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Introduction

Quantization is the important stage for lossy compression of real
data (image, speech). From the nature of the things a part of data
values is on the edges of the quantization intervals. The last bit of
such value is the least significant one for the quality of
quantization. A special method for choosing this least significant
bits is used for data hiding in image and video. It is possible to
utilize this redundancy for data compression.

Consider an n-tuple consisted of the last bits of quantized values.
Suppose that each n-tuple contains negligible bits. Let C be some
code with cardinality 2n−k and let for each n-tuple there exists a
codeword such that this n-tuple and the codeword differ only in
negligible bits. We will transmit the codeword (rather its number)
instead of the initial n-tuple. So, we will truncate k bits of the n-bit
message.



Definitions

A subset T of the hypercube is called a binary covering array
CA(|T |, n, k) with strength k if for each v ∈ F n

2 and for any k
positions there exists u ∈ T such that v and u can differ only in
these k positions.

We will consider a bit different mathematical problem: to construct
a partial covering array Sk ⊂ F n

2 , |Sk | = 2n−k with the following
property: the number of k-faces containing elements of Sk is as
large as possible.



Examples

A perfect solution for this problem would be a set of codewords
containing only one element of each k-face of F n

2 . Such sets have
cardinalities 2n−k are called MDS codes.

In the Boolean hypercube, there exist only two nonequivalent MDS
codes: the parity check code (k = 1) and the pair of antipodal
vectors (k = n − 1).

{000, 111} {000, 011, 101, 110}



Results

Denote by νk(S) the ratio between the number of k-faces that
contain elements of S and the number

(n
k

)
2n−k of all k-faces.

Define νk(n) = max νk(S) where S ⊂ F n
2 , |S | = 2n−k .

Proposition 1

lim
n→∞

Eνk(T ) = 1− 1/e, where T ⊂ F n
2 is a random set,

|T | = 2n−k , and k is fixed.



Results

Theorem 1

Let r ≤ k be even. Then νk(n) ≤ 1− 1+o(1)
2k+1

(k
r

)
as n →∞.

Let r(k) be the nearest even number for k . Then
1

2k+1

( k
r(k)

)
= 1+o(1)√

2πk
as k →∞. For example, lim

n→∞
ν3(n) ≤ 13

16 .



Results

Denote by Ck,m a code with the check matrix H of size
k ×m(2k − 1) consisting of m columns bk(j) for all
j = 1, . . . , 2k − 1, where bk(j) is the binary representation of j . If
m = 1 then Ck,1 is the Hamming code.

(111 . . . 1);
(

0 1 1
1 0 1

)
;
(

0 0 1 1 1 1
1 1 0 0 1 1

)
; 0 0 1 1 1 0 1

0 1 0 0 1 1 1
1 0 0 1 0 1 1


are the check matrices for C1,m, C2,1, C2,2 and C3,1 respectively.



Results

Denote by µk(C ) the number of k-faces containing only one
element 0 of a linear code C . It is clear that νk(C ) ≥ µk(C )/

(n
k

)
.

Theorem 2

For fixed k and n = m(2k − 1) the maximum value of µk(Ck,m)
corresponds to the code Ck,m.



Results

Proposition

Let n = 2k − 1, k ≥ 2 then
µk(Ck,1) = (2k − 1)(2k − 2)(2k − 4) · · · (2k − 2k−1)/k! and
νk(Ck,1) =

1
k!2k(n

k)

k−1∑
t=1

(2k − 1)(2k − 2)(2k − 4) · · · (2k − 2t)
(2t+1−t−2

k−t−1

)
2t+1.

It is possible to calculate that ν2(C2,1) = 1, ν3(C3,1) = 9/10,
ν4(C4,1) = 10/13.



Results

Define ν ′k(C ) = µk(C )/
(n
k

)
. Obviously, ν ′k(C ) is a lower bound of

νk(C ). Then ν ′k(Ck,1) = (2k − 1)(2k − 2)(2k − 4) · · · (2k −
2k−1)/(2k − 1)(2k − 2)(2k − 3) · · · (2k − k) and
lim

k→∞
ν ′k(Ck,1) ≈ 0.2888.

Proposition

lim
s→∞

ν ′k(Ck,s) = (2k − 1)(2k − 2)(2k − 4) · · · (2k − 2k−1)/(2k − 1)k .



Conclusion

Linear code is not better than a random set as k is large. But if k is
a small integer than the best linear code is tight to the best
unrestricted code.

Problems to find the best unrestricted code or to find an
asymptotic of its cardinality are open.


