2n−D+1 ≤
3t22

t−1−3t+1
2 < 2n−2. Proposition 24 implies that equivalence of two bitrades U(fV ) and U(fW ) is

equivalent to that of the sets V,W ⊂ H ′
t. The desired bound on the number of such subsets follows

from Proposition 25. 


5.2. Upper Bound on the Number of Bitrades

We say that a family of functions A =
∞⋃
n=1

An, An ⊆ {f : Qn
k → S}, n ∈ N, is hereditary if

any set of functions An is closed with respect to the action of isometries of Qn
k on arguments of

the functions and any retract of any function in An belongs to An−1. A set T ⊂ Qm
k is said to

be testing for a set of functions Am if for any f, g ∈ Am, f |T = g|T implies f = g. A set T is
a testing set for a set of functions Am if and only if supp(f − g) ∩ T 
= ∅ for any f and g in Am,
i.e., its complement Qm

k \ T does not contain the support of the difference of any two functions
from Am. Since the difference of two characteristic functions of some combinatorial configurations
is a bitrade (in a wide sense), searching for testing functions is equivalent to searching for sets that
do not contain bitrades.

Proposition 26. Let a family A =
∞⋃
n=1

An, n ∈ N, be hereditary. Let T ⊂ Qm
k be a testing set

for Am. Then the Cartesian product of testing sets T � ⊂ Q�m
k is a testing set for A�m.

Proof. We prove the proposition by induction. Let f |T � = g|T � . Then by the induction hy-
pothesis, for any v ∈ T , f |T �−1×{v} = g|T �−1×{v} implies f |

Q
(�−1)m
k

×{v} = g|
Q

(�−1)m
k

×{v}. Hence, for

any w ∈ Q
(�−1)m
k we have f |{w}×T = g|{w}×T . The set {w}×T is testing for retracts on {w}×Qm

k ,

since the family An is hereditary. Then f |{w}×Qm
k
= g|{w}×Qm

k
for any w ∈ Q

(�−1)m
k . 


The definition of a testing set and Proposition 26 imply the following.

Proposition 27. Let A =
∞⋃
n=1

An be a hereditary family of functions and T ⊂ Qm
k be a testing

set for Am. Then |A�m| ≤ |S||T |�.

Below we will identify unitrades and their characteristic functions. Families of bitrades and
unitrades are hereditary (see Propositions 1 and 2). As follows from equation (2), any subset in Qn

3

inducing a subgraph isomorphic to a Boolean hypercube is a testing set for the family of ternary
unitrades (and bitrades). Let T be a testing set for the family of unitrades in Qn

3 . Since the number
of unitrades in Qn

3 is 22
n
, it follows from Proposition 27 that |T | ≥ 2n. Note that for any testing
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set T its complement Qn
3 \ T contains no (nonempty) unitrades, and vice versa, if Qn

3 \ T contains
a unitrade, then T is not a testing set for unitrades. Therefore, the maximum cardinality of a subset
in Qn

3 containing no unitrades is 3n − 2n. For the family of bitrades, the similar question remains
open. Below we in fact prove that there exists a subset in Qn

3 of cardinality greater than 3n − 2n

that does not contain symmetric differences of bitrades.

Proposition 28. If there exists a unitrade U ⊂ Qm
3 whose characteristic function is not a

(modulo 2) sum of two bitrades, then for bitrades in Qm
3 there exists a testing set of cardinality

2m − 1.

Proof. To each vertex v ∈ Qm
3 we assign a variable xv. Consider the following system of Boolean

equations uniquely determining a unitrade U :

(i) xa ⊕ xb ⊕ xc = 0, for each one-dimensional face {a, b, c} in Qm
3 ;

(ii) xv = 0, for each v in Qm
3 \ U .

From equations of type (i) we select an independent subsystem (I), and then from equations
of type (ii), a maximal independent subsystem (II) which is also independent with equations of
type (i). The set of solutions of subsystem (I) of equations of type (i) has dimension 2m, and the
joint system has dimension 1, since (see Proposition 4) no unitrade is a subset of another, i.e.,
zeros of one function cannot be a subset of zeros of another characteristic function of a unitrade.
Therefore, there are 2m − 1 equations in subsystem (II), which are given by points v of some set
T ⊂ Qm

3 , |T | = 2m − 1.

Let us show that T is a testing set for bitrades in Qm
3 . Let two characteristic functions χA and χB

of different bitrades A and B coincide on T ; then χU = χA ⊕ χB, since the function χA ⊕ χB is
a solution of the system of equations defining the unitrade U . This contradicts the condition. 


The computational experiment (see the table in Section 4.5) shows that the number of bitrades

in Q7
3 is at most 22

6
=

√
227 , i.e., the square root of the number of unitrades in Q7

3. Then the
number of pairs of bitrades in Q7

3 is less than that of unitrades. Thus, for n = 7, conditions of
Proposition 28 are fulfilled. Hence we obtain the following.

Corollary 10. The number of bitrades in Q7�
3 is at most 2α

7�
, where α = (27 − 1)1/7 < 2.

Let β(n) be the number of bitrades in Qn
3 . Then β(n +m) ≤ (β(n))2

m
, m = 1, . . . , 6. Hence,

there is a similar bound on the number of bitrades for arbitrary n > 7.

Theorem 8 (upper bound). The number of bitrades in Qn
3 is at most 2α

n
1 , where α1 < 2.
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